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Abstract— We consider the problem of adaptive blind sep-
aration of two sources from their instantaneous mixtures. We
focus on the case where the two sources are not necessarily in-
dependent. By analyzing a general form of adaptive algorithms
we show that separation is possible not only for independent
sources but also for sources that are dependent provided their
joint pdf satisfies certain symmetry conditions. We also identify
the class of dependent sources that are non-separable, namely,
the counterpart of Gaussian sources of the independent case.
We corroborate our theoretical analysis with a number of
simulations and give examples of dependent sources that can
be easily separated.

I. INTRODUCTION AND BACKGROUND

Blind source separation (BSS) is the problem of recovering
unobserved signals (sources) from their observed mixtures.
BSS finds applications in a number of areas as biomedical
signal processing, speech and image processing, data mining
and communications [1].

The simplest and most common version of the BSS
problem consists in estimating two source signals s1(t), s2(t)
from two observations x1(t), x2(t) that are instantaneous
linear mixtures of the sources of the form xi(t) = ai1s1(t)+
ai2s2(t), i = 1, 2. Using matrix notation, we can write

Xt = ASt, (1)

where Xt = [x1(t), x2(t)]ᵀ is the observation vector, St =
[s1(t), s2(t)]ᵀ the source signal vector and A a constant
matrix comprised of the mixing coefficient aij , i, j = 1, 2.
We assume that the observation sequence {Xt} becomes
available sequentially and we are interested in the on-line
estimation of the source sequence {St}. It is clear that, to
solve this problem, it is sufficient to estimate the matrix
B = A−1 since then St can be recovered as BXt. Our
results can be extended to cover multiple sources but we
reserve the corresponding analysis for the more extended,
journal version of our work.

For the solution of the BSS problem we concentrate on
adaptive algorithms. Therefore we will assume that every
time a new sample of the vector process {Xt} becomes
available we update an estimate Bt of the inverse A−1. We
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focus on adaptive algorithms of the form

Ŝt = Bt−1Xt

Bt = Bt−1 − µH
(
Ŝt

)
Bt−1, B(0) = I,

(2)

where (see [1], [2], [3]) the most common form of the matrix
function H(Z) is

H(Z) = [ZZᵀ − I] + [ZGᵀ(Z)−G(Z)Zᵀ], (3)

with Z = [z1 z2]ᵀ, G(Z) = [g1(z1) g2(z2)]ᵀ, gi(z) univariate
functions, I the identity matrix, and µ > 0 is a scalar step
size that controls the convergence behavior of the algorithm.
Vector Ŝt plays the role of the estimate of the source vector.

Although the algorithm defined by (2) is the one we apply
in practice, for its analysis it is more convenient to adopt the
following normalized version

Ŝt = Ct−1St

Ct = Ct−1 − µH(Ŝt)Ct−1, C(0) = A,
(4)

with Ct = BtA and where matrix A appears now only as
initial condition. Substituting the first equation in (4) into the
second yields the final recursion

Ct = Ct−1 − µH(Ct−1St)Ct−1, C(0) = A, (5)

which will be used in our subsequent analysis.
We will say that the adaptive algorithm solves the BSS

problem if Ct tends in the mean to a non-mixing matrix C
with the following possible forms

C =

[
±c1 0

0 ±c2

]
, or C =

[
0 ±c1
±c2 0

]
, (6)

where c1, c2 positive, nonzero quantities. In other words
C must be either diagonal or anti-diagonal with nonzero
elements. These limits impose an ambiguity in the ordering,
power and sign of the estimated sources. Fortunately, in most
applications these uncertainties can either be tolerated or
corrected with simple means as, for example, employment of
pilot signals, where periodically and at known time instances
the source signals are synthetic and known before hand.

Remarkably, the algorithm defined in (5), can converge
even when very limited information about the statistical
description of the sources is available. In fact, [2], [4] it is
sufficient that the functions gi(z) and the probability density
functions (pdf) of the sources satisfy certain symmetry
properties. We have the following theorem that summarizes
the existing results (for the two-source case).

Theorem 1. Let the sources {s1(t), s2(t)} satisfy the fol-
lowing assumptions:
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A1. For every t, s1(t), s2(t) are independent random vari-
ables with symmetric densities and at most one source can
be Gaussian.
A2. For κi = E[g′i(si)]E[s2i ]− E[sigi(si)], i = 1, 2, we have

1 + κ1 > 0, 1 + κ2 > 0, (1 + κ1)(1 + κ2) > 1.

