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Abstract— The problem of blind adaptive channel estimation,
in code-division multiple-access (CDMA) systems, is considered.
Using only the spreading code of the user of interest and the
received data, adaptive techniques are proposed that blindly iden-
tify the impulse response of the multipath channel. In particular,
we develop RLS and LMS implementations that exhibit rapid
convergence combined with low computational complexity. Both
versions were inspired by the iterative power method used in
numerical analysis to compute the singular vector corresponding
to the largest singular value of a matrix. This is the reason why
our schemes exhibit performance comparable to SVD off-line
techniques while outperforming, significantly, existing adaptive
methods proposed in the literature.

I. INTRODUCTION

Code-division multiple-access (CDMA) constitutes an im-
portant emerging technology in wireless communications. In
CDMA all users transmit simultaneously in time, occupy the
same frequency band, but use distinct signature waveforms
to allow signal separation at the receiver. This important
advantage is at the same time the main source of performance
degradation since to each user all other users play the role of
interference.

Whenever CDMA signals propagate through a multipath en-
vironment, the effective signatures are no longer the signature
waveforms but rather the convolution of these signals with the
channel impulse response. This combined waveform is known
as composite signature. It is therefore clear that if we like to
apply the detection structures of [6], introduced for the non-
dispersive channel case, we need to efficiently estimate the
channel impulse response. Blind estimation methods tend to
be, nowadays, the most frequent candidates for such a task,
because of their selfsufficiency as far as training is concerned.

The blind channel estimation literature for CDMA is rather
limited. In [7], [3] the (practically off-line) methods that
are proposed involve a large SVD for estimating the noise
subspace of the received data. This part is computationally
intense, not to mention the fact that SVD presents no particular
repetitive structure suitable for on-line processing. In [1] we
proposed an alternative off-line scheme that replaces the SVD
with a simple matrix power. This resulted in a significant
computational gain as compared to the previous two methods,
without any significant performance loss.

Blind adaptive channel estimation techniques can be found
in [8], [9]. Specifically in [8], based on the analytic results
offered in [5], several RLS and LMS type versions were
proposed, that will be used for comparisons in our simulations
section. A variant of the work in [8], reported in [9], consists in
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using higher order cumulants. This approach however suffers
from slow convergence even for small codes, while its success
relies on the Gaussian noise assumption and in particular the
fact that higher order cumulants of Gaussian random variables
are zero.

Here our goal is to extend the idea first proposed in [1]
and use it to develop RLS and LMS adaptive algorithms. In
particular we are going to introduce two versions of the power
method suitably tuned for the channel estimation problem in
CDMA. We recall that the power method is an iterative tech-
nique, used in numerical analysis, for computing the singular
vector corresponding to the largest singular value of a matrix
[2]. With this theory at hand we will then develop RLS and
LMS type adaptive algorithms that are characterized by high
performance even under very difficult signaling conditions.
Compared to the corresponding versions of [8] our schemes
(especially the LMS version) can perform orders of magnitude
better at a similar computational cost level.

The rest of the paper is organized as follows. In Section II
we introduce the signal model for synchronous CDMA, while
in Section III we present two subspace problems that constitute
the heart of the blind channel estimation problem. Section IV
contains the power method and in particular two variants that
are suitable for the solution of the two subspace problems in-
troduced in Section III. In Section V we develop blind adaptive
RLS and LMS algorithms for the channel estimation problem
which we simulate in Section VI and compare to existing
techniques. Finally, Section VII concludes our article.

II. SIGNAL MODEL

We are focusing on the downlink scenario where all users
are synchronized. Consider a K-user CDMA system with
identical chip waveforms and signaling antipodally through
a multipath channel in the presence of additive white (but not
necessarily Gaussian) noise (AWN). We adopt the discrete
time representation of a CDMA system that results after
sampling the output of a chip matched filter applied on the
received analog signal [6]. Let N be the processing gain of
the code and L the length of the channel impulse response.
Without loss of generality, throughout this article, we will
assume that the user of interest is User-1; we will also assume
that the initial delay is known and therefore we have exact
synchronization with the users. The last assumption is not
restrictive since, as it is indicated in [3], [1], there exist simple
and reliable means for synchronization recovery.

