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ABSTRACT
Record (or entity) matching or linkage is the process of iden-
tifying records in one or more data sources, that refer to
the same real world entity or object. In record linkage, the
ultimate goal of a decision model is to provide the deci-
sion maker with a tool for making decisions upon the actual
matching status of a pair of records (i.e., documents, events,
persons, cases, etc.). Existing models of record linkage rely
on decision rules that minimize the probability of subjecting
a case to clerical review, conditional on the probabilities of
erroneous matches and erroneous non-matches. In practice
though, (a) the value of an erroneous match is, in many
applications, quite different from the value of an erroneous
non-match, and (b) the cost and the probability of a misclas-
sification, which is associated with the clerical review, is ig-
nored in this way. In this paper, we present a decision model
which is optimal, based on the cost of the record linkage
operation, and general enough to accommodate multi-class
or multi-decision case studies. We also present an example
along with the results from applying the proposed model to
large comparison spaces.
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1. INTRODUCTION
In today’s competitive business environment, corporations

in the private sector are being driven to focus on their cus-
tomers in order to maintain and expand their market share.
This shift is resulting in customer data and information
about customers being viewed as a corporate asset. In the
public sector, the very large expansion of the role of the
government resulted in an unprecedented increase in the de-
mand for detailed information. Only recently has the data
analytical value of these administrative records been fully
realized. Of primary concern is that, unlike a purposeful
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data collection effort, the coding of the data is not carefully
controlled for quality. Likewise, data objects are not nec-
essarily defined commonly across databases nor in the way
data consumers would want. Two of the serious concerns
which arise in this context are (a) how to identify records
across different data stores that refer to the same entity and
(b) how to identify duplicate records within the same data
store.

If each record in a database or a file carried a unique,
universal and error-free identification code, the only problem
would be to find an optimal search sequence that would
minimize the total number of record comparisons. In most
cases, encountered in practice, the identification code of the
record is neither unique nor error-free. In some of these
cases, the evidence presented by the identification codes (i.e.,
primary key, object id, etc.) may possibly point out that
the records correspond or that they do not correspond to
the same entity. However, in the large majority of practical
problems, the evidence may not clearly point to one or the
other of these two decisions. Thus, it becomes necessary to
make a decision as to whether or not a given pair of records
must be treated as though it corresponds to the same real
world entity. This is called the record matching or record
linkage problem [6, 1].

The large volume of applications spanning the range of
cases from (a) an epidemiologist, who wishes to evaluate
the effect of a new cancer treatment by matching informa-
tion from a collection of medical case studies against a death
registry in order to obtain information about the cause and
the date of death, to (b) an economist, who wishes to evalu-
ate energy policy decisions by matching a database contain-
ing fuel and commodity information for a set of companies
against a database containing the values and the types of
goods produced by the companies, signifies the tremendous
impact and applicability of the problem addressed in this
paper.

The remaining of this paper is organized as follows. Sec-
tion 2 provides some background information, and the no-
tation that is used throughout this paper. Section 3 intro-
duces the cost optimal model, along with the thresholds of
the decision areas, and the probabilities of errors. An ex-
ample is given in Section 4 to illustrate how the model can
be applied. Section 5 provides some information about the
experimental environment that we generated and the results
of some experiments that we run by using it. Finally, Sec-
tion 6 provides concluding remarks and guidelines for future
extensions of this work.
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2. BACKGROUND
Record matching or linking is the process of identifying

records, in a data store, that refer to the same real world en-
tity or object. The two principal steps in the record match-
ing process are the searching step where we search for poten-
tial linkable pairs of records and the matching step where we
decide whether or not a given pair is correctly matched. The
aim of the searching step must be to reduce the possibility
of failing to bring linkable records together for comparison.
For the matching step, the problem is how to enable the
computer to decide whether or not a pair of records relates
to the same entity, when some of the identifying information
agrees and some disagrees.