Then the adaptive scheme defined by (5) with H(Z) defined
in (3) can converge in the mean to a non-mixing matrix and
the corresponding limit is locally stable.

Proof. The proof can be found in [4].

Theorem 1 does not guarantee global convergence because
of the nonlinear form of (5). Worth mentioning is also the
fact that in (3) the first term in H(Z), which uses only
second order moments, plays the role of a whitener of the
observation vector Xt, whereas the second term, with the
help of nonlinear statistics, imposes the final independence
and achieves separation. The literature on BSS is very rich.
One can find a detailed review of the existing methodologies
for the case of independent sources in [1].

II. PROPOSED ALGORITHMIC SCHEME

In this work, we extend the above result in two major
directions. Specifically
• We show that there exists a rich class of adaptive

algorithms that can be applied to the BSS problem with
the same success as the algorithm defined in (2), (3).
This algorithmic class not only separates independent
sources but also sources that are dependent, provided
that some simple symmetry condition applies to the
joint pdf of the source signals. It is in fact this symmetry
that guarantees separation and not independence.

• We identify the type of dependent random sources that
cannot be separated under our proposed general algo-
rithmic scheme, hence extending the non-Gaussianity
requirement of the independent case.

The motivation for considering dependent sources, except
of course the obvious theoretical challenge, is the fact
that even when sources are independent under nominal
conditions, once we consider simple contamination models,
independence can be easily lost. For example if f(s1, s2)
denotes the joint pdf of the two sources, the following ε-
contamination model does not correspond to independent
sources

f(s1, s2) = (1− ε)f1(s1)f2(s2) + εg1(s1)g2(s2). (7)

We see that with probability 1− ε the two sources are inde-
pendent following the pdfs f1(s1), f2(s2) and with probability
ε they are again independent but following the alternative pair
of pdfs g1(s1), g2(s1). It is a simple exercise to verify that
f(s1, s2) does not correspond to independent sources. This
raises the logical question as to whether the BSS algorithms
will break under such mild divergence from the nominal
conditions. There are of course applications [5], [6] where the
source signals are genuinely dependent and we are interested
in their separation. The existing literature for BSS methods

for dependent sources is considerable. Here we only mention
some representative articles for each available methodology.
There are off-line techniques as Dependent Component Anal-
ysis [7], [8], contrast functions [9], time-frequency ratio of
mixtures [10] and Kullback-Leibler divergence for copula
densities [11] that are proposed to solve the problem. For
on-line methods we find a technique based on nonnegative
matrix factorization and the Kullback-Leibler divergence in
[12]. For a more detailed list of references please consult:
www.springeropen.com/collections/DCA.

In this work, we adopt a purely algorithmic approach.
Starting with the adaptive algorithm in (2), we examine
what type of matrix functions H(Z) can be employed and
combined with what type of dependent sources in order for
the algorithm in (2) to be successful, namely, its counterpart
in (5) to converge to one of the non-mixing matrices. The
goal is, whatever results we develop, to be applicable to a
wide variety of signals without requiring exact knowledge of
the statistical description of the sources.

Let us now introduce the adaptation we propose as a
general alternative to the existing algorithm in (2) and (3).
Our scheme also follows (2) but with the matrix function
H(Z) replaced by the more general version

H(Z) =

[
h11(z1, z2) h12(z1, z2)
h21(z1, z2) h22(z1, z2)

]
. (8)

For the analysis of the corresponding adaptive algorithm we
will use the equivalent adaptation introduced in (5) with
H(Z) replaced by the form introduced in (8). With our
analysis we target the discovery of suitable constraints on
H(Z) that will guarantee the correct performance of the
corresponding algorithm, namely its convergence to one of
the non-mixing matrices depicted in (6).

III. LIMITS AND STABILITY

Adaptive algorithms can be analyzed using Stochastic
Approximation theory [13] when the step size µ is “small”.
Our main interest lies with the convergence in the mean
which we consider next.

A. Limit in the Mean

The mean field {E[Ct]} of the algorithm in (5), according
to the Stochastic Approximation theory [3], can be efficiently
approximated by the sequence {C̄t} defined by the recursion

C̄t = C̄t−1 − µES [H(C̄t−1St)]C̄t−1, (9)

where ES [·] denotes expectation only with respect to the
source signal vector St. The quality of the approximation
is of the form

E[Ct] = C̄t + o(
√
µ),

If we let t → ∞ and assume that C̄t → C̄∞ with C̄∞
being an invertible matrix we obtain the following equation
for C̄∞

ES [H(C̄∞St)] = 0. (10)

All matrices C̄∞ that satisfy (10) are equilibrium points of
the recursion in (9) and potential limits (in the mean) of the
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adaptive algorithm in (5). Whether a specific equilibrium can
actually become the limit of the recursion in (9) is, of course,
a question of stability of the particular equilibrium point.

