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Abstract— The problem of channel estimation in code-division
multiple-access (CDMA) systems is considered. Using only the
spreading code of the user of interest, a technique is proposed
to identify the impulse response of the multipath channel from
the received data sequence. While existing blind methods suffer
from high computational complexity and sensitivity to accurate
knowledge of the noise subspace rank, the proposed method
overcomes both problems. In particular we estimate the noise
subspace by a simple matrix power that is computationally
efficient and requires no knowledge of the noise subspace rank.
Once an estimate of the noise subspace is available the channel
impulse response can be directly identified through a small size
(order of the channel) SVD or a least squares approach. Extensive
simulations demonstrate similar performance of our method as
compared to the existing schemes but at a considerably lower
computational cost.

I. INTRODUCTION

CODE-DIVISION multiple-access (CDMA) implemented
with direct-sequence spread spectrum (DS/SS) consti-

tutes one of the most important emerging technologies in
wireless communications. It is well known that CDMA has
been selected as the base for the 3-rd generation mobile
telephone systems.

In a CDMA system a signature waveform is assigned to
each user thus allowing users to simultaneously transmit in
time and occupy the same frequency band. This important
advantage is at the same time the main source of performance
degradation since to each user all other users play the role
of interference. At the receiver end (the mobile unit) each
user receives the information transmitted by the base station
and needs to detect the information that is destined to him by
screening out all interfering users. Several popular multiuser
detection structures are reported in detail in [4]. All detectors,
in order to be practically implementable, require at least
knowledge of the signature waveform of the user of interest.
Assuming that such an information is practically available, is
in fact quite realistic.

In CDMA, when there is multipath, the effective signature
signals are no longer the signature waveforms but rather the
convolution of these signals with the unknown channel impulse
response. This combined waveform is also known as composite
signature. It is thus clear that if we like to apply the detection
structures of [4] introduced for the non-dispersive channel case
we need to know (or efficiently estimate) the channel impulse
response. Furthermore, it is only natural to express a strong
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interest towards blind estimation methods, since they do not
require transmission of any training sequences.

In the literature there is a very limited number of results re-
ported on the problem of blind channel estimation for CDMA.
In [1] and [2] the channel impulse response is recovered with
the help of a two-step procedure. The first step consists in the
application of an SVD onto a large matrix in order to obtain a
base for the noise subspace of the received signal. The second
step involves either an SVD [1] or a QR decomposition [2]
applied to a small sized matrix (of the order of the channel),
that yields the final impulse response estimate. Furthermore in
[2], by applying successive QR decompositions, it is possible
to perform timing synchronization, with respect to the user of
interest.

The main drawback of both methods consists in their need
for performing SVD on a large matrix in order to obtain a basis
for the noise subspace. This practically limits the use of both
methods to small spreading codes, with codes, for example, of
size N = 128 being practically inaccessible. We should also
mention the fact that both approaches are very sensitive to the
correct knowledge of the noise subspace rank. This parameter
is not constant since it changes every time users are entering or
exiting the channel. It turns out that erroneous rank estimates
lead to drastic performance degradation even in the short code
case.

An alternative and recently proposed approach [3], based
on higher order cumulants, overcomes both drawbacks of
the previous two schemes. This method however, requires
an iterative implementation, that suffers from an exceedingly
slow convergence even for very small codes. Furthermore
its success relies on the Gaussian noise assumption and in
particular that higher order cumulants of Gaussian random
variables are zero.

The idea we propose here seems to overcome all drawbacks
reported above for the existing approaches. More specifically
our method follows the main lines of [1], [2] with a very
essential difference. We replace the first large SVD step by the
computation of a matrix power. Although, in theory, the power
method attains the performance of SVD only in the limit, as
the power tends to infinity, in practice we do not need to go
beyond the third one. In fact, most of the time, even the first
and second power exhibits excellent performance. Moreover
the power method does not require any knowledge of the
noise subspace rank thus its robustness, with respect to this
parameter, is guaranteed.