2.1 Notation
In the product space of two tables, a match M is a pair

that represents the same entity and a non-match U is a pair
that represents two different entities. Within a single table,
a duplicate is a record that represents the same entity as
another record in the same database. Common record iden-
tifiers such as names, addresses and code numbers (SSN, ob-
ject identifier), are the matching variables that are used to
identify matches. The vector, that keeps the values of all the
attribute comparisons for a pair of records (comparison pair)
is called comparison vector x. The set of all possible vectors,
is called comparison space X. A record matching rule is a
decision rule that designates a comparison pair either as a
link A1, a possible link A2, or a non-link A3, based on the
information contained in the comparison vector. Possible
links are those pairs for which there is no sufficient identify-
ing information to determine whether a pair is a match, or
a non-match. Typically, manual review is required in order
to decide upon the matching status of possible links. False
matches (Type I errors) are those non-matches that are er-
roneously designated as links by a decision rule. False non-
matches (Type II errors) are either (a) matches designated
as non-links by the decision rule, or (b) matches that are
not in the set of pairs to which the decision rule is applied.

For an arbitrary comparison vector x ∈ X, we denote
by P (x ∈ X|M) or fM (x) the frequency of the occurrence
or the conditional probability of the particular agreement x
among the comparison pairs that are matches. Similarly, we
denote by P (x ∈ X|U) or fU (x) the conditional probability
of x among the non-matches. Note that the agreement or
comparison vector x can be defined as specifically as one
wishes and this completely rests to the components of the
comparison vector. Let pj be the probability that the j-th
corresponding item on the records a and b is present when
the outcome of the comparison (a, b) is a match, and let p∗

j

be similarly defined when the outcome is a non-match. Like-
wise, let qj be the probability that the j-th corresponding
item on the records a and b is identical when the outcome
of the comparison (a, b) is a match and let q∗j be similarly
defined when the outcome is a true non linkage. Let us also
denote by P (d = Ai, r = j) and P (d = Ai|r = j) corre-
spondingly, the joint and the conditional probability that
the decision Ai is taken, when the actual matching status
(M or U) is j. We also denote by cij the cost of making
a decision Ai when the comparison record corresponds to
some pair of records with actual matching status j. When
the dependence on the comparison vector is obvious from
the context, we eliminate the symbol x from the probabili-
ties. Finally we denote the a-priori probability of M or else

P (r = M) as π0 and the a-priori probability of U or else
P (r = U) as 1 − π0.

2.2 Decision Models for Record Matching
In 1950s, Newcombe et. al. [9] introduced concepts of

record matching that were formalized in the mathematical
model of Fellegi and Sunter [2]. Newcombe recognized that
linkage is a statistical problem: in the presence of errors of
identifying information to decide which record pair of po-
tential comparisons should be regarded as linked. Fellegi
and Sunter formalized this intuitive recognition by defining
a linkage rule as a partitioning of the comparison space into
the so-called “linked” subset, a second subset for which the
inference is that the record pairs refer to different underly-
ing units and a complementary third set where the inference
cannot be made without further evidence.

Fellegi and Sunter in [2], making rigorous concepts intro-
duced by Newcombe et. al. [10] considered ratios of proba-
bilities of the form:

R = P (x ∈ X|M)/P (x ∈ X|U) (1)

where x is an arbitrary agreement pattern in the comparison
space X. The theoretical decision rule is given by:

(a) If R > UPPER, then designate pair as link.

(b) If LOWER ≤ R ≤ UPPER, then designate the

pair as a possible link and hold it

for clerical review.

(c) If R < LOWER, then designate the pair

as non-link.

The UPPER and LOWER cutoff thresholds are determined
by a-priori error bounds on false matches and false non-
matches. Fellegi and Sunter [2] showed that the decision
rule is optimal in the sense that for any pair of fixed upper
bounds on the rates of false matches and false non-matches,
the manual/clerical review region is minimized over all deci-
sion rules on the same comparison space X. If now, one con-
siders the costs of the various actions, that might be taken,
and the utilities associated with their possible outcomes, it
is desirable to choose decision rules that will minimize the
costs of the operation. Tepping in [11] provides a graphi-
cal representation of a solution methodology that minimizes
the mean value of the cost under the condition that the ex-
pected value of the loss is a linear function of the conditional
probability that the comparison pair is a match. The appli-
cation of his mathematical model involves the estimation of
the cost function for each action, as a function of the proba-
bility of a match, and the estimation of the probability that
a comparison pair is a match.