Let us ignore for the moment the stability issue and focus
on the problem of imposing a specific matrix as a possible
equilibrium. We simply have to make sure that this matrix
satisfies (10) when it replaces C̄∞. To assure that the non-
mixing matrices introduced in (6) are equilibrium points, we
need for i, j = 1, 2 the following equations, corresponding
to (10), to be satisfied

E[hij(±c1s1,±c2s2)] = 0 (11)

for the diagonal case, or

E[hij(±c2s2,±c1s1)] = 0 (12)

for the anti-diagonal. We observe that, for simplicity, we have
dropped the subscript “S” in the expectation ES [·] since,
from now on, expectation is only with respect to the two
sources.

We note that once the functions hij(z1, z2) are specified
and the type of non-mixing matrix selected, then (11) or
(12) constitutes a system of four equations in two unknowns
(c1, c2). To have a solution of the desired form (diagonal or
anti-diagonal) it is clear that two of the four equations must
be satisfied automatically and, most importantly, without
having exact description of the statistics of the sources. It
turns out that this is indeed possible if we assume that the
joint pdf f(s1, s2) of the two sources exhibits the following
property

f(−s1, s2) = f(s1,−s2) = f(s1, s2), (13)

corresponding to quadrantal symmetry. We should point out
that (13) is not an unfamiliar constraint. Indeed in the case of
independent sources where f(s1, s2) = f1(s1)f2(s2) we recall
from Theorem 1, Condition A1, that we need both marginal
pdfs to be symmetric, which implies (13). Consequently we
require the same symmetry to hold for the joint density when
the two sources are dependent.

If we now impose some additional symmetries, this time
on the functions hij(z1, z2), we can easily guarantee that
the desired non-mixing matrices defined in (6) become
equilibrium points. Specifically, we ask that the following
conditions hold

h11(−z1, z2) = h11(z1,−z2) = h11(z1, z2)

h22(−z1, z2) = h22(z1,−z2) = h22(z1, z2)

h12(−z1, z2) = h12(z1,−z2) = −h12(z1, z2)

h21(−z1, z2) = h21(z1,−z2) = −h21(z1, z2).

(14)

In other words, the two diagonal elements of the matrix
H(Z) must be even functions in each of their arguments
while the anti-diagonal odd functions. There are two desir-
able consequences when these properties are combined with
the quadrantal symmetry of the joint pdf f(s1, s2).
• For any c1, c2, we have E[h12(±c1s1,±c2s2)] =

E[h12(±c2s2,±c1s1)] = 0 and the same property is true
for h21(z1, z2). This suggests that two out of the four

equations in (11) or (12) are satisfied for free and for
all possible signs of the non-mixing matrix.

• If (c1, c2) are roots of the system of the two equations

E[h11(c1s1, c2s2)] = 0, E[h22(c1s1, c2s2)] = 0, (15)

corresponding to a diagonal non-mixing matrix, or of
the system

E[h11(c2s2, c1s1)] = 0, E[h22(c2s2, c1s1)] = 0, (16)

corresponding to an anti-diagonal non-mixing matrix
then so is any combination of signs (±c1,±c2).

Both observations are very simple to demonstrate since they
are a direct consequence of the symmetries imposed on
hij(z1, z2) and f(s1, s2). Regarding c1, c2 we should point
out that we only need their existence since the exact values of
these two quantities depend on the actual joint pdf f(s1, s2)
which is assumed to be unknown.

So far, through the symmetries imposed on f(s1, s2) in
(13) and on hij(z1, z2) in (14), we can guarantee that the
desired non-mixing matrices are equilibrium points for the
mean field adaptation (9). However, in order for these equi-
libriums to be actually accessible as limits by the adaptation
we also need to establish some form of stability.

B. Local Stability

The next step consists in examining under what conditions
the non-mixing equilibrium points are in fact stable limits of
(9). We will present the details for C = diag{c1, c2}, similar
analysis applies to the anti-diagonal case.

