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Abstract— The problem of blind adaptive channel estimation
in OFDM systems is considered. Focusing on the zero padding
approach, for the first time adaptive algorithms are proposed
that blindly identify the impulse response of the multipath
channel. In particular, we develop RLS and LMS schemes that
exhibit rapid convergence combined with low computational
complexity. Both versions are obtained by properly modifying the
orthogonal iteration, a method used in Numerical Analysis for the
computation of singular vectors. With a number of simulations
we demonstrate the satisfactory performance of our adaptive
schemes under diverse signaling conditions.

I. INTRODUCTION

RTHOGONAL Frequency Division Multiplexing

(OFDM) constitutes a promising technology for
high speed transmission in frequency selective fading
environment [l1]. OFDM presents several important
advantages, some of which are: high spectral efficiency;
simple implementation (with IDFT/DFT pairs); mitigation of
intersymbol interference (ISI) and robustness to frequency
selective fading environments. Inevitably, these desirable
characteristics contribute towards a continuously rising
interest for OFDM. We should also mention that OFDM has
been selected for the European standard of digital audio and
video broadcasting, digital subscriber lines and wireless local
area networks.

In practice OFDM systems operate over a dispersive channel
and therefore a guard interval, no smaller than the anticipated
channel spread, is usually inserted in the transmitted sequence.
As far as this guard period is concerned, there exist two
alternatives. The first, known as cyclic prefix (CP), consists
in re-transmitting inside the guard interval the initial portion
of the transmitted sequence, while the second, known as
zero padding (ZP), transmits no information during the same
interval. In this work, we mainly focus on the latter.

The ZP approach is very appealing [10] and has started
gaining popularity mainly due to its simplicity. Its strongest
point is the complete elimination of inter-block interference
(IBI), which allows for a number of interesting detection
structures. In [10] a detailed comparison between CP-OFDM
and ZP-OFDM receivers is offered and several merits of the
ZP approach are emphasized.

In coherent detection and adaptive loading, knowledge of
the channel impulse response is imperative. Since the channel
state information is usually unknown to the receiver, it needs
to be efficiently estimated. Channel estimation techniques can
be roughly divided into two major categories the supervised
or trained and the unsupervised or blind. The first requires
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training/pilot sequences whereas the latter uses only the re-
ceived data. Due of course to their self-sufficiency in training,
blind techniques are considered more attractive than their
trained counterparts; they tend however to be heavier from
a computational complexity point of view.

An additional property that currently distinguishes the two
categories is the existence of adaptive schemes for the imple-
mentation of the corresponding channel estimation methods.
Whenever adaptivity is involved this usually results in a signif-
icant computational gain as compared to off-line techniques;
moreover the computation is repetitive and uniformly spread
over time. The latter characteristic is very appealing for DSP
implementations. We should, of course, not forget the ability
of adaptive techniques to follow changes in the characteristics
of the received signal, which here translates into following
changes in the channel impulse response. Although one can
find adaptive schemes for trained channel identification meth-
ods, this is not the case for blind approaches. Existing blind
OFDM channel identification methods are mainly off-line.

The majority of articles concerning the problem of channel
estimation in OFDM systems, uses pilot tones or training
sequences [2], [4]. In [8] a comparative study of non-blind
methods can be found. Even though the pilot-aided literature is
rich, we will not pursue its presentation any further, since our
main interest lies with blind channel identification methods.
Regarding blind techniques, in [6] blind channel identification
is performed by exploiting the cyclostationarity present in CP-
OFDM. In [9] a subspace approach is proposed for channel
estimation that takes advantage of the redundancy existing in
CP-OFDM. An alternative subspace approach is presented in
[7] which extends the previous idea by incorporating virtual
carriers inside the OFDM transmitted block. The two latter
methods require singular value decomposition (SVD) of the
received data autocorrelation matrix and are therefore char-
acterized by high computational cost. We should stress that
SVD is known to lack a repetitive structure that could lead to
efficient adaptive implementations.