As far as the second step is concerned, we can select
between a small sized SVD [1], a QR decomposition [2], or fi-
nally a simple least squares (LS) approach (proposed here). As
far as the latter approach is concerned, it should be mentioned
that, it also lends itself to the definition of an efficient scheme
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for resolving the timing synchronization problem. Extensive
simulations demonstrate rapid convergence of our method and
performance that is comparable to [1], [2] but at a significantly
lower computational cost. Processing codes of size 128 or 256
poses no particular problem, not to mention the fact that it is
also possible to develop adaptive algorithms, for each step
of our method, with computational complexity that can be
handled with todays real time processing platforms.

The rest of the paper is organized as follows. In Section
II, we introduce the signal model for synchronous CDMA.
In Section III we present our main results. In Section IV
we perform a number of simulation comparisons between the
proposed and the existing methods. Finally Section V contains
our conclusions.

II. SIGNAL MODEL

We are focusing on the downlink scenario where all users
are synchronized. Consider a K-user DS-CDMA system with
identical chip waveforms and signaling antipodally through
a multipath channel in the presence of additive white noise
(AWN). Although the signals appearing in CDMA system are
continuous in time, the system we are interested in, can be
adequately modeled by an equivalent discrete time system
[4]. Specifically, no information is lost if we limit ourselves
to the discrete time output of a chip matched filter applied
to the received analog signal [4]. Let N be the processing
gain of the code and L the length of the channel impulse
response. Without loss of generality, throughout this article,
we will assume that the user of interest is User-1; we will also
assume that the initial delay is known and therefore we have
exact synchronization with the user. The last assumption is not
very restrictive since, as was mentioned in the Introduction,
our method can be easily extended to include estimates of this
initial delay.

Let z(n) be the signal transmitted by the base station, then

z(n) =
K∑

i=1

∞∑

k=−∞

aisi(n − kN)bi(k), (1)

where ai is the amplitude of User-i, bi(k) his corresponding
bit sequence and si = [si(0) si(1) · · · si(N − 1)]t his length
N normalized (i.e. ‖si‖ = 1) signature waveform.

Signal z(n) propagates through a multipath AWN channel
with impulse response f = [f(0) · · · f(L − 1)]t therefore, at
the receiver end, the received signal y(n) takes the form

y(n) = z(n) � f(n) + σw(n)

=
K∑

i=1

∞∑

k=−∞

ais̃i(n − kN)bi(k) + σw(n), (2)

where � denotes convolution; s̃i(n) = si(n) � f(n) is the
convolution between the initial signature vector si and the
channel impulse response f (i.e. the composite signature of
User-i); and finally σ2 denotes the power of the AWN.

For the presentation of our method it is more convenient
to express the received signal in blocks of data. In particular
we are interested in blocks of size mN + L − 1, where m is
a positive integer. Consequently let us consider the following
block

rm(n) = [y(nN) · · · y((n − m)N − L + 2)]t (3)

which is assumed synchronized with the user of interest.
Notice that due to synchronization, inside each block rm(n)
exist m entire copies of the composite signature of the user of
interest. To illustrate this fact and also specify in more detail
the different components of the received signal vector, let us
analyze the case m = 2. Vector r2(n) can be decomposed as
follows

r2(n) =
[

s̃1
0N×1

]
a1b1(n) +

[
0N×1
s̃1

]
a1b1(n − 1)

+
K∑

i=2

([
s̃i

0N×1

]
aibi(n) +

[
0N×1

s̃i

]
aibi(n − 1)

)

+ ISI + σw2(n), (4)

where s̃i = [s̃i(0) · · · s̃i(N+L−2)]t is the composite signature
of User-i. We observe in (4) that the first two terms involve the
entire composite signature of the user of interest; the next sum
includes the multi-access interference, that is, terms similar
to the first two, but corresponding to interfering users (recall
that all user are synchronized); then follows the ISI part that
includes the inter-symbol interference of all users and finally
the last term is the AWN vector. The ISI part, as is the case
with the other two parts, involves a sum of terms that are of
the form dkbj(n− i) where dk suitable vectors and bj(n) are
binary data. It should be noted that all terms in (4), except the
noise term, involve binary data that are mutually independent
and also independent of the noise vector.

One final point, we should mention, before proceeding with
the presentation of our results is the fact that the composite
signature can be written as

s̃i = Sif (5)

where Si is a convolution matrix of dimensions (N +L−1)×
L, corresponding to the signature of User-i and defined as

Si =





si(0) 0 · · · 0
... si(0)

. . .
...

si(N − 1)
...