Establishing global stability in nonlinear updates is, unfor-
tunately, very difficult and not always possible. We therefore
limit ourselves (very common in adaptive algorithms) in
testing only for local stability. This means that we write
C̄t = C+∆t where ∆t is a perturbation matrix with “small”
elements and analyze the evolution of ∆t with t using linear
system approximation. Stability requires ∆t → 0 as t→∞.
Specifically, assuming that the perturbation matrix is of the
form

∆t =

[
αt γt
δt βt

]
(17)

we have the following lemma that captures the evolution of
∆t.

Lemma 1. The elements of the perturbation matrix ∆t

satisfy the following recursions[
αt

βt

]
= C(I + µF)C−1

[
αt−1
βt−1

]
[
γt
δt

]
= C(I + µG)C−1

[
γt−1
δt−1

]
,

(18)

where

F = E

[[
h11(c1s1, c2s2)
h22(c1s1, c2s2)

][
s1fs1 (s1,s2)

f(s1,s2)

s2fs2 (s1,s2)

f(s1,s2)

]]
(19)

G = E

[[
h12(c1s1, c2s2)
h21(c1s1, c2s2)

][
s2fs1 (s1,s2)

f(s1,s2)

s1fs2 (s1,s2)

f(s1,s2)

]]
, (20)
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fsi(s1, s2) = ∂f(s1,s2)
∂si

and expectation in both formulas is
with respect to the joint source pdf f(s1, s2).

Proof. If we assume that f(s1, s2) is uniformly bounded
then in order for its two marginal densities to exist we
need lims1→±∞ f(s1, ·) = lims2→±∞ f(·, s2) = 0. In fact
we need to strengthen this property slightly so that the two
expectations in (19) and (20) are bounded. In particular, for
any fixed constants c1, c2 we require

lim
s1→±∞

hij(c1s1, ·)s1f(s1, ·) = 0

lim
s2→±∞

hij(·, c2s2)s2f(·, s2) = 0.
(21)

Details of the proof are given in the Appendix.

From the recursions in (18) we can find conditions that
assure local stability of the desired equilibrium. The next
lemma discusses exactly this point.

Lemma 2. The equilibrium point C is locally stable if and
only if the following inequalities hold

tr{F} < 0,det{F} > 0, tr{G} < 0,det{G} > 0, (22)

where tr{·},det{·} denote trace and determinant respec-
tively.

Proof. For local stability we need the two matrices I + µF,
I + µG to have their eigenvalues in the interior of the unit
circle. This can happen for all sufficiently small step sizes
µ > 0 if and only if the two matrices F,G have eigenvalues
with strictly negative real parts. The two inequalities applied
to each matrix correspond to the Routh-Hurwitz criterion that
assures this fact.

Remark 1: From our local analysis we observe that the mean
estimates, when they are close to the limit, converge to the
equilibrium exponentially fast in the form of (I + µF)t and
(I + µG)t. In other words we have an exponential rate of
convergence which is proportional to µ. Of course this is
true, provided that the conditions of Lemma 2 apply. As we
can see, a smaller µ reduces the convergence speed towards
the desired limit.
Remark 2: We devoted all our efforts to assure convergence
in the mean of the algorithmic scheme in (5) to the desired
non-mixing equilibrium. However, mean convergence by
itself cannot guarantee satisfactory estimates. It is equally
important that the variance of the corresponding estimates
is small. Fortunately, regarding this point, Stochastic Approx-
imation comes to our rescue. Specifically, it is known [13]
that when the limit in the mean is stable the corresponding
covariance matrix of the estimates in (5), at steady-state, is
proportional to µ. Actually, there are even formulas that can
compute the steady-state covariance matrix up to a first order
approximation in µ. Since the step size is selected to be small
this suggests that, at steady-state, our estimates will differ
from the desired non-mixing matrix by a random amount that
has small power. Decreasing µ provides better steady-state
estimates but, as mentioned in the previous remark, results
in longer convergence periods of the mean field toward its
desired limit.

IV. NON-SEPARABLE SOURCES

One of the main issues in BSS is to identify the type of
sources that cannot be separated. When the two sources are
independent it is well known that the only combination that
is non-separable by any off- or on-line method is the case of
two Gaussians. If we allow the sources to be dependent with
a joint pdf satisfying the symmetry in (13) then the class of
sources that are non-separable may increase. Unfortunately,
under dependency it is very difficult to develop results of the
same generality as in the independent case. Consequently, in
order to come up with something meaningful, we propose a
more modest characterization of non-separability which, we
believe, is equally interesting.