In this work we exploit the subspace method in order to
develop adaptive algorithms for blind channel identification
in ZP-OFDM systems. To our knowledge, this is the first time
such schemes are proposed for OFDM systems. Specifically
we are going to develop RLS and LMS type algorithms that
can solve very efficiently the channel estimation problem. Both
versions have significantly lower computational complexity as
compared to the direct SVD approaches of [7], [9]. In particu-
lar our LMS version is extremely simple with a computational
complexity that is almost two orders of magnitude smaller
than a direct SVD approach. We should finally mention that
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the development of our adaptive schemes was possible by
properly modifying the orthogonal iteration used in Numerical
Analysis for computing the subspace corresponding to the
largest singular values of a matrix [5].

The rest of the paper is organized as follows. Section II
introduces the signal model for a ZP-OFDM system. We
continue in Section III with the definition of two subspace
problems that constitute the heart of the blind channel es-
timation methodology. The same section contains also the
orthogonal iteration suitably tuned for the solution of the two
subspace problems in question. In Section IV we develop blind
adaptive RLS and LMS algorithms for the identification of
the channel impulse response. Simulation results are offered
in Section V, and finally Section VI concludes our article.

II. SYSTEM MODEL

OFDM modulation has the characteristic of multiplexing
data symbols over a large number of orthogonal carriers.
Consider an OFDM system where the guard interval con-
sists of a zero padded sequence. Fig. 1 depicts the baseband
discrete-time block equivalent model of a standard ZP-OFDM
transmitter. Let each information block be comprised of N
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Fig. 1. Discrete time block ZP-OFDM transmitter.

symbols and denote by L the size of the ZP. The n-th length-N
block by (n) = [b1(n) ... by(n)]T passes through a serial
to parallel converter and then it is modulated by IDFT. After
the IDFT, a sequence of L zeros (zero padding) is inserted
between two consecutive blocks to form the transmitted vector
x(n). The latter is of length N + L, and can be put under the
following form

Fy
() = g [ bt m
where F' stands for the DFT matrix defined as
1 1 1 e 1
1|t Wy W Wyt
Fy=—1. . ;
YTUN | SRS :
N— 2(N-1) (N-1)(N-1)
L Wyt Wy e Wy
. 2
with Wy = e 7% ; superscript “f” denotes conjugate-

transpose and Oy« is a zero matrix of dimensions L x N.
The parallel block x(n) is finally transformed into a serial
sequence in order to be transmitted through the channel.
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The transmitted signal propagates through a multipath ad-
ditive white noise (AWN), not necessarily Gaussian, channel
with impulse response h = [h; ... hr,1]7. Here we have
assumed that the channel has a finite impulse response of
length at most L 4 1. Such an assumption is very common in
OFDM systems and constitutes the main reason for introduc-
ing the guard interval in the great majority of OFDM models.
Whenever ZP is employed, after assuming synchronization
with the transmitted sequence, the n-th received data block
y(n) of length N + L can be expressed as

y(n) = HF{by(n) + w(n). 3)

In the above relation w(n) is an AWN vector of length
N + L with i.i.d. zero-mean elements of variance equal to o2,
which are also independent of the transmitted symbols by (n);
finally, matrix H is a convolution matrix of dimensions (/N +
L) x N defined as follows.

hy 0o ... 0
) By )
H=— hL+1 . . 0 (4)
0 hry1 -
L 0 0 hi1]

We can now verify the very interesting property of the ZP-
OFDM model stated in the Introduction, that is, its ability to
completely eliminate the IBI between consecutive blocks. This
fact becomes evident from the expression depicted in (3) where
there are no other data involved except the current information
block by (n). In order to obtain the same property in CP-
OFDM, in every received data block of size N + L we need to
discard the first L data samples and use the remaining N, thus
throwing away information that could be useful. Consequently,
in ZP-OFDM, the entire linear convolution of each transmitted
block with the channel impulse response is preserved without
being altered by IBI. This important property is in fact behind
the successful application of the subspace method proposed in
the next section.

III. MAIN IDEA

In this section we are focusing on how to identify the
channel impulse response when the received data autocor-
relation matrix is available. As it is almost always the case
with subspace techniques, the key idea consists in properly
decomposing the data into the signal and noise subspace and
then defining suitable subspace determination problems that
lead to the final estimate of the channel impulse response.

