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ABSTRACT

In this paper we present a new and robust method to
construct the eve diagram from asynchronous samples of
a digital communication signal. No a priori knowledge of
the bit period is needed. The method uses an approach
based on periodograin estimation which is suitable even
for (highly) under sanmpled signals. Random shifts due
to clock errors are also being corrected. We apply this
method to the Bit Error Rate estimation of an optical
signal in an experimental setup.

1 INTRODUCTION

The main motivation for this work comes from a prob-
lein related to the mouitoring of optical networks. In
next gencerations of such networks, optical technology
will be more and more used not only for transmission
but also for switching (in replacement of present electri-
cal cross-connects) of signals. The objective is to alle-
viate the bottlenccks due to capacity and cost of elec-
trounic solutions and to provide a versatile “transpar-
ent” (without opto-clectronic conversions) optical net-
work able to carry client signals independently of the
various formats of their electrical frame. However, the
capacity to monitor the quality of the signal along its
path is a required feature to build a manageable net-
work. It is clear that transparent optical networks can
exist only if transparent monitoring methods are devel-
oped. This is the aim of the technique presented in this
paper which successfully measures the main quality indi-
cator of a digital communication system, namely the Bit
Error Rate (BER), without accessing neither the electri-
cal frame of the corresponding signal nor even knowing
its bit rate. _
The received signal can be modeled as

“+0o0

z(t) = Z

n=—0oo

an ¢t — n'Tp) + v(t)

where {a,} is the transmitted symbol sequence taking
only upon two values a,, € {1,d} with equal probability
where d > 0; Ty is the bit period; ¢ is a continuous time
function with compact support representing the “pulse”
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shape; and v is some additive (usually Gaussian) noise.
Assume that some device can saimple the instantancous
optical power, but at a rate significantly lower than the
bit rate, and without any synchronization. The question
one can pose is what uscful information, concerning the
quality of the acquired signal, can be extracted from
such samples?

If the signal is highly sub-sampled, then traditional
Signal Processing techniques fail, and the idea that
comes to mind is to usc the available samples to build
an eye diagram. This is indeed possible without any in-
formation on the optical signal, as we will show next.
In Section 3, these ideas will applied to the problem of
BER estimation.

2 EYE DIAGRAM RECONSTRUCTION

Given the samples z, = z(t,) we would like to re-
construct the eye diagram, that is, the set of pairs
(tp mod Ty, x,,), or equivalently (L,I—, Tyn). We assuine
that the sampling times are given by ¢, = to-+nTs+uy,
where T is the sampling period (we may have T, >>
Tp), and w, is some random perturbation (nsually a
random walk) due to clock’s lack of accuracy. We also
assume that T /T}, is not an integer. We show first that
we do not need to estimate explicitly Ty, not cven the
ratio % to construct the eye diagram. Indeed. by de-
noting fp, = T, b“l and fs = T, !, we have the following
identities when w, = 0

tn to+nT, to o
modl = F—modl = +n— mod 1
T T ( fs )
to fo f
+ — —round mod 1
(7, + 7. ( f.g)))
= (Eb(ll +nAp)) modl,
where )y = |§1’- —round(%—) is the aliased digital version

of the bit frequency fp, v is the initial time shift, and g,
is +1 or —1. This means that in order to make the cve
diagram (up to a time reversal) we only need to know
Ap-

To estimate Ay, it is natural to thiuk of the peri-
odogram method. Unfortunately the bit frequency does
not usually appear clearly on the signal spectrum as we
can see in Fig. 1. The idea is to apply a non lincar
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Figure 1: Spectrum of the signal z(¢)
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Figure 2: Spectrum of z(¢)%-!

function to the signal @(t) to force the bit frequency to
manifest itself. This can be done by applying a function
which emphasizes the transitions between the two levels
(corresponding to 0 and 1 in the transmitted sequence).
Several functions may be used and give satisfactory re-
sults, a possible choice is, for example, f(z) = |z|%.
The resulting spectrum, computed by the periodogram
method of the next subsection, plotted in Fig. 2, reveals
clearly the desired (aliased) bit frequency Ap,. Other
suitable f functions are f(z) = |z|° or f(z) = 1)4,1)(Jz|)
for properly selected level .