Definition: Two sources will be called non-separable if there
is no algorithm of the form of (5) for which a non-mixing
equilibrium point C defined in (6) is stable.

In other words, instead of referring to any on- or off-line
method, we relate the separability property to our general
algorithmic scheme. If our algorithm is unable to converge
to a non-mixing matrix no matter which functions hij(z1, z2)
we employ, then we regard the corresponding sources as non-
separable.

The equilibrium point is unstable if at least one of the two
matrices F,G has at least one eigenvalue with positive or
zero real part. Clearly this fact must be shared by all com-
binations of functions hij(z1, z2) with symmetries specified
in (14). We have the following theorem that identifies the
joint probability density of sources that are non-separable,
according to our definition.

Theorem 2. Two dependent sources s1, s2 are non-separable
by any version of the algorithm in (5) if and only if their joint
pdf f(s1, s2) is of the following form

f(s1, s2) = ω(K2s
2
1 +K1s

2
2), (23)

where ω(z) is a univariate function of z and K1,K2 are
positive constants.

Proof. The proof is very interesting and requires several
steps. All details are given in the Appendix.

s
1

s
2

Fig. 1. Contour lines of the joint pdf of a pair of non-separable dependent
sources.

Theorem 2 identifies as non-separable, the sources with
joint pdf f(s1, s2) that exhibits elliptical quadrantal sym-
metry (due to the term K1s

2
1 + K2s

2
2). Fig. 1 captures the

typical form of the contour lines of the corresponding joint
pdf. An interesting question is what happens when we apply
our definition of non-separability to the independent case.
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In particular, we would like to know whether our definition
generates any additional, to the classical Gaussian pair,
sources. The next corollary provides the necessary answer.

Corollary. When the two sources s1, s2 are independent the
only combination which is non-separable by the algorithm
in (5) is the classical case of Gaussian sources.

Proof. When the two sources are independent then
f(s1, s2) = f1(s1)f2(s2). If we use this fact in (23) and
take the derivative with respect to s1 and s2 we obtain the
following equalities

f ′1(s1)f2(s2) = 2K2s1ωz(K2s
2
1 +K1s

2
2)

f1(s1)f ′2(s2) = 2K1s2ωz(K2s
2
1 +K1s

2
2),

where ωz(a) = dω(z)
dz |z=a. From the two equations we

conclude that

f′1(s1)f2(s2)
2K2s1

=
f1(s1)f

′
2(s2)

2K1s2

which suggests

f′1(s1)
f1(s1)2K2s1

=
f′2(s2)

f2(s2)2K1s2
= K.

K must be a function solely of s1 and at the same time
a function solely of s2, therefore it is necessarily a con-
stant. The previous expression gives rise to two differential
equations in s1 and s2, with solutions f1(s1) = A1e

KK2s
2
1 ,

f2(s2) = A2e
KK1s

2
2 , i.e. Gaussian pdfs. The corresponding

function ω(z) has the form ω(z) = A1A2e
Kz .

The Corollary guarantees that, even if we limit ourselves
to separation algorithms of the form of (5), this does not
augment the class of non-separable sources when the sources
are independent. This result was, in a sense, expected since
from the literature we know that adaptive algorithms of the
form of (2), with H(Z) as in (3), in simulation were seen to
be able to separate independent sources except, of course,
Gaussian pairs. Since our model for H(Z) in (8), with
the particular symmetries imposed in (14), is more general
than (3), the corresponding adaptive algorithm will also be
capable of separating the same class of independent sources.
Of course, the main value of Theorem 2 comes from the fact
that it identifies non-separable dependent sources which is
clearly not a straighforward extension of the Gaussian-pair
of the independent case.

In the next section we give examples of classical and
non-classical H(Z) matrices and we test, using simulations,
their capability to separate dependent sources. We also give
examples of sources with elliptical quadrantal symmetry
and verify that the algorithm in (5) is unable to perform
separation.

V. EXAMPLES

Let us start with the example where the pair (s1, s2)
is a mixture of independent Gaussian random variables.
Specifically, with probability 0.5 the two sources s1 and s2
are independent N (0, 1), N (0, 4), while with probability 0.5

they are again independentN (0, 4),N (0, 1) respectively. We
consider two cases for the H(Z) matrix

H(Z) =

[
z21 − 1 z1z2 + z1z

3
2 − z2z31

z1z2 + z2z
3
1 − z1z32 z22 − 1

]
H(Z) =

[
|z1| − 1 z1z

2
2sgn(z2)

z2z
2
1sgn(z1) |z2| − 1

]
.