A. A Subspace Approach

Consider the autocorrelation matrix R of the received data
vector y(n) defined in (3). Assuming that the elements of
by (n) are ii.d. and using the fact that the DFT matrix Fy
defined in (2) is orthonormal, we conclude that

REE{y(n)y"(n)} =HH" + 0’1y 1, (5
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where 02 the AWN power and I denotes the identity matrix
of size K. The matrix HH” is Hermitian and nonnegative
definite, of dimensions (N + L) x (N 4 L). From (3) we also
conclude that the columns of H span the signal subspace. If
the channel impulse response h is not identically zero then,
since H is a convolution matrix of the form of (4), it is also of
full column rank. This suggests that the signal subspace has
rank equal to N while its complement, the noise subspace,
has rank equal to L.

By performing an SVD on the autocorrelation matrix R and
taking into account the previous observation we can write

AS+0'21N 0

R=[U. U7 0’1,

U, U7, (©
where Ug, U, are orthonormal bases for the signal and
noise subspace respectively and A, is a diagonal matrix with
positive elements of size N. We should note that Uy is in
fact an orthonormalized version of the columns of the matrix
H; U,, on the other hand is a basis for the subspace which
is orthogonal to the columns of Uy or equivalently to the
columns of H. Finally notice that U,, involves the singular
vectors of the matrix R corresponding to its smallest singular
value (which is equal to o2).

Let v =[v; -~ vnyz]T be a vector of length N + L that
belongs to the noise subspace. Due to the orthogonality of the
two subspaces we can then write

viUu, =vHiH = 0. (7)

Since H has the Toeplitz form of (4), the vector-matrix product
v H can be written alternatively as

viH =h"V* =0, (8)

where superscript “*” denotes complex conjugate and V is the
following Hankel matrix of dimensions (L + 1) x N made up
from the elements of the vector v

V1 (] UN
V2 U3 Tt UN+1

V=1 . . ) . )
Vrp+1 VL42 UN+L

By taking the complex conjugate of the relation in (8) we end
up with the following equation.

hVv =0=hVvVv¥h (10)

Let U, = [vy...vy] and V; be the Hankel versions of v;,
then since (10) holds for every vector v in the noise subspace
we have
L
h"Wh =0, with W=> V,V[.

i=1

(1)

It is actually (11) that will be used to determine the channel
impulse response h. Indeed from (11) we can see that h can be
recovered as the singular vector corresponding to the smallest
singular value (which is zero) of the matrix W. Key point of
course in estimating h through the subspace problem defined
in (11) is the formation of the matrix W. This is possible if
we have available a basis of the noise subspace U,, of the
data autocorrelation matrix R.
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From the preceding discussion we conclude that the com-
plete channel estimation problem involves two similar sub-
space determination problems, which we would like to present
more explicitly next.

Subspace Problem 1: The first step in applying (11) is
the determination of the noise subspace U, of the data
autocorrelation matrix R. The basis U,, is of dimensions
L x (N +L) and can be seen as a collection of L orthonormal
vectors corresponding to the smallest singular value 02 of R
as shown in (6).

Subspace Problem 2: Once U, is estimated from the first
problem, its columns define the matrices V; that compose W.
The channel impulse response h can then be recovered as the
singular vector corresponding to the smallest singular value of
the matrix W.

Both problems involve the determination of a subspace
corresponding to the smallest singular value of a matrix.
Although similar methodology has been developed for channel
estimation in CDMA there exists a major difference that
distinguishes the current setting from the one used in CDMA.
Here we know exactly the noise subspace rank while this is
not the case in CDMA where this parameter is variable, and
depends on the number of users in the channel [3]. Due to this
extra knowledge it will be possible to develop algorithms for
OFDM that are more powerful than their CDMA counterparts.

B. The Orthogonal Iteration

The orthogonal iteration [5], [11] is a simple iterative
technique that can be used to provide estimates of subspaces
corresponding to the largest singular value(s) of a matrix. As
we have seen in the two problems previously introduced, in
both cases we are interested in obtaining the subspace (or
singular vector) corresponding to the smallest singular value.
Let us therefore present two suitable variants of the orthogonal
iteration that achieve this goal.

Lemma 1: Suppose that matrix € is Hermitian, positive
definite and of dimensions K x K. Denote by wy > --- >
Wy > wjp1 = -+ 2> wg > 0 its singular values and
by fi,...,fx the corresponding singular vectors. Define the
sequence of matrices {S(k)}, k = 1,2,..., of dimensions
K x (K — J) by either of the two iterations

S(k) = orthonorm{Q 'S(k —1)}
S(k) = orthonorm{(I — i2)S(k —1)}

12)
13)

where “orthonorm” stands for orthonormalization using QR-
decomposition; i = p/trace{Q2} and 0 < px < 1.