2.1 Periodogram

Ouce function f is selected, we can consider the trans-
formed samples y, = f(zn), n =0,..., N—1. By divid-
ing the available samples into M blocks, and assuming
for siniplicity, N = ML we can define the periodogram
of y, as follows

eJ“’

Mi

P(e?*) =
k=0

where Yy (e’?) is the Fourier transform of the samples
in the &-th block, i.c.

L—1
k(e”) = Z W YkL+me 7™,

m=0

with Wy, being simply a windowing sequence to atten-
uate the Gibbs phenomenon.

2.1.1 Perfect sampling

Under perfect sampling, that is t,, = {9 +n T}, the mod-
ified samples y,, may be written as

oG
g k
ST A oy,

k=—00

where wf = 27 AF with A} being the aliased version
of the harmonic & fb, and v, is the non periodic part.
For large M, by virtue of the Law of Large Numbers,
P(e?*) is approximately E[|Y (¢7«)f%]. Taking for sim-
plicity W, = 1 we can then write

1~ P]I ("J} "“-’)

]w 2 —
E[Y(e?“)[] Z Ap PR
k=—o00 i
L-1 -
+E Zunc“]"“
n=0 i

In the last equation, the first terin in the right hand side
will be dominant for the largest component Ay and for
w = wb Let us, for simplicity, assuine that v, is mod-
eled as white noise. Then the first term is proportional
to L? and the second only to L. Thercfore for sufhi-
ciently large block sizc L we will be able to distinguish
clearly Ap.

2.1.2  Imperfect sampling
In this case, t,, = to +n T, + w,, and we can write y,, as

o0
S Ay e B ATt

k=—00

Let us define Q,, = 27 f5 and /ik(n) = Ay e/kwren  Then

b k
Z Ap(n)el™ + v,

k=—o00

which shows that the impcerfect sampler introduces ran-
dom phases at frequencies w,’f. We concentrate on
w = wp = wp. Assuming L sufficiently large, so that
contributions from other harmonics are negligible, we
can write

L—-1
y(ejwb) — § yne—jm«)b
n=0
L-1
~ A g (’79""" + g Y €I
n=0 n=0

Here the first term is due to the periodic part of the
signal, but it is no longer equal to A; L as it was for the
perfect sampler (w, = 0). ()1191(](‘1 1ng the first sum as

“signal” and the second one “noise” we can define the

SNR as

L—1 2
A1 Q.
SNR(L) = “—-E ;)p
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It is more convenient now, to define the SNR gain
(SNRG) as the improvement obtained by using blocks
of size L instead of size 1, namely

2

SNR(L) 1_ ||
NRG — = JSep W
SNRG(L) SRR -E Ezoe

If we assumne that w,, is Gaussian random walk (which is
the most well accepted model in practice), then the steps
wp—wy, (for n > k) are centered Gaussian variables with
variance (n — k)o2. Let us denote 3 = e=7+% then we
can show that

2
L-1
E Z pj&)l.w.. = L4292 Z Re (E[ejﬂb(wn—wk)])
n=0 n>k
L-1
= L+23 nelmnm
n=1
(L-1)-Lg-p"
= L+2 .
e
And the SNR gain becomes
1— L
SNRG(L) = 110 4 9 12 F

1-p5 L1~ p)

which tends to % as L approaches co. We therefore
conclude that the gain is larger than 1, however the
improvement, saturates. This suggests that, in practice
for fixed sample size, we need to tune the selection of
L. The periodogram of a sequence sampled with im-
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Figure 3: Example of periodogram, M = 20, L = 2316

perfect sample is presented in Fig. 3. The estimate of
the desired frequency, as we can see, is still extremely
accurate.