Let si = [si(0) si(1) · · · si(N − 1)]t be the length N
normalized signature waveform of User-i (i.e. ‖si‖ = 1), and
denote by si(n) the sequence corresponding to this signature
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waveform zero-padded from both ends towards infinity. If z(n)
is the signal transmitted by the base station, then we can write

z(n) =
K∑

i=1

∞∑
k=−∞

aisi(n − kN)bi(k), (1)

where ai is the amplitude of User-i, and bi(n) the correspond-
ing bit sequence.

When the signal z(n) propagates through a multipath AWN
channel with impulse response f = [f(0) · · · f(L − 1)]t the
received signal y(n) takes the form

y(n) = z(n) � f(n) + σw(n)

=
K∑

i=1

∞∑
k=−∞

ais̃i(n − kN)bi(k) + σw(n), (2)

where � stands for convolution; s̃i(n) = si(n) � f(n), and σ2

denotes the power of the additive noise.
For the presentation of our method it is more convenient

to express the received signal in blocks of data. In particular
we are interested in blocks of size mN + L− 1. For the sake
of clarity however, we limit ourselves to the case m = 1;
consequently let us consider the following block

rn = [y(nN) · · · y((n − 1)N − L + 2)]t (3)

which is assumed synchronized with the user of interest.
Notice that due to synchronization, inside the block rn exists
one entire copy of the composite signature of the user of
interest. To illustrate this fact and also specify in more detail
the different components that make up the received signal
vector, let us write rn as follows

rn = a1b1(n)s̃1 +

(
K∑

i=2

aibi(n)s̃i

)
+ ISI + σwn, (4)

where s̃i = si � f is the composite signature of User-i.
In (4) the first term is the signal intended for the user of
interest; the next part contains terms similar to the first, but
corresponding to multiaccess interference; then follows the
inter-symbol interference (ISI) part, due to multipath, that
includes the ISI of all users; finally the last term is the noise
vector. All terms in (4) (including the ones comprising the ISI),
except the additive noise, are of the form dkbi(n − j) where
dk suitable deterministic vectors of length N+L−1 and bi(n)
binary data. The binary data participating in (4) are mutually
independent and also independent from the noise vector wn.

One final point we should make, before proceeding with the
presentation of the two subspace problems, is the fact that the
composite signature of User-1 can be written as

s̃1 = S1f (5)

where S1 is a convolution matrix of size (N + L − 1) × L,

corresponding to the initial signature of User-1 and defined as

S1 =




s1(0) 0 · · · 0
... s1(0)

. . .
...

s1(N − 1)
...

. . . 0

0 s1(N − 1)
. . . s1(0)

...
...

. . .
...

0 0 · · · s1(N − 1)




. (6)

III. TWO SUBSPACE PROBLEMS

Let us now see how we can identify the channel impulse
response f when the data autocorrelation matrix is available.
Therefore let

R
�
= E{rnrt

n} = Q + σ2I (7)

where Q =
∑

dkdt
k is a symmetric, nonnegative definite

matrix, of dimensions N + L − 1, formed by the dk vectors
introduced in the signal model.

By performing an SVD on the autocorrelation matrix R we
can write

R = [Us Uw]
[
Λs + σ2I 0

0 σ2I

]
[Us Uw]t, (8)

where Us,Uw are orthonormal bases for the signal and noise
subspace respectively. In particular we should note that Uw

spans the subspace corresponding to the smallest singular
value of R (which is equal to σ2). Due to the orthogonality
of the two subspaces, for any vector dk in the signal subspace
we have

Ut
wdk = 0. (9)

Since the composite signature s̃1 of the user of interest
constitutes one such vector, from (5) and (9) we deduce that

Ut
w s̃1 = Ut

wS1f =
(
St

1UwUt
wS1

)
f = 0. (10)

Equ. (10) suggests the recovery of f as the singular vector
corresponding again to the smallest singular value (which is
equal to zero) of the matrix St

1UwUt
wS1. Equ. (10) constitutes

the heart of all existing SVD based methods and enjoys the
same property here.

As it becomes clear from the preceding discussion, there are
two subspace problems involved in (10). The first concerns the
estimation of Uw and the second the recovery of the channel
impulse response f . Let us present the two problems more
explicitly.