If S(0) is such that S(0)?[f; ;- fx] is invertible, then
S(k) — [fJ+1 . fK] as k — oo.

Proof: A proof for the convergence of the orthogonal
iteration can be found in [11, pages 296-297]. |

If certain singular values coincide then the corresponding
singular vectors are not unique. In this case the orthogonal
iteration converges to a basis in the corresponding subspace.
Finally, more details regarding the QR factorization can be
found in [5].

It is possible to prove that our method is consistent; i.e. for
the combination of the two subspace problems, there exists a
unique solution (modulo a complex scalar ambiguity), which

0-7803-8533-0/04/$20.00 (c) 2004 |IEEE



is necessarily equal to the channel impulse response. The
ambiguity manifesting itself in our methodology is also present
in [7], [9]. It turns out that it can be removed by incorporating
pilot symbols. In fact, even a single pilot symbol is sufficient.
Unfortunately, due to lack of space, we will not detail on these
two important issues.

IV. ADAPTIVE ALGORITHMS

Let us now see how, the results presented in the previous
section, can be used to solve, adaptively, the two subspace
problems and yield the necessary estimates for the channel
impulse response. The two approaches we are going to present
(RLS and LMS) differ in the way they provide adaptive
estimates of the noise subspace U,, of R. Therefore, we firstly
concentrate on Subspace Problem 2, since it is solved in the
same way for both implementations.

Assuming that at each time instant, estimates U,(n) of
the noise subspace are available, we can form the Hankel
matrices V,;(n) ¢ = 1,..., L, following (9) and thus produce

an estimate .

W(n) =3 Vi)V (n)

i=1

(14)

for the matrix W which enters in the second subspace prob-
lem. After computing W (n) we can then obtain an adaptive
estimate h(n) for the channel impulse response h. Since h
is the singular vector corresponding to the smallest singular
value of W, following Lemma 1 and using Iteration (13), we
propose

h(n) h(n —1) —v(n)W(n)h(n — 1)
(n —1) = v(n)W(n)h(n — 1|’

where v(n) = 1/trace{W(n)}. In other words, at every time
instant n and for every matrix W (n), we apply the second
iteration of Lemma 1 only once.

It should be noted that whenever we are seeking only one
singular vector (i.e. the case of the second subspace problem),
then the orthonormalization step of (13) becomes a simple
vector normalization. This special case of the orthogonal
iteration is known in Numerical Analysis literature as the
power method [5], [11].

Summarizing, under the assumption that an adaptive esti-
mate of the noise subspace U, is available, we first compute
the matrix W (n) as in (14), and then apply (15) to obtain a
new estimate for the channel impulse response. Let us now
examine two possibilities for estimating U,,.

(15)

A. Channel Estimation via RLS

Let R(n) be the exponentially windowed sample auto-
correlation matrix of the data y(n), defined as R(n) =
S o A"y (i)yH (i), with 0 < A < 1, a forgetting factor.
If we denote by P(n) the inverse P(n) = R~!(n); then
there exists the well known adaptation of the Recursive Least
Squares (RLS) algorithm that computes directly P(n) from
P(n —1) in O((N + L)?) operations.

With P(n) at hand we apply Lemma l, using the first
iteration, i.e. (12), as follows

S(n) = orthonorm{P(n)S(n — 1)}. (16)
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Again we have used the same idea as in (15), that is, we
have applied the iteration of Lemmal for the matrix P(n)
only once. The proposed RLS scheme has the following
complexity: the inverse data autocorrelation matrix P(n) re-
quires O((N + L)?) operations; the multiplication in (16)
O((N + L)2L), and the QR-decomposition again in (16)
O((N +L)L?); the computation of W (n) in (14), by properly
exploiting the Hankel structure of the matrix V;(n), can be
performed with O((N + L)L?) operations instead of O((N +
L)L3); finally the adaptation of h(n) in (15), requires O(L?)
operations. It is therefore clear that the total computational
complexity is O((N + L)2L). Since usually L < N, the
RLS version has computational complexity which is almost
an order of magnitude smaller than Direct SVD techniques
requiring O((N + L)?) operations.