The first matrix corresponds to the classical version intro-
duced in (3) and, as we can see, it whitens the observations.
On the other hand, the second matrix does not contain
any whitening part. Both selections satisfy the symmetry
properties set in (14). Furthermore, the analysis of the
corresponding matrices F,G assures validity of (22) for
stability. Fig. 2 depicts the simulation results. In Fig. 2(a)

s
1

s
2

(a)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Number of iterations

-2

-1.5

-1

-0.5

0

0.5

1

1.5

(b) (c)

Fig. 2. (a) Contour lines of the joint pdf of two sources s1, s2 that
are independent N (0, 1),N (0, 4) with probability 0.5 and independent
N (0, 4),N (0, 1) with probability 0.5. Evolution of the elements of Ct

with the number of iterations (b) classical, (c) without whitening.

we can see the contour lines of the corresponding joint
pdf. We observe that we have quadrantal symmetry which
is not elliptical, consequently the sources can be separated.
In Fig. 2(b) and (c) we plot the elements of the normalized
estimates Ct as they evolve in time for the two choices of
H(Z). We recall that B0 = I corresponds to C0 = A. We
therefore initialized C0 with a random matrix corresponding
to a random selection of A. Blue and magenta lines depict
the diagonal elements of Ct whereas yellow and orange the
anti-diagonal. As we can see, in both algorithms we have
convergence towards a non-mixing matrix.

Let us now test the validity of Theorem 2. We are going
to generate dependent sources with their pdf controlled by a
parameter d. When d 6= 0 the joint pdf will have quadrantal
symmetry but not elliptical. For d = 0 the quadrantal
symmetry will also become elliptical. This means that in
the former case we expect source separability while in the
latter the sources will be non-separable. The source model
we propose is the following: We start with r, θ independent
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s
2

s
1

(a) (b)

Fig. 3. (a) Contour lines of the joint pdf for sources following (24) with
d = 1 and (b) Evolution of the corresponding normalized estimates.

random variables with r exponentially distributed in [0,∞)
with rate equal to 1 and θ uniformly distributed in [−π, π].
We apply the following transformations to produce the two
signals

s1 = r cos θ; s2 = r{sin θ + d(sin θ)2sgn(sin θ)}. (24)

As we mentioned, d = 0 is the only value that generates
elliptical (actually cyclic) symmetry. We use the classical
H(Z) matrix in order to demonstrate that the classical
algorithms can also separate dependent sources. Fig. 3(a)
depicts the contour lines of the pdf and (b) the evolution of
the elements of the normalized estimates for the case d = 1.
As we can see the adaptive algorithm converges to a non-
mixing matrix.

s
2

s
1

(a) (b)

Fig. 4. (a) Contour lines of the joint pdf for sources following (24) with
d = 0 and (b) Evolution of the corresponding normalized estimates.

In Fig. 4, we present the simulation for d = 0. Fig. 4(a) has
the contours which have indeed cyclic symmetry. In (b), we
have the evolution of Ct which, as predicted by our analysis,
does not converge to a non-mixing matrix.

VI. CONCLUSION

We considered adaptive algorithms that are capable of
blindly separating dependent sources. We showed that if
the sources exhibit a quadrantal symmetry in their statistical
behavior, then simple adaptive algorithms can be employed
to separate them. This result indicates that source separability
is not a property due to “independence” but rather due
to “symmetric statistical behavior”. With our analysis we
were also able to identify the dependent sources that are
not separable thus extending the Gaussian case known for
independent sources.

APPENDIX

Proof of Lemma 1

The proof is somewhat involved but presents no partic-
ular analytical challenges. Since C is an equilibrium point
satisfying E[H(CS)] = 0, where expectation is with respect
to f(s1, s2), it is not very difficult to verify that the study
of local stability of the mean field (9) at C is the same as
studying the local stability of

C̄t = C̄t−1 − µE[H(C̄t−1S)]C

at the same equilibrium. Consider now the perturbation C̄t =
C + ∆t. Next we will present the complete computation
of the recursion for the element αt defined in (17) for the
perturbation matrix. Similar steps can be applied for the other
three terms to show the validity of the lemma. Without loss
of generality assume that C = diag{c1, c2}, then for αt we
have
αt = αt−1−
µc1E[h11(c1s1+αt−1s1+γt−1s2, c2s2+δt−1s1+βt−1s2)].