3. THE GENERALIZED COST OPTIMAL
DECISION MODEL

Here, we propose a new cost optimal decision model for
record matching. The model presented here is a generaliza-
tion of the model that it was proposed in [13] in the sense
that the number of decision areas (link, non-link, possible
link) is not restricted to three but it can be any non-negative
number n. In general, let us denote by cj

i the cost of making
a decision Ai for a comparison pair in the state of nature
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j. Each one of the decisions that are made, based on the
existing evidence, about the linking status of a comparison
pair, is associated with a certain cost that has two aspects.
The first aspect is related to the decision process itself and is
associated with the cost of making a particular decision; for
example, the number of value comparisons that are needed
in order to decide, affects the cost of this decision. The
second aspect is associated with the cost of the impact of
a certain decision; for example, making a wrong decision
should always cost more than making the correct decision.
Table 1 illustrates the costs for all the various decisions that
could be made during the record matching process.

Table 1: Costs of the decisions.

Cost Decision State of Nature

cM
1 A1 M

cU
1 A1 U

cM
2 A2 M

cU
2 A2 U

. . . . . . . . .
cM

n An M
cU

n An U

A record linkage process assigns each one of the compar-
ison pairs to one and only one decision area. In order to
compute the mean cost of the record linkage process, we
consider one by one the costs of all decision areas. Without
loss of generality, let us consider the cost of the i-th decision
area. What we know about this area is that it has been as-
signed a number of comparison vectors based on a decision
process that we are trying to identify. It is also the case, that
among the comparison vectors allocated to this area, there
maybe both matched and non-matched comparison pairs.
There is a certain probability measure about the fact that a
comparison pair (matched or non-matched) is allocated to
this decision area. This is denoted by the joint probability
P (d = Ai, r = M) and P (d = Ai, r = U) respectively. For
every matched comparison pair assigned to the decision area
i the associated cost is cM

i and for every non-matched com-
parison pair assigned to this area, the cost is cU

i . The mean
cost over all decision areas can then be written as follows:

c =
n∑

i=1

[cM
i ·P (d = Ai, r = M)+ cU

i ·P (d = Ai, r = U)] (2)

We can express the joint probabilities in Eq. 2 as a func-
tion of the conditional probabilities by using the Bayes the-
orem. Based on this observation, for i = 1, 2, . . . , n and
j = M, U , we get:

P (d = Ai, r = j) = P (d = Ai|r = j) · P (r = j). (3)

Let us also assume that x is a comparison vector drawn
randomly from the space of the comparison vectors which
is shown in Figure 1. Then the following equality holds for
the conditional probability P (d = Ai|r = j):

P (d = Ai|r = j) =
∑

x∈Ai

fj(x), i = 1, 2, · · · , n; j = M, U, (4)

where fj is the probability density of the comparison vectors
when the state of nature is j. We also denote the a-priori

probability of M or else P (r = M) by π0 and the a-priori
probability of U or else P (r = U) as 1 − π0.

The mean cost c in Eq. 2 based on Eq. 3 is written as
follows:

c =

n∑
i=1

[cM
i · P (d = Ai|r = M) · P (r = M) +

cU
i · P (d = Ai|r = U) · P (r = U)]. (5)

By using Eq. 4, Eq. 5 becomes:

c =

n∑
i=1

[cM
i ·

∑
x∈Ai

fM (x)·P (r = M)+cU
i ·

∑
x∈Ai

fU (x)·P (r = U)]

(6)
By substituting the a-priori probabilities of M and U in

Eq. 6, we get the following equation:

c =
n∑

i=1

[cM
i · π0 ·

∑
x∈Ai

fM (x) + cU
i · (1− π0) ·

∑
x∈Ai

fU (x)] (7)

which by dropping the dependent vector variable x, and
combining the information for each part of the decision space,
can be rewritten as follows:

c =

n∑
i=1

∑
x∈Ai

[fM · cM
i · π0 + fU · cU

i · (1 − π0)] (8)

Every point x in the decision space A, belongs either in
partition A1, or in A2, . . ., or in An and it contributes ad-
ditively to the mean cost c. We can thus assign each point
independently either to A1, or A2, . . ., or An in such a way
that its contribution to the mean cost is minimal. This will
lead to the optimum selection for the sets which we denote
by Ao