. . . 0

0 si(N − 1)
. . . si(0)

...
...

. . .
...

0 0 · · · si(N − 1)





. (6)

III. MAIN RESULTS

Following the main lines of the method in [1], [2], our
channel estimation scheme involves two main steps. The first
consists in estimating a basis for the noise subspace of the
received signal or, equivalently, an alternative quantity that
is more suitable for the channel estimation problem. The
second step, once the information regarding the noise subspace
is available, consists in estimating the final channel impulse
response.

Let us first deal with the decomposition of the received data
into the signal and noise subspace. Consider the autocorrela-
tion matrix Rrm

of the received data vector rm(n) defined in
(3)

Rrm

�
= E{rm(n)rt

m(n)} = Q + σ2I (7)
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where Q is a (mN + L − 1) × (mN + L − 1) matrix of the
form

Q =
∑

i

didt
i, (8)

where di are the vectors coming from (4) and are due either
to the user of interest, the MAI or the ISI part.

Consider now the SVD of the matrix Q

Q = [Us Un]
[
Λs 0
0 0

]
[Us Un]t. (9)

This leads to the following SVD of the autocorrelation matrix

Rrm
= [Us Un]

[
Λs + σ2I 0

0 σ2I

]
[Us Un]t, (10)

where Us,Un are orthonormal bases of the signal and noise
subspace respectively. We can then see that the singular values
corresponding to the noise subspace are all equal to σ2 and
are the smallest ones. Based on the decomposition in (10) we
have the following results.

Lemma 1: Let Rrm
be the autocorrelation matrix defined in

(7) of the received data vector rm(n). If Un is the orthonormal
base of the noise subspace appearing in (10), then we have the
following limit

lim
k→∞

(σ2R−1
rm

)k = UnUt
n. (11)

Remark: Since Ut
nUs = 0, we conclude that for any vector

s belonging to the signal subspace we have

Ut
ns = 0. (12)

In particular this is true for all vectors di appearing in (8).
Using the above orthogonality property we can prove the
following lemma.

Lemma 2: Suppose, for the vectors di composing the ma-
trix Q in (8), a number l of them can be put under the form
di = Fif , i = 1, . . . , l, where Fi known matrices, then

lim
k→∞

f tFt
(
σ2R−1

rm

)k
Ff = f tFtUnUt

nFf = 0, (13)

whith F =
∑l

i Fi.
We have now sufficient information to proceed with the

channel estimation method.

A. Key Ideas

If we consider the inverse of the autocorrelation matrix
raised to a finite power k, then (13) suggests the following
two estimates for f .

First, the channel impulse response can be recovered from
the following minimization problem

f̂ = arg min
f

f tFt
(
σ2kR−k

rm

)
Ff = arg min

f
f tFtR−k

rm
Ff ;

(14)
subject to ‖f‖ = 1. In other words we obtain f as the singular
vector corresponding to the smallest singular value of the
matrix FtR−k

rm
F.

The second method relies on a constrained LS minimization
problem, specifically

f̂i = arg min
f

f tFtR−k
rm

Ff ; f tei = 1, (15)

where ei, i = 1, . . . ,M, are prespecified vectors. The final
candidate vector is the one that is closest to the SVD solution,
that is, f̂ = f̂io

, where io is

io = arg min
i

f̂ t
i F

tR−k
rm

Ff̂i
‖f̂i‖2

. (16)

We should mention that in the limiting case k → ∞, a single
vector ei would suffice, since it could make the numerator
in (16) exactly zero. A very important observation in our
approach is the fact that the product UnUt

n is approximated
by a power of the autocorrelation matrix, without needing
any knowledge of the noise subspace rank. This should be
compared to the large SVD applied on Rrm

in [1], [2] where
for the determination of Un, the knowledge of this parameter
(or a reliable estimate) is indispensable.

B. Channel Estimation Method

After having introduced the mathematical background on
which our method relies, let us now proceed with the presen-
tation of the actual blind channel estimation scheme.

Previously we assumed available the data autocorrelation
matrix, knowledge that could lead to exact estimates of the
signal and noise subspace and consequently to exact estimates
of the channel impulse response. If we now consider the
realistic situation where only received data and the signature
of the user of interest are available, one should proceed as
follows.