Problem 1: If R satisfies the decomposition in (8) we are
interested in estimating the product UwUt

w where Uw is an
orthonormal basis for the noise subspace corresponding to the
smallest singular value σ2 of R.

Problem 2: If R and Uw are as in Problem 1 and S1 the
matrix defined in (6), we are interested in estimating the
singular vector f corresponding to the smallest singular value
of the matrix

W = St
1UwUt

wS1. (11)

In [7] both problems are solved by direct SVD while in [3]
the first with SVD and the second with QR. It is clear that
applying SVD on R (or more accurately to its estimate) to
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recover Uw is computationally heavy and disqualifies these
methods from on-line processing. We should also mention the
need of these approaches in knowing the noise subspace rank.
It turns out [1] that even slight errors in the estimate of this
parameter, can produce significant performance degradation in
the schemes proposed in [7], [3]. This becomes particularly
serious since existing rank estimation techniques are not
characterized by extreme robustness. In [1] a power method
was proposed to replace the large SVD of [7], [3]. This idea
will be fully exploited in the next section in a direction that
is suitable for both subspace problems introduced previously.

IV. POWER METHOD VARIANTS

The power method [2] is a simple iterative technique that
can be used to provide estimates of the subspace corresponding
to the largest singular value of a matrix. Let us present two
variants of this method that are appropriate for solving the
two subspace problems of interest and that will also serve as
a base for developing our adaptive algorithms.

Lemma 1: Let R be as in (7) and (8) and ρ ≥ 0 a
nonnegative scalar, we then have

lim
k→∞

(
ρI + R
ρ + σ2

)−k

= UwUt
w. (12)

Proof: The proof is straightforward, it basically uses the
decomposition of R defined in (8). �

It is clear that Lemma 1 contributes to the solution of
the first subspace problem, i.e. the estimation of the product
UwUt

w required in (10).
Lemma 2: Let W be the matrix defined in (11); suppose

that the vector f which satisfies (10) is unique and of unit
norm, then with α = 1/tr{W} the sequence of vectors fn
defined as

fn = (I − αW)fn−1/‖(I − αW)fn−1‖ (13)

converges to the channel impulse response ±f (modulo a sign
ambiguity), provided that f0 is not orthogonal to f .

Proof: Again the proof presents no particular difficulty. One
can show that fn = (I − αW)nf0/‖(I − αW)nf0‖. Since
Wf = 0 this means that f is a singular vector for the matrix
I − αW corresponding to the unit singular value (which is
the largest since αW is nonnegative definite with all singular
values smaller than unity). Using singular value decomposition
we can then see that limn→∞(I−αW)n = ff t, which yields

lim
n→∞ fn = sgn(f tf0)f . (14)

This concludes the proof. �
Lemma 2 contributes to the solution of the second subspace

problem and will clearly provide channel impulse response
estimates. At this point we can make the following important
remarks.

Remark 1: In Lemma 1 the convergence in (12) is exponen-
tial and we can show that the corresponding rate is maximized
when ρ = 0. Regardless of this fact, the employment of a
ρ > 0 in the scheme turns out to be particularly useful in the
case of the LMS version since it allows the algorithm to forget
past data exactly as in the exponentially windowed RLS case.
This desirable property is not enjoyed by our LMS scheme

when ρ = 0. In the exponentially windowed RLS version, on
the other hand, we can select ρ = 0 since this form of RLS
has a a natural ability to forget past data.

Remark 2: A subtle and very important remark regarding
Lemma 1 concerns the employment of power k. Notice that
the limit is correct, i.e. we obtain the product UwUt

w, only
when the singular values corresponding to the noise subspace
are exactly equal. Unfortunately in a realistic situation, when
only estimates of R are available, this is rarely the case. This
has a grave consequence since the corresponding limit instead
of being the desired product will become just the rank-one
matrix uut where u is the singular vector corresponding to
the smallest singular value of the estimate of R. This in turn
will directly lead to wrong estimates for the impulse response
f since W will be of rank one as well and thus f will no
longer be the only vector satisfying (10).