Applying first order Taylor expansion we obtain

αt = αt−1−
µc1
{
E[∂z1h11(c1s1, c2s2)s1]αt−1+

E[∂z1h11(c1s1, c2s2)s2]γt−1

+ E[∂z2h11(c1s1, c2s2)s1]δt−1

+ E[∂z2h11(c1s1, c2s2)s2]βt−1
}
,

where ∂zi denotes partial derivative with respect to zi.
Since h11(z1, z2) is even symmetric in z1 this im-
plies that ∂z1h11(z1, z2) is odd in z1 consequently
∂z1h11(c1s1, c2s2)s2 is odd in both arguments s1, s2. Be-
cause f(s1, s2) exhibits quadrantal symmetry this suggests
that E[∂z1h11(c1s1, c2s2)s2] = 0. Similar conclusion can be
drawn for E[∂z2h11(c1s1, c2s2)s1]. Because of this observa-
tion we can write

αt = αt−1−
µc1
{
E[∂z1h11(c1s1, c2s2)s1]αt−1+

E[∂z2h11(c1s1, c2s2)s2]βt−1
}
.

Let us now find a more convenient expression for the
two expectations. First note that ∂z1h11(c1s1, c2s2) =
c−11 ∂s1h11(c1s1, c2s2). Using this equality we can write

E[∂z1h11(c1s1, c2s2)s1] =

c−11

∫∫
∂s1h11(c1s1, c2s2)s1f(s1, s2)ds1ds2 =

− c−11

∫∫
h11(c1s1, c2s2) ∂s1

(
s1f(s1, s2)

)
ds1ds2 =

− c−11 E
[
h11(c1s1, c2s2)

(
1 +

s1fs1 (s1,s2)

f(s1,s2)

)]
=

− c−11 E
[
h11(c1s1, c2s2)

s1fs1 (s1,s2)

f(s1,s2)

]
.

For the second equality we used integration by parts and
(21) and for the last we used (15). Similar computations can
be performed for the second expectation in the recursion
for αt and for the corresponding terms in the recursions for
βt, γt, δt. This can prove validity of the formulas for the two
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matrices F,G in (19) and (20). This completes the proof of
the lemma.

Proof of Theorem 2

As we mentioned, for non-separation we need at least one
of the two matrices F,G to have an eigenvalue which is
either positive of zero. This property must be true for all
functions hij(z1, z2) with symmetries as in (14). Note that a
possible selection of hij(z1, z2) is the following

h11(z1, z2)=−z1
fs1 (z1,z2)

f(z1,z2)
, h22(z1, z2)=−z2

fs2 (z1,z2)

f(z1,z2)

h12(z1, z2)=− z2fs1 (z1,z2)

f(z1,z2)
, h21(z1, z2)=− z1fs2 (z1,z2)

f(z1,z2)
,

which satisfies the system of equations (11) with c1 = c2 =
1. Denote the corresponding F,G matrices as F∗,G∗ then,
using (19), (20) we obtain

F∗ = −E

[[
s1fs1 (s1,s2)

f(s1,s2)
s2fs2 (s1,s2)

f(s1,s2)

] [
s1fs1 (s1,s2)

f(s1,s2)

s2fs2 (s1,s2)

f(s1,s2)

]]

G∗ = −E

[[
s2fs1 (s1,s2)

f(s1,s2)
s1fs2 (s1,s2)

f(s1,s2)

] [
s2fs1 (s1,s2)

f(s1,s2)

s1fs2 (s1,s2)

f(s1,s2)

]]
.

Both matrices are symmetric and nonnegative definite, there-
fore the only hope to experience instability is if and only if
at least one of the two matrices has an eigenvalue equal to
0 (since nonzero eigenvalues are necessarily negative). The
latter can happen only when we can find constants K1,K2

such that [K1 −K2]ᵀ is an eigenvector to a 0 eigenvalue
for F∗ or G∗. Because both matrices are symmetric and
nonnegative definite, this is possible if and only if, at least
one of the following two equations is satisfied for all (s1, s2)

K1s1fs1(s1, s2)−K2s2fs2(s1, s2) = 0 (25)
K1s2fs1(s1, s2)−K2s1fs2(s1, s2) = 0, (26)

with not necessarily the same constants K1,K2. Summariz-
ing: For the specific selection of the hij(z1, z2) functions, at
least one of the two equations (25), (26) is required to be
true if the sources are non-separable.