2.2 Correcting phase shifts

When the samples are not accurate because of clock
jitter (random walk case) we have seen that it is still
possible to obtain accurate estimates of A\,. However,
this is not sufficient. for forming the eye diagram. Indeed,
even if we had available the exact A, the eye diagram
would had been as in Fig. 4 because of its sensitivity
to clock errors. Fortunately it is possible to overcome
this probletn successfully. The key idea we rely on is the

following, if T is any period then for any time instant ¢
we have
arg(e/)

t
'j;IIlOdl = o

with Q = 2% From this we conclude that finding the
position of a sample in the eye diagram can be viewed
as a synchronization to a reference exponential e/«»t,
We already know that the modified samples {y,} have
a strong spectral compouent at wy, so it is natural to
use them to synchronize the sequence {r, }. Since clock
errors are of randomn walk type, this means that locally
the phase shifts are small, but they accuulate with
time. Therefore if we select a time window ol sufficiently
small length say 2K + 1 and compute

K

7 —ik ’h
Yo = Z YntkWr e 750,
k=—K

where Wy, is again a windowing sequence, then the re-
sulting eye diagram is given by the pairs

arg(Yn)

njfs he n
{(Tn, Tx)}, where T, -

This method turned out to be very successful, as we
can see from Figs. 4 and 5. It is also worth mentioning
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Figure 5: Eye diagram with phase shift correction

that the transformation yielding the sequence Y,, can be
viewed as an FIR filter of constant coefficients

WielKwr o Wiedr 1, Wielwr .. Wie IR«

applied to the transformed data v, .
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3 APPLICATION TO BER ESTIMATION

As stated in the introduction, our motivation for this
work was the monitoring of optical networks. The most
important measure of quality of service in optical fibers
and communication systems in general is definitely the
BER. The detector consists mainly of a photodiode, fol-
lowed by a decision circuit comparing the received power
to sowe threshold, and of a synchronization device. We
make an error each time a “0” is above or a a “1” below
the threshold.

If we want to estimate the BER at any point in the
network in a transparent way, that is, with minimum
knowledge and dependence on the actual signal form, we
could use samples of the instantaneous optical power.
The samiples can be acquired using a device similar
to the sampliug head of a modern digital oscilloscope.
When the samples are not synchronized, some authors
propose to estimate the BER by using histograms (see
[2]. [5], [6]). To be able to obtain sufficiently accurate es-
timates of the BER, the histogram needs to be formed
using samples that correspond to time instances close
to decision (the region where the eye is wide open). Se-
lecting such points from asynchronously acquired data
is not an casy task. To avoid this problem it is possible
to nse a synchronization device, construct the eye dia-
grain, and then estimate the probability density function
at any time instant in the eye [4]; or alternatively use a
Gaussian model setup [3].

It turns out that synchronization can be performed
by means of software, without any special knowledge of
the signal. The mcthod presented in the previous sec-
tion was successfully applied in this framework, to form
the eye diagram of an optical signal. Experiments were
performed at Aleatel, at a bit rate of 10 Gbits/s and
a sampling frequency of 50 kHz, corresponding to an
under-sampling factor of 200 000. After the reconstruc-
tion of the cye diagram, one selects the points corre-
spound to times close to the decision instant, i.e. where
the eve is most open. BER is then estimated from this
data sct, using a Gaussian mixture model. Specifically
we consider that samples are i.i.d. with a probability
density being a mixture of eight Gaussians of the form

1 1 )

8 Z ,/27r0 ( ~m) )
The means {m;} and variances {o?} can be estimated
using the EM algorithm [1]. The selection of eight Gaus-
sians was necessary to account for the inter-symbol-
interference of neighboring bits. Once the sixteen pa-
rameters of the model are estimated, we can compute
the optimal decision threshold and then the BER using
Gaussian statistics.

The results of our method were compared against the
true experimental BER, resulting from a “BER-meter”
device that compares the output of the detector to the
correct transimitted symbol sequence. Figure 6 depicts
the comparison of the experimental BER versus the es-
timated one. We observe a satisfactory agreement be-
tween the two curves.,
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Figure 6: Comparison of estimated and experimental
BER

4 CONCLUSION

We have developed and experimentally validated a
method for reconstructing cye diagrams and estimating
BER of an optical communication system. The pro-
posed method uses asynchronouns and imperfect sain-
pling of the optical signal and required no knowledge
of the bit and sampling rates. A large under-sampling
factor is tolerated thanks to an algoritlun particularly
robust against signal and sampling clock jitter. The
application of our results in future transparcnt optical
networks would confer than a crucial feature, namecly
the ability to reliably monitor the quality of the signal
independently of its electrical framme format and/or bit
rate.
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