1, Ao
2, . . ., and Ao

n. Based on this observation, a point x
is assigned to the optimal decision area Ao

i iff the following
n − 1 inequalities hold:

fM · cM
i · π0+fU · cU

i (1 − π0)≤fM · cM
1 · π0+fU · cU

1 (1 − π0)

fM · cM
i · π0+fU · cU

i (1 − π0)≤fM · cM
2 · π0+fU · cU

2 (1 − π0)

...

fM · cM
i · π0+fU · cU

i (1 − π0)≤fM · cM
n · π0+fU · cU

n (1 − π0)

We thus conclude from the above that for any value of
i, the corresponding decision area is given by the formula
below:

A0
i = {x : min

i
(fM · cM

i · π0 + fU · cU
i · (1 − π0))} (9)

In order for our model to define the decision areas, it
makes use of n systems of n − 1 linear inequalities. By
solving for the likelihood ratio fM/fU in each one of these
systems:
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M

U

A
A1

n

Figure 1: A partitioning of the decision space.

fM/fU ≤ (cU
1 − cU

i )/(cM
i − cM

1 ) · (1 − π0)/π0

...

fM/fU ≤ (cU
i−1 − cU

i )/(cM
i − cM

i−1) · (1 − π0)/π0

fM/fU ≥ (cU
i+1 − cU

i )/(cM
i − cM

i+1) · (1 − π0)/π0

...

fM/fU ≥ (cU
n − cU

i )/(cM
i − cM

n ) · (1 − π0)/π0 (10)

we get n(n − 1) values the likelihood ratio should be com-
pared with. These values denote the thresholds that explic-
itly define the decision areas. By inspecting these values
closely, we observe that half of them are unique. Notice for
example, that the last inequality in Ao

1 and the first in Ao
n

give raise to fM/fU ≥ (cU
n −cU

1 )/(cM
1 −cM

n ) ·(1−π0)/π0 and
fM/fU ≤ (cU

1 −cU
n )/(cM

n −cM
1 ) ·(1−π0)/π0 correspondingly,

where the thresholds are exactly the same. In general, the n
systems of n − 1 equations generate

(
n
2

)
unique thresholds.

In order for all of the n decision areas to exist, the following
sufficient and necessary condition should hold for n − 1 of
these thresholds:

cU
n − cU

n−1

cM
n−1 − cM

n

≤ cU
n−1 − cU

n−2

cM
n−2 − cM

n−1

≤ . . .

≤ cU
4 − cU

3

cM
3 − cM

4

≤ cU
3 − cU

2

cM
2 − cM

3

≤ cU
2 − cU

1

cM
1 − cM

2

(11)

Notice that for simplicity reasons, the ratio of prior prob-
abilities have been eliminated from all the thresholds. For
example, if for the likelihood ratio of a comparison vector
the following inequality holds:

cU
4 − cU

3

cM
3 − cM

4

· 1 − π0

π0
≤ fM

fU
≤ cU

3 − cU
2

cM
2 − cM

3

· 1 − π0

π0
(12)

then the comparison vector belongs to Ao
3.

3.1 Optimality of the Decision Model
We can now prove that the decision model that we have

proposed (i.e., the sets Ao
1, Ao

2, . . ., Ao
n) is an optimal one.

Based on the discussion above we know that

A = A1

⋃
A2

⋃
· · ·

⋃
An,

where A1, A2, · · · , An are pair-wise disjoint. Every point
will be assigned to either one of these decision areas. We
also introduce the indicator function IC of a set C, as the

function which takes the value of 1 if the point x belongs
to C and the value 0, otherwise. Note that we can formally
write Eq. 8 as:

c =
∑

x∈A1

z1(x) +
∑

x∈A2

z2(x) + · · · +
∑

x∈An

zn(x) (13)

where zi(x), i = 1, 2, . . . , n denote the expressions inside the
corresponding sums in Eq. 8.

Using the indicator functions, we can write:

c =
∑

x∈A1

z1(x) +
∑

x∈A2

z2(x) + · · · +
∑

x∈An

zn(x)

=
∑
x∈A

[z1(x) · IA1(x) + z2(x) · IA2(x) +

· · · + zn(x) · IAn(x)]

≥
∑
x∈A

min{z1(x), z2(x), . . . , zn(x)}

def
=

∑
x∈Ao

1

z1(x) +
∑

x∈Ao
2

z2(x) + · · · +
∑

x∈Ao
n

zn(x).