The first step consists in estimating the data autocorrelation
matrix by averaging over the received blocks, i.e.

R̂rm
=

1
M

M∑

n=1

rm(n)rt
m(n). (17)

In order now to be able to apply either (14) or (15,16) we need
to specify a known matrix F such that Ff is in the signal
subspace. It turns out that this problem is not particularly
difficult. Let us consider again the case m = 2, then from
(4) we have that the vectors [s̃t

1 0]t and [0 s̃t
1]

t belong to
the signal subspace and consequently the same holds for their
sum. Because of (5) we can then conclude that for the case
m = 2 we can select

F =
[

S1
0N×L

]
+

[
0N×L

S1

]
, (18)

with the generalization to any m being straightforward. Since
the signature of the user of interest is considered known,
matrix F defined in (18) is known as well.

The estimation problem in (14) takes now the form

f̂ = arg min
f

f tFtR̂−k
rm

Ff ; ‖f‖ = 1, (19)

in other words, f̂ is the singular vector corresponding to
the smallest singular value of the matrix FtR̂−k

rm
F. We have

to mention that the minimization problem in (19) has been
already proposed in [5] only for the special case of k = 1;
without providing any theoretical support as to why this
scheme could work.

For the estimation problem in (15,16) we first need to
specify a collection of vectors ei. We propose the vectors
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ei = [0 · · · 0 1 0 · · · 0]t, i = 1, . . . , L, where the unity is in
the i-th position. The minimization in (15) then becomes

f̂i = arg min
f

f tFtR̂−k
rm

Ff ; f tei = 1, (20)

with solution

f̂i =
(FtR̂−k

rm
F)−1ei

et
i(FtR̂−k

rmF)−1ei

. (21)

The final estimate is f̂ = f̂io
, where

io = arg min
i

1
et

i(FtR̂−k
rmF)−1ei

(22)

= arg max
i

et
i(F

tR̂−k
rm

F)−1ei (23)

It is more convenient to view the solution of the least squares
problem as first computing the inverse matrix (FtR̂−k

rm
F)−1

then selecting its largest diagonal element, whose position
identifies io. The final channel estimate is the io-th column
of (FtR̂−k

rm
F)−1 normalized to unit norm.

It is worth mentioning that with a simple modification of
our algorithmic scheme it is possible to make very accurate
estimates of the initial delay and therefore achieve reliable syn-
chronization without significant increase in the computational
complexity. Furthermore all parts of our method allow for
adaptive implementations with very low computational com-
plexity. Due however to lack of space, we are not presenting
these results.

Computing the product UnUt
n with the power method is

computationally very efficient. In [1], [2], where the matrix
Un is estimated instead, there is also the need to reliably
identify the rank of the noise subspace. Information theoretic
criteria such as the Akaike’s information criterion (AIC) or
the minimum description length (MDL) criterion are employed
(for details see [1]). In case of incorrect rank estimation we can
have a considerable performance degradation as we will find
out next. This should be compared against the simple power
method proposed here were such estimates are not necessary.

IV. SIMULATIONS - COMPARISONS

In this section, we provide several simulation results to
demonstrate the performance of the blind channel estima-
tion scheme developed in this paper. Randomly generated
sequences of length N = 16 are used as spreading codes. Once
generated, the codes are kept constant for the whole simulation
set. The number of blocks that are processed together is m = 3
and the load of the system is K = 10 users. User-1 is assumed
to be the user of interest having unit power. All other users are
assumed to have the same power level, which is 20 db higher
than User-1. Moreover, all graphs presented in the figures are
the result of an average over 100 independent runs.

Fig. 1 depicts the mean square channel estimation error, as
a function of the received bits, of the SVD and LS versions
of (19) and (23) respectively, and the method proposed in
[1]. Here the desired user’s SNR is 20 db, and the multipath
channel has order L = 3. The graphs start from bit 50, in
order for the matrix R̂r3 to become full rank. [1]. We observe
that with power k = 2 the performance of both versions,
LS and SVD, follow very closely the performance of the
computationally demanding method of [1]. Undoubtedly, we
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Fig. 1. Performance of proposed channel estimation schemes versus the
method of [1]; noise power 20 db.

can also remark the excellent performance of both versions
even with power k = 1, attaining very quickly less than -
35 db. Furthermore, with power k = 2 we reach maximum
performance for both versions which is only 2 db inferior to the
performance of [1]. No significant additional gain is observed
by employing higher values of k.

