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Abstract - We present a class of constraint LMS 
like adaptive linear detection schemes that constitutes 
a generalization to the popular blind adaptive detec- 
tor. We show that, contrary to the general belief, the 
conventional LMS and its constraint version, when 
in training mode, do not necessarily outperform the 
blind LMS of [l]. Trained algorithms uniformly out- 
perform their blind counterparts only if they incorpo- 
rate knowledge of the amplitude of the user of inter- 
est. Decision directed versions of such algorithms are 
shown to be equally efficient as their trained proto- 
types and significantly better than the blind versions. 

BACKGROUND AND MAIN RESULTS 
A K-user synchronous DS-CDMA system with identical chip 
waveforms and signaling antipodally through additive white 
Gaussian noise (AWGN) channel, in discrete time can be mod- 
eled as 

r(n) = xi=, siaibi(n) + an(n). 
where r(n) is the received vector of length N ,  N the spread- 
ing factor; U’ the power of the AWGN, si the signature of 
User-i, ai the corresponding amplitude, b i (n )  the n-th symbol 
of User-i and finally n(n) a white Gaussian noise vector with 
i.i.d. components of zero mean and unit variance. 

Linear detectors estimate the transmitted bits by taking 
&(n) = sgn{ctr(n)} with c a suitable filter. Since the last 
estimate is also equal to sgn{Sc‘r(n)} when 6 > 0, we conclude 
that there is an ambiguity in c as far as detection is concerned. 
This ambiguity can be eliminated by imposing a constraint on 
the filter, and we propose the use of the same constraint as 
the one in [1], namely ctsl = 1. 

The constraint stated above can now be used to define the 
following constraint mean square error minimization problem 

where v(n)  is a process to be specified next. An LMS like 
stochastic gradient algorithm that solves the above problem 
adaptively can be defined as follows 

~ ( n )  = v(n)  - ct(n - l)r(n), c(O) = S I ,  

c(n) = c(n - 1) + pc(n)(r(n) - st,r(n)sl). 
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min, ~ { ( v ( n )  - ctr(n))2}, ctsl = 1, 

ct(n)  = I - p(I - SlSt,)& ct(n - 1) 
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where p ( x )  = 1 - and & is the covariance ma-  
trix of the interference plus noise part of the data. For the last 
two relation we assumed approximately orthogonal signatures. 

From the Theorem we can conclude (21 that the best trained 
version corresponds to cy = al, i.e. CLMS-AI. This is the rea- 
son why we analyze the DD version of this case only (i.e. DD- 
CLMS-AI). Furthermore BLMS (cy = 0) is better than CLMS 
(a  = 1) when a1 < 0.5. Comparing now CLMS-AI to DD- 
CLMS-AI one concludes that the DD version is very close to 
the optimum trained version even for moderate values of SNR 
and at the same time significantly better than BLMS. 

The optimum algorithm CLMS-AI and its DD version re- 
quire knowledge of a l .  One can estimate the amplitude di- 
rectly from the data r(n) using the filter estimates c as follows 

i i l(n) 
i i l(n) 

= 
= 

(1 - v)i i l (n - 1) + vct(n - l)r(n)bl(n) 
(1 - v)iil(n - 1) + vIct(n - 1)r(n)l, 

with the first formula applied to the trained case and the sec- 
ond to the DD. Let us call the resulting algorithms CLMS-AE 
and DD-CLMS-AE respectively (where AE stands for ampli- 
tude estimation). In our figure we present the relative per- 
formance of the two algorithms and that of the BLMS of [I]. 
We have selected N = 128 and SNR=2Odb; initially there 
are twenty nine 10db interferers; at n = 10000 five 20db 
interferers enter and at 20000 all five 20db along with five 
10 db interferers exit the channel. We observe an initial non- 
linear behavior of DD-CLMS-AE; however the algorithm, very 
quickly, attains the same convergence rate as CLMS-AE and a 
steady state performance which is indistinguishable from the 
optimum and significantly better than that of BLMS. 
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As far as v(n)  is concerned we are interested in two selec- 

where a a scalar parameter. The first results in a trained LMS 
like algorithm and the second in its corresponding decision di- 
rected (DD) version. Notice that cy = 0 yields the blind LMS 
(BLMS) of [l]; cy = 1 the constraint LMS (CLMS) and a = al ,  
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-5 tions, namely ~ ( n )  = abl(n) and v ( n )  = asgn{ct(n- l)r(n)}, 
5 z-,5 
5 

-20 

a constraint LMS with amplitude information (CLMS-AI). -25 

To examine the behavior of the algorithms, we use the ex- -30 

cess inverse signal to interference ratio as our performance 
measure and let us denote it as J(n). We have the following 
results concerning the trained version for any cy and the DD 
version for cy = a1 (subscripts t and d respectively). 

Theorem: The  mean filter estimates E ( n )  and the steady 
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