3.2 Error Estimation
The probability of errors can now be easily computed.

There are two types of errors. The first one is called Type I
error, and it occurs when a non-link action is taken although
the two records are actually matched. The probability of
this error can be estimated as follows:

P (d = An, r = M) = P (d = An|r = M) · P (r = M)

= π0 ·
∑

x∈An

fM (x). (14)

The second type of error is called Type II error and it
occurs when the link action is taken although the pair of
records is actually non-matched. The probability of this
error can be estimated as follows:

P (d = A1, r = U) = P (d = A1|r = U) · P (r = U)

= (1 − π0) ·
∑

x∈A1

fU (x). (15)

By computing these two types errors, we assume that all
the other areas, in between these two, are not considered
as definite decisions, and for this reason, we can use points
assigned to them in either kind of error before further inves-
tigation.
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4. APPLICATION
The previously presented model will be demonstrated in

a file maintenance application, where the source data are
lists of subscribers of two large magazine publishers. Table
2 shows tentative unit costs developed by the staff of the
publishers on the basis of consideration of the character of
the actions and the consequences of these actions. For ex-
ample, based on the contents of this table, the cost cM

2 is
$0.41. A possible set of actions that should be taken for a
record comparison pair is presented below:

• Treat the comparison pair as if it designated to the
same individual of some population. This is equivalent
to the “link” decision.

• Temporarily treat the comparison pair as a link but ob-
tain additional information before classifying the pair
as a link or a non-link.

• Take no action immediately but obtain additional in-
formation before classifying the pair as a link or non-
link.

• Temporarily treat the pair as if it was associated with
different individuals of the population, but obtain ad-
ditional information before classifying the pair as link
or non-link.

• Treat the pair as if it was associated with different
individuals in the population (non-link).

Table 2: Tentative Unit Costs

True Status
Action Match Non-match

1 $0.00 $6.01
2 0.41 1.13
3 0.77 0.77
4 0.82 0.41
5 2.59 0.00

In order to delineate the decision areas, we need to start
with the test given in Eq. 11. By using this test we can
find out whether all the areas are well defined, and if so,
which are these areas for each action. In this example, the
number of actions, or else decision areas, is 5. So, intuitively,
four thresholds (the four rightmost ones in Eq. 11) can be
checked. By substituting the values of the costs from Table
2 in Eq. 11 we get:

0.232 ≤ 7.2 ≤ 1 ≤ 11.902 (16)

It is obvious that in Eq. 16 not all of the thresholds are
in the right order. This means that not all areas (5 deci-
sion areas) are defined by these costs so in order to define
them, we then need to consider the initial detailed model
and the corresponding systems of equations. The system of
inequalities for this application is depicted in Table 3.

Notice that the unique thresholds for fM/fU in Table 3 are
the rij ’s, since the thresholds in the lower diagonal system
are the same as their diagonal images. Also notice that rii =

0. Observe that the following two systems of inequalities
should hold in order for all of the five areas to be well defined:

r12 ≥ r13 r12 ≥ r14 r12 ≥ r15 (17)

r23 ≥ r24 r23 ≥ r25 (18)

r34 ≥ r35 (19)

and

r35 ≥ r45 r25 ≥ r45 r15 ≥ r45 (20)

r24 ≥ r34 r14 ≥ r34 (21)

r13 ≥ r23 (22)

Notice, for example, that the system of inequalities in Eq.
17 holds because the threshold in the cell(2,1) in Table 3
(diagonal image r12), needs to be the maximum threshold
in the first row, otherwise there will be a gap between the
first and the second decision areas.