It is a fact that: If (25) or (26) is valid then for any other
selection of hij(z1, z2) at least one of two matrices F or G
will have an eigenvalue equal to 0 as well.

This can be seen from (19), (20) where we have the
expressions for F,G for arbitrary hij(z1, z2). If for example
(26) is true then G in (20) will have the same [K1 −K2]ᵀ

as a right eigenvector corresponding to a 0 eigenvalue.
Consequently, if at least one of (25), (26) is true, then
f(s1, s2) corresponds to non-separable sources.

Let us now examine what type of joint densities f(s1, s2)
can satisfy (25) or (26). We start with (25). Due to the
quadrantal symmetry we can limit ourselves to the first
quadrant with s1, s2 nonnegative. Define z = sK2

1 sK1
2 then

we can express s1 in terms of s2 and z as s1 = z
1

K2 s
−K1

K2
2 .

Call ω(z, s2) = f(z
1

K2 s
−K1

K2
2 , s2) and compute its partial

derivative with respect to s2, we have

ωs2(z, s2) = −K1

K2
z

1
K2 s

−K1
K2
−1

2 fs1(z
1

K2 s
−K1

K2
2 , s2)+

fs2(z
1

K2 s
−K1

K2
2 , s2)=− 1

K2s2

{
K1z

1
K2 s

−K1
K2

2 fs1(z
1

K2 s
−K1

K2
2 , s2)

−K2s2fs2(z
1

K2 s
−K1

K2
2 , s2)

}
= 0

with the last equality coming from (25). From ωs2(z, s2) = 0
we conclude that ω(z, s2) = ω(z). Recalling the relationship
between ω(z, s2) and f(s1, s2) and replacing z with its
definition we prove that f(s1, s2) = ω(|s1|K2 |s2|K1). It turns
out that functions of this form cannot be legitimate joint pdfs.
This can be seen by integrating the equality over s2 in order
to identify the marginal pdf f1(s1). We note that

f1(s1) =
∫
f(s1, s2)ds2 =

∫
ω(|s1|K2 |s2|K1)ds2

= 2
∫∞
0
ω(|s1|K2sK1

2 )ds2

= |s1|−
K2
K1

2

K1

∫ ∞
0

z
1

K1
−1ω(z)dz = |s1|−

K2
K1A,

where constant A is defined as A = 2
K1

∫∞
0
z

1
K1
−1ω(z)dz.

The resulting form of f1(s1) is not an integrable function
over the whole real line for any value of the ratio K2

K1
and

therefore cannot play the role of the marginal f1(s1). As a
result (25) cannot be satisfied by any joint pdf f(s1, s2).

Let us now analyze (26) in the same way. If in this case
we define z = K2s

2
1 +K1s

2
2, solve for s1 and follow exactly

the same steps as in the previous case, we end up with
f(s1, s2) = ω(K2s

2
1 + K1s

2
2). What is left to show is that

K1,K2 must be of the same sign which, without loss of
generality, can be considered positive. Note that if K2 > 0
and K1 < 0 then K2s

2
1+K1s

2
2 = r2, for fixed r, corresponds

to a hyperbola. We can then express s1, s2 in terms of two
alternative variables r and θ as follows

s1 = 1√
|K2|

r cosh(θ), s2 = 1√
|K1|

r sinh(θ)

where r ≥ 0 and θ can be any real. If the joint pdf of
s1, s2 satisfies f(s1, s2) = ω(K2s

2
1 + K1s

2
2), then we can

find the corresponding pdf of r and θ by applying standard
methodology for transformations of random variables, this
yields

f(r, θ) = ω(r2)r.

The previous equation suggests that r and θ are independent
and r has a marginal pdf of the form Aω(r2)r, where A
suitable constant, while θ a marginal pdf equal to A−1,
namely, a uniform density. The latter, however, is not possible
since θ takes values on the whole real line and there is no
uniform distribution that can support this unbounded range.
Regarding this last point, one might argue that the density
we are seeking exists and is known as “degenerate uniform
distribution”. However, we recall that this function is not an
actual density but rather a limit of a regular uniform density
whose support increases without limit. The actual limiting
function is not a pdf since it is 0 everywhere on the real
line. Consequently we cannot have K2 > 0 and K1 < 0 and
the only legitimate choice for the joint pdf of a non-separable
pair is a function with elliptical quadrantal symmetry. This
completes the proof of the theorem.
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