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AAbstraci.- We address the problem of optimal sensor location

for monitoring the eigenstructure of a multivariable
dynamical system. The criterions which are optimized
are the power of new tests designed for detecting and
diagnosing changes in the eigencharacteristics of a system
I3] 112]. The key points are the choice of the parametrization
for computing the criterion and the comparison of designs
with different number of sensors. The discussion of the
numerical results for sensor location includes the analysis
of the effect of the geometry of the unknown excitation.
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Power of statistical tests.

INTRODUCTION

The problem of optimal sensor location is of crucial
importance in system design, in order to reduce the cost
of instrumentation and increase the efficiency of the
identifiers, state estimators or detectors which are
implemented for monitoring the system. Except for
distributed parameter systems, this problem seems to have
received a little attention in the literature. Furthermore,
it has been addressed more in view of good parameter
estimation or state reconstruction, than for optimum
monitoring of the system parameters and for change or
failure detection.

1. SHORT REVIEW OF EXISTING RESULTS

The results which are available so far, up to our knowledge,
may be classified as follows:

1.1 Optimal sensor location for state reconstruction

The problem is to find a measurement matrix H which
optimizes a criterion reflecting the performances of the
optimum state estimator (or smoother) for the considered
linear dynamical system. Various criterions have been
investigated. Using a direct sensitivity analysis of the state
estimate covariance matrix P, [1| suggested to solve the
nonlinear programming problems:

min tr (W P)
H
where W is a weighting matrix.

Several other authors {4| |7 [8] used indirect measures
of performancer , such as Fisher information matrix (for
state estimation) or observability matrix. Furthermore,
several scalar performance indexes related to r were studied.
The most general one is |8] |7] :

m = (tr 5/n) /s , S € 0, n = state dim

which, in some special cases, reduces to the following widely
used criterions :

lirg mg = IT] i/n {determinant norm)
S+

m_y = n/tr (™ (trace norm)

m_. = Apin (T) (extremal eigenvalue)
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Finally, the case of non-linear systems was studies in
5], with the aid of the trace norm for the Fisher
information matrix of the unknown parameters to be
estimated.

One common feature of all these investigations is that
the measurement matrix H is supposed to be of "continuous"
type, namely to have real (and not integer) coefficients.

The dual problem of optimum controller location was
investigated in |8|, with the aid of the above mentioned
general norm for the controllability matrix.

1.2 Optimum sensor and controller location for distributed
parameter systems

These problems have been widely investigated for the
last fifteen years, as can be seen from the survey psper
|6]. Sensor location for state estimation was studied for
example in |10], using the trace norm of the error
covariance of the optimum filter. The sensor location
problem for identification of unknown parameters was
solved in |9] with the aid of the determinant of the Fisher
information matrix, and with application to a bubble-
column loop bioreactor. Many other studies concerning
these two types of problems are reported in |6, together
with the solutions given to the problem of optlimum
controller and sensor location for optimum control of
a distributed parameter system.

1.3 Optimal sensor location for parameter identification

Up to our knowledge, the only study made from that
point of view is reported in [13], and is concerned with
structural identification for both linear and non-linear
systems. The proposed solution is based upon an optimization
of the trace norm of the Fisher information matrix. It
is important to note that, in this case, the measurement
matrix H is a selection matrix (with coefficients equal
to 0 or 1), and that the optimization is done by exhaustive
search.
1.4 Optimal sensor location for failure detection

This problem is investigated in |15| in the framework
of non-linear systems. A reduced order time-varying linear
observer is designed for full state estimation in such a
system. Inspection of the state estimates and/or several
observer residuals leads to detection and diagnosis of
the faults, without any statistical test. The optimum sensors
location problem is then solved by exhaustive search for
minimizing the observation cost associated to each set
of measurements which is convenient for this fault detection
strategy.

The dual problem of optimum actuator location in large
space structures is considered in |14|. A degree of
controllability, which accounts for possible component
failures, is defined and optimized over the admissible
set of controller location, either by exhaustive search
or be solving an integer programming problem.