By combining the inequalities above, we verify that r12 ≥
r23 ≥ r34 ≥ r45. In our case by substituting the values of
the unit costs to the original system of inequalities, we get:

r11 r12 = 11.09 r13 = 6.805 r14 = 6.82 r15 = 2.32
r22 r23 = 1 r24 = 1.75 r25 = 0.51

r33 r34 = 7.2 r35 = 0.42
r44 r45 = 0.232

r55

By processing the information in the above system, we
generate the decision areas:

Area =




1 if fM/fU ≥ 11.09
2 if 11.09 ≥ fM/fU ≥ 1.75
4 if 1.75 ≥ fM/fU ≥ 0.232
5 if 0.232 ≥ fM/fU

Area 3 is not feasible, since there is no region in the real
axis in which fM/fU ≤ 1.75 and at the same time fM/fU ≥
7.2. Notice also that the thresholds given above should be
scaled by the ratio of prior probabilities (1− π0)/π0. In the
next section, we elaborate on this issue.

5. EXPERIMENTS AND RESULTS
In order to validate and evaluate the proposed decision

model, we have built an experimental evaluation system [12].
The evaluation system is built on top of a public domain sys-
tem, the database generator [3], that automatically gener-
ates source data, with user-selected a-priori characteristics.
The database generator allows us to perform controlled stud-
ies so as to establish the accuracy (or else the overall error),
the percentage of comparison pairs which are assigned to
the various decision areas and the overall cost of the record
linkage process. The database generator provides a large
number of parameters for selection such as the size of the
generated database, the percentage of duplicate records in
the database, and the percentage of the error in the dupli-
cated records. Each one of the generated records, consists
of the fields shown in Table 4. Some of the fields, as well,
can be empty, affecting in this way the presence value. As
it is reported in [3] the names were chosen randomly from a
list of 63000 real names. The cities, the states and the zip
codes (all from the USA) come from publicly available lists.
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Table 3: A 5-by-5 system of inequalities for the file maintenance application.

r11 ≥ cU
2 −cU

1
cM
1 −cM

2
= r12 ≥ cU

3 −cU
1

cM
1 −cM

3
= r13 ≥ cU

4 −cU
1

cM
1 −cM

4
= r14 ≥ cU

5 −cU
1

cM
1 −cU

5
= r15

≤ cU
1 −cU

2
cM
2 −cM

1
r22 ≥ cU

3 −cU
2

cM
2 −cM

3
= r23 ≥ cU

4 −cU
2

cM
2 −cM

4
= r24 ≥ cU

5 −cU
2

cM
2 −cM

5
= r25

≤ cU
1 −cU

3
cM
3 −cM

1
≤ cU

2 −cU
3

cM
3 −cM

2
r33 ≥ cU

4 −cU
3

cM
3 −cM

4
= r34 ≥ cU

5 −cU
3

cM
3 −cM

5
= r35

≤ cU
1 −cU

4
cM
4 −cM

1
≤ cU

2 −cU
4

cM
4 −cM

2
≤ cU

3 −cU
4

cM
4 −cM

3
r44 ≥ cU

5 −cU
4

cM
4 −cM

5
= r45

≤ cU
1 −cU

5
cM
5 −cM

1
≤ cU

2 −cU
5

cM
5 −cM

2
≤ cU

3 −cU
5

cM
5 −cM

3
≤ cU

4 −cU
5

cM
5 −cM

4
r55

For each study, the evaluation system makes an exter-
nal call to the database generator in order to generate two
databases. The first database is used for training the deci-
sion model and the second database for testing the model.
The training process includes the estimation of the required
parameters by the decision model. Both databases are gen-
erated by using almost the same parameter settings. Only
the number of records and the number of record clusters in
each database can be different. A record cluster is a group
of records in the same database that refers to the same per-
son. All the records in the same cluster are considered as
duplicates. The training and the test databases are used cor-
respondingly for generating the training comparison space
and the test comparison space. In this study, the compar-
ison vector has binary components and for this reason the
result of a comparison can either be 0 or 1.

Some of the options that are provided to the users of the
experimental system, for the generation of the training and
test comparison spaces, include: (a) the pre-conditioning of
the database records, (b) the selection of the sorting keys
to be used for sorting the original database records, (c) the
functions to be used for the comparison of each record at-
tribute, (d) the searching strategy along with its parameters
if applicable, and (e) the thresholds for the decision model.
For the pre-conditioning of the database records, we may se-
lect to convert all the characters to uppercase or lowercase,
and compute the Soundex code of the last name. Any sub-
set or part of the record fields can be used as a sorting key.
Among the functions to be selected for comparing pairs of
field values, the most frequently used are the Hamming dis-
tance for numerical attributes, and the edit distance [7], the
n-grams [4], the Jaro distance [5], and the Smith-Waterman
algorithm [8] for character string attributes. For the search-
ing strategy, the experimental system currently supports
the blocking and the sorted-neighborhood approach. In the
sorted-neighborhood approach the window size to be used
should also be provided as an input parameter to the sys-
tem. The last part of the parameters that are required by
the system include the threshold values, which delimit the
various decision areas in the proposed model.