Fortunately, for CDMA signals, there is a simple solution
to this problem. In [1] it was observed that, for off-line
processing, it was sufficient to use powers up to k = 3 and
practically match the performance of the direct SVD based
techniques. We are going to follow the same idea here. In
other words we are going to approximate the product UwUt

w

as follows

ÛwUt
w =

(
ρI + R
ρ + σ2

)−k

, k = 1, 2, 3. (15)

Remark 3: Our final remark concerns the usage of (15).
Notice that in approximating the product UwUt

w this way, we
do not need any knowledge of the noise subspace rank. This is
particularly desirable since, as we previously explained, rank
estimate methods tend to be complicated and non-robust.

We are now ready to proceed with the presentation of our
blind adaptive schemes.

V. BLIND ADAPTATIONS FOR CHANNEL ESTIMATION

As stated in Problem 2, the channel impulse response can be
recovered as the singular vector corresponding to the smallest
singular value of the matrix W = St

1UwUt
wS1. Using

the approximation proposed in (15) we have the following
estimate for this matrix

Ŵ(k) = St
1(ρI + R)−kS1, (16)

where we have eliminated the quantity (ρ + σ2)k because
scalars do not play any role in the subspace determination
problem.

Since the autocorrelation matrix R is not available, we are
interested in producing, adaptively, estimates Ŵn(k) of the
matrix Ŵ(k) defined in (16). There are different possibilities
that we exploit next. Notice however that with the help of any
such estimate Ŵn(k) the power method presented in Lemma 2
can be replaced by

f̂n = (I − αnŴn(k))f̂n−1/‖(I − αnŴn(k))f̂n−1‖ (17)

where αn = 1/tr{Ŵn(k)}. In other words, at every step, we
first adapt Ŵn(k) and then apply a single iteration of the
power method. Let us now see what possibilities exist for the
estimate Ŵn(k).
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A. Channel Estimation via RLS

As was mentioned previously here we select ρ = 0 and for
the adaptive estimate Ŵn(k) of the matrix Ŵ(k) we propose

Ŵn(k) = St
1(R̂

−1
n )kS1, k = 1, 2, 3. (18)

where R̂n is the exponentially windowed sample autocorre-
lation matrix of the data rn, i.e. R̂n =

∑n
i=0 λn−irirt

i, with
0 < λ < 1, a forgetting factor. The overall complexity for
computing Ŵn(k) and applying one step of (17) can be shown
to be (5+2kL)(N +L−1)2 +(2L2 +3)(N +L−1)+O(L2).

We should mention that our RLS version is similar to the
one in [10] and when k = 1 to the RLS proposed in [8].
The advantage here is that we avoid even the small SVD on
Ŵn(k) used in [8], [10], since we replace it with one step
of the simple power recursion in (17). Furthermore, as far as
the method of [8] is concerned, as we are going to see in the
simulations part, by employing higher values of the power k
we can ameliorate performance significantly.

B. Channel Estimation via Leakage LMS

This is the most practically important part of our work.
The LMS scheme we are going to present is computationally
simple with performance that can be orders of magnitude
better than the corresponding LMS adaptation of [8].

An alternative means to generate estimates for Ŵ(k) con-
sists in writing

Ŵ(k) = St
1V̂(k) (19)

where
V̂(k) = (ρI + R)−kS1 (20)

and produce estimates V̂n(k) for V̂(k). It turns out that LMS
is particularly suited for this task. Consider the following
system of adaptations for i = 1, 2, . . . , k

V̂n(i)=λV̂n−1(i)+µ
(
V̂n−1(i − 1) − rnrt

nV̂n−1(i)
)

(21)

where V̂n(0) = V̂0(i) = S1, and 0 < λ < 1, a forgetting
factor. One can then show, using standard independence as-
sumption arguments, that V̂n(k) converges in the mean to

lim
n→∞ E[V̂n(k)] =

(
1 − λ

µ
I + R

)−k

S1. (22)

which coincides with (20) with ρ = (1 − λ)/µ. We thus con-
clude that V̂n(k), computed with (21), can provide estimates
for V̂(k).

Using V̂n(k) we can now obtain estimates for Ŵ(k)
following (19) as Ŵn(k) = St

1V̂n(k); finally we apply one
iteration of the power method in (17) to obtain the estimate
f̂n of the channel impulse response. The overall computational
complexity, with careful housekeeping, becomes 9kL(N+L−
1)+O(kL2), which is an order of magnitude smaller than the
RLS version and two orders smaller than the direct SVD based
techniques of [7], [3].