We next consider the same scenario but with a significantly
lower SNR. In particular we consider the desired user’s SNR
to be 10 db, while all other parameters remain the same as
in the previous simulation. Fig. 2 presents the performance of
the proposed SVD and LS version versus the method of [1].
We observe again that the two versions are very close to each
other, and that in this high noise environment, power k = 3
reaches performance that differs from [1] only by 2 db.

The next figure depicts an example of performance degra-
dation of the method in [1] when there is an underestimation
of the signal subspace rank just by one unity. The degraded
performance corresponds to the dashed line, whereas the one
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Fig. 2. Performance of proposed channel estimation schemes versus the
method of [1]; noise power 10 db.
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Fig. 3. Performance of method of [1] with and without correct subspace
rank estimation; noise power 20 db.

with the correct rank to the solid one. The parameters are
exactly as in the first simulation that is, N = 16, K = 10, m =
3, SNR=20 db and L = 3. We observe a serious performance
degradation of the method of [1] (more than 25 db) when
we make an incorrect estimate of the signal subspace rank.
It should also be noted that if instead of m = 3 we use
m = 1 then [1], under rank underestimation, attains at best
-5 db whereas the proposed versions have similar performance
as m = 3.

In the last simulation we consider signature codes of length
N = 128. The total number of users is now K = 80, with 29
of them having the same power as User-1; 30 users being 10 db
stronger; and the remaining 20 users being 20 db stronger
than the user of interest. The channel consists of L = 10
coefficients and the SNR level is set to 20 db; finally the
number of blocks processed together is, as before, m = 3. The
performance of the LS and SVD version is presented in Fig. 4,
with the graphs starting from bit 400 in order for the initial
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Fig. 4. Performance of proposed channel estimation schemes for codes of
length N = 128; noise power 20 db.

autocorelation matrix to be of full rank. Again SVD exhibits
an excellent performance even from the first power k = 1,
while both methods attain maximum (in fact indistinguishable)
performance for k = 2. The method of [1] was not possible
to present here due to its excessively long execution time,
which was 16 times larger than our most demanding version
(SVD with k = 3). We recall that both proposed versions (LS
and SVD) can be easily implemented adaptively using LMS
or RLS type recursions with low computational complexity.
Furthermore these realization are capable of following changes
in the channel and in the signaling conditions (as changes in
the number of users). Adaptive realizations for the method
of [1] are also possible through subspace tracking algorithms
however such approaches are even more sensitive to the correct
knowledge of the subspace rank than off line techniques.

It is clear from our simulations that in the majority of cases
and even under extreme signaling conditions, it suffices to
consider a power of k = 3. Moreover for high SNR, of
the order of 20 db, both proposed versions attain maximum
performance with k = 2. Finally our SVD version, even with
power k = 1 yields excellent results.

V. CONCLUSION

In this paper, we have considered the problem of blind
channel estimation for DS-CDMA signals in multipath AWGN
channels. A two step channel estimation method was proposed
following the same lines of the scheme considered in [1],
[2]. The novelty of our approach consists in replacing the
first step of [1], [2] that involves a large and computationally
demanding singular value decomposition with a simple and
computationally efficient matrix power. Regarding the first step
it should also be mentioned that in our approach there is no
need to have an a-priori knowledge or an accurate estimate of
the signal/noise subspace rank, as is the case in [1], [2], where
such knowledge is indispensable.

In the second step, except the usual small sized SVD
proposed in [1], or the QR decomposition of [2], we introduced
a computationally efficient least squares scheme that can also
be used for accurate synchronization. Our two versions (LS
and SVD) were tested under diverse signaling conditions and
always compared very favorably to the method of [1] but at a
significantly lower computational cost. At the same time the
performance of our method was independent of the knowledge
of the signal subspace rank, whereas both approaches in [1],
[2], are extremely sensitive to the correct knowledge of this
parameter.
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