B. Channel Estimation via LMS

Focusing always on Subspace Problem 1, let us consider
an LMS like approach. We are going to use the well known
idea that gave rise to the famous LMS algorithm; namely we
use Lemma 1 and replace matrix €2 of the second iteration (13)
with the instantaneous estimate of the data autocorrelation ma-
trix R, i.e. the outer product of the received data y(n)y™ (n).
This results in the following adaptation.

H H
oY (Y ) s-n} an
The complexity of this LMS scheme is as follows: all
the matrix-vector operations in (17) demand O((N + L)L),
while the QR of (17), as well as (14) and (15) continue
to have the same complexity as before, that is O((N +
L)L?), O((N + L)L?) and O(L?) respectively. Here the
most demanding parts are the QR-decomposition in (17) and
the computation of W(n) (14). Thus, the overall complexity
becomes O((N + L)L?). Compared to the RLS scheme, the
LMS requires almost an order of magnitude less operations;
not to mention that it is not necessary to guard in memory the

large matrix P(n), as is the case in RLS.

S(n) = 0rth0n0rm{<I

V. SIMULATIONS

In this section, we provide several simulation results to
demonstrate the performance of the blind adaptive channel
estimation schemes developed herein. Let us briefly refer to the
settings of the signaling scenario that we intend to follow. The
number of orthogonal carriers comprising an OFDM block is
set to N = 64, while the length of the ZP sequence to L = 16.
The type of additive noise used in all simulations is Gaussian.

All graphs presented in the figures are the result of an
average of 100 independent runs. In each run, we apply
an abrupt change to the channel impulse response in order
to examine the ability of the corresponding algorithms to
follow the change. In particular we begin with h”7'=[0.5546
0.1604 0.1408 0.3161]+75[0.2138 0.6356 0.2904 -0.1138] and
at time n = 5000 we switch to hT=[-0.1892 -0.2839 0.1274
-0.0451]+5[0.4273 0.6984 0.4321 0.0912]. The main charac-
teristic of both channels is the fact that they strongly attenuate
different frequency regions. More details can be found in [12].
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Fig. 2. Performance of RLS, LMS, and Direct SVD schemes; SNR=20 db.
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Fig. 3. Performance of RLS, LMS, and Direct SVD schemes; SNR=10 db.
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Fig. 4. Performance of RLS, LMS, and Direct SVD schemes in a slowly
fading environment; SNR=15 db.

Although the channel lengths are equal to 4, we estimate them
as being of maximum length L +1 = 17.

In addition to the RLS and LMS versions, we simulate the
Direct SVD approach. The latter consists in applying an SVD
on P(n) to compute U,,(n) from which we obtain W (n), and
then another SVD on W (n) to find h(n).

Fig.2 depicts the relative channel estimation error of the
three schemes for SNR equal to 20dB; whereas Fig.3 the
corresponding performance for SNR=10dB. In both cases,

IEEE Communications Society

2381

RLS matches closely the SVD approach, while LMS has a
slightly inferior performance.

Finally Fig. 4 depicts the performance of our algorithms for
SNR equal to 15 dB; only here both channels experience slow
fading. As we can see, LMS can exhibit better performance
than the other two schemes. This is evident from the fact that
after time instant 5000, all schemes have similar convergence
speed, but in steady state LMS attains a 5dB lower power
error level.

Summarizing, for all three SNR levels, both algorithms have
a very satisfactory and consistent performance. They exhibit
rapid convergence even after abrupt changes of the channel.
RLS, despite its increased computational complexity, does not
necessarily outperform LMS; in fact, this can be the case in
fading channels where tracking is required.

VI. CONCLUSION

In this article, we have considered the problem of blind
adaptive channel estimation in ZP-OFDM systems. With the
help of two subspace problems we were able to obtain consis-
tent estimates of the channel impulse response. Motivated by
the orthogonal iteration, known from Numerical Analysis for
the computation of singular vectors, RLS and LMS schemes
were developed that provide adaptive channel estimates. Both
algorithms are characterized by a simple repetitive structure
with the LMS version having an attractively low computational
complexity. The two algorithms exhibit rapid convergence and
satisfactory steady state performance, being also capable of
efficiently following both abrupt changes and slowly fading
channels.
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