Due to the application of the forgetting factor λ, as was
mentioned before, the LMS algorithm is capable of forgetting
past information, exponentially. The corresponding algorithm
is known in the literature as Leakage LMS.

VI. SIMULATIONS - COMPARISONS

In this section, we provide several simulation results to
demonstrate the performance of the blind adaptive schemes
developed previously. In particular we compare our RLS
and LMS implementations against the corresponding schemes
proposed in [8].

Randomly generated sequences of length N = 128 are
used as spreading codes. Once generated, the codes are kept
constant for the whole simulation set. Moreover, all graphs
presented in the figures are the result of an average of 100
independent runs. In each run we apply three different abrupt
changes in order to observe the ability of the corresponding
algorithms to follow them. Specifically at bit 5000 we change
the channel, and at bits 10000 and 15000 the number of users.
For the multipath channel we start with the length 3 “difficult”
channel and at 5000 we switch to the length 10 “easy” channel
of [4]. For our estimation on the other hand we assume that
we have available only an upper bound for the channel length
which is L = 10. In other words even the length 3 channel is
identified as being of length 10.

The signaling conditions are the following: we start with
K = 55 users, under perfect power control. At bit 10000 ten
additional users enter the channel, 5 of them having power
equal to the user of interest and the remaining 5 being 10 db
stronger. Finally, at bit 15000 the last 10 users along with 5
more exit the channel.

Fig. 1 depicts the mean square channel estimation error of
the RLS schemes when the SNR of the user of interest is equal
to 20 db. We can see that our k = 1 version practically matches
the RLS of [8] without needing an SVD on the matrix Wn(1)
at each step. By employing higher powers k = 2, 3 there is a
slight performance improvement only at the beginning. After
the channel changes at bit 5000 all RLS algorithms converge
quickly to their new steady state. It is clear that in this high
SNR environment selecting k = 1 is sufficient.

Fig. 2 presents the performance of the corresponding LMS
versions for exactly the same signaling conditions as in the
previous example. We clearly see that, in contrast to the
RLS case, here there are substantial performance gains by
employing higher powers. In particular the LMS method of
[8] has an overall performance which is 20 db inferior to our
k = 3 version.

Next we consider the same signaling scenario but with
a significantly lower SNR. Specifically we set the desired
user’s SNR at 10 db. The performance of the RLS schemes
is presented in Fig. 3 while the corresponding of the LMS
in Fig. 4. Again the method of [8] is identical to our RLS
k = 1 version. Here however, in this low SNR environment,
employing higher orders of k ameliorates the overall RLS
performance significantly. This is particularly apparent in the
initial part, in the case of the “difficult” channel. In Fig. 4, our
LMS version for k = 3, outperforms again the LMS algorithm
of [8] by 10 db.

A point that should be mentioned concerns the initial per-
formance (up to bit 5000) of all channel estimation schemes.
In fact, if we had exact knowledge of the filter length, that
is, if we had used L = 3 instead of L = 10, both LMS and
RLS methods would have attained better performance levels
than the ones depicted in the corresponding figures. Since this
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Fig. 1. Performance of the proposed RLS channel estimation schemes versus
the method of [8]; noise power 20 db.
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Fig. 2. Performance of the proposed LMS channel estimation schemes versus
the method of [8]; noise power 20 db.

information is not a-priori available, it is preferable to use
a common L which is an upper bound for all cases. Finally,
comparing the RLS with the LMS schemes we clearly observe
the considerably more robust behavior of the former which,
unfortunately, comes at a much greater computational cost.

VII. CONCLUSION

In this paper, we have considered the problem of blind
adaptive channel estimation in CDMA systems. RLS and LMS
type algorithms were developed based on the iterative power
method which is known, from numerical analysis, to yield
efficient subspace estimates. With a number of simulations
we demonstrate the satisfactory performance of the proposed
algorithmic versions in a dynamic environment with variations
in the multipath channel and the number of users. Our algo-
rithms have been compared against the corresponding schemes
of [8] and asserted to offer significant performance gains under
various signaling scenarios.
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Fig. 3. Performance of the proposed RLS channel estimation schemes versus
the method of [8]; noise power 10 db.
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Fig. 4. Performance of the proposed LMS channel estimation schemes versus
the method of [8]; noise power 10 db.
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