In the set of experiments that we present, we make use
of a comparison space of 10, 000 comparison records with
known true matching status, as the training set, and a set
of 1, 000, 000 records in the testing set. Notice that the size
of the comparison space depends heavily on the searching

Table 4: Estimated probabilities of presence and
agreement in the training comparison space.

True Status
Match Non-match

Attribute p̂j p̂∗
j q̂j p̂∗

j

SSN 0.87 0.85 0.81 0.15
First Name 0.91 0.87 0.83 0.08
Middle Initial 0.76 0.64 0.93 0.05
Last Name 0.86 0.75 0.83 0.21
Street Number 0.90 0.57 0.81 0.10
Street Address 0.67 0.58 0.88 0.07
Apartment Number 0.45 0.47 0.89 0.05
City 0.56 0.59 0.91 0.12
State 0.78 0.81 0.86 0.16
Zip Code 0.89 0.91 0.92 0.06

technique used and is usually close to an order of magnitude
larger than the number of actual database records compared.
The estimated probabilities of presence and agreement are
given in Table 4. These probabilities can be easily computed
by using the information in the training comparison space,
since the actual matching status is considered known. This
is possible, because each database record has been assigned
a cluster identifier by the database generator, which is used
for the identification of the cluster that each record belongs
to.

The system also uses the costs of the various actions, in
the decision process. Here, we make use of the costs pre-
sented in Table 2. In the experiments, we have generated
pairs of training and testing record comparison sets with a
variable size of cluster size. We have run many experiments
in order to estimate the total cost of the linkage process for
each testing comparison set by using a variable size of com-
parison fields from the Table 4. The results are shown in
Table 5 and indicate that (a) the cost of the record linkage
process decreases as the dimensionality of the comparison
space increases and (b) for fixed dimensionality, there is no
clear evidence whether the prior matching probability affects
positively or negatively the total cost. The first observation
is consistent with the intuition that more “reliable” compar-
ison components help the model to minimize the total cost,
while the second observation, is necessary so as our model
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Table 5: Total cost of record linkage for 1, 000, 000 comparison records. The prior probability is estimated on
a set of 10, 000 comparison records.

Number of Vector Components
π̂0 1 2 4 8 10

0.500 $222, 700.000 113, 359.125 18, 790.750 6.300 1.900
0.250 200, 206.250 109, 679.312 19, 582.665 9.038 2.700
0.200 173, 105.000 101, 050.850 18, 540.950 9.544 2.880
0.125 125, 140.625 80, 936.280 15, 839.407 10.230 3.090
0.100 109, 152.500 74, 231.425 14, 563.803 10.420 3.150

to be independent of the data and so – to the degree this
is possible – unbiased. Other experiments performed, indi-
cate that our model provides always the most cost efficient
linkage.

6. CONCLUSIONS
This paper presents a new cost optimal decision model

for the record matching process. The proposed model uses
the ratio of the prior odds along with appropriate values
of thresholds to partition the decision space to a number
of decision areas. The major difference between our model
and the other existing models is that it minimizes the cost
of making a decision rather than the probability of an erro-
neous decision. Our model is also much more efficient than
other error-based models, as it does not resort to the sorting
of the posterior odds in order to select the threshold values.
The applicability of this model is independent of the char-
acteristics of the comparison fields, of the database fields, of
the sorting techniques used and of the matching functions.

In our future endeavors, we are also considering the de-
sign of a model for cost and time optimal record matching.
By using such a model, it will be feasible not only to make
a decision based on the entire comparison vector, but also
to acquire as many comparison components as required, in
order to make a certain decision. This will save computa-
tion time and at the same time it will facilitate the on-line
decision making in the record matching context.
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