2. OUR APPROACH

In this paper, we address problem 1.4.,, namely the
problem of optimal sensor location for detecting changes
in the eigenstructure of a dynamical system. Because
of our detection and identification approaches, we actually
also address problem 1.3. The underlying application is
vibration monitoring for offshore platforms; the interested



- reader is referred to |3| for a presentation of this
application. We derived statistical instrumental tests
for detection and diagnosis of changes in the vibrating
characteristics of a structure subject to an unknown
nonstationary excitation. The numerical performances
of these tests are reported in (2| for scalar signals and
[3| for multivariable systems. The theoretical properties
of these tests are investigated in {12| under stationarity
assumptions: the criterion which is used for evaluating
the performances of the tests is the classical detection
power for a fixed level (false alarm rate).

The purpose of this paper is the investigation of the
possible uses of such a type of criterion for designing
optimal numbers and locations of sensors. We especially
emphasize the key points of choice of parametrization
for optimization in section 1I, comparison of designs with
different number of sensors in section 111, and influence
of the geometry of the excitation upon the optimal design
in section 1V. Numerical results obtained on a simulated
structure are also reported in section IV. Conclusions
are given in section V.

II. PROBLEM STATEMENT
CHOICE OF PARAMETRIZATION

We consider a dynamical system described by the
following discrete time state space representation:
Xt+1 = F Xg + Vi 1)

Yt =H X¢
where the state X is of dimension n, the observation Y
is of dimension r << n, and where V. is a gaussian white
noise with covariance matrix Q. The observation matrix
H is a selection matrix, i.e. we observe a limited number
of state variables. The change or failure detection problem
we solved in (3| and [12] is as follows: given a measurement
matrix H, detect and diagnose changes in the state
transition matrix F, or equivalently in the eigenstructure
of the system, without knowing or using any estimate
of the noise covariance matrix Q (which is furthermore
time varying in [3]).

1. NEW TESTS FOR CHANGE DETECTION AND DIAGNOSIS

For this purpose, we derived new statistical tests which
may be summarized in the following way. The multivariable
process (1) may be equivalently represented by the ARMA
model:

p p-1
Y = A Yo t B: E¢_;
t izl i Yt-i jjl) i Et-j (2)

where (Et) is a standard white noise. One possible way
is bo solve the following linear system of equations:

I Ajnpri=g (3)
i=0

with Ag = - Ip. -
In such a case, the change detection problem is to detect
changes in the AR parameters Aj of (2), while considering
the MA parameters B; as nuisance parameters; furthermore,
deciding which poles and corresponding eigenvectors have
changed would solve the diagnosis problem. We use a model
validation approach. Given a nominal AR model 6°, where:
6T = (Aps.ensAyp) (4)
or a nominal observable model (Hg,Fg), and a sample of
observations Yj,...,Yg, We consider what we call the
instrumental statis}its:

Un(s) = %s:t:fl th th (5)

T

where: Z?T = (YI_p,...,Yt_p“Nﬂ)

is the vector of instruments
We=Ye- 6T 9y

T T
¢ = (Vtpyers Y1)

We also introduce the corresponding vectors:
4
®= col(8T)
A
ﬂN (s} = col (UN(s)
12 N
== 1 I, @ w (6)
/s t=1
1.1 Detection

The two hypotheses to be tested are :

no change

Hp: 6 = 6°
50 . . .

Hy: 0=6+— small change in direction &s,
/s ie local alternative .

It may be shown [3] that, under Hp, UN(s) (5) is zero-
mean, and that, under Hy, we have:

E; (Un(S) Qd};m 88 (7)

wheregp,N is the Hankel matrix of the process (2) under
Hg.

1t may be shown that Upy(s) allows the detection of
any change in the minimal representation of (1) [12} [3].

Furthermore, we also use the following local asymptotic
normalities:

under Hy: %N(S) é\lf(ﬂ,x")
under Hy: %N(S) éa%(t;m ®Ir) s@, ZN)

) NONT T
v 1 EfZp Zi; ® W oW ,)

1-p
is the covariance matrix ofuN.

We have thus transformed the initial change detection
problem into a problem of detection of a change in the
mean of a gaussian process. As discussed in l12], the
convenient test is then:

to(s) =1L'£(s) rpd MuT ol Myl MT }:':"‘N(s) (8)

where M =£,N pT® Ip (9)

and D is such that M is of full column rank nr. We refer
the interested reader to [3| for details concerning the
implementation of the global test (8) in the (real) situation
where the noise covariance matrix Q in (1) -or equivalently
the MA parameters Bj in (2)- are timevarying.
1.2 Diagnosis

For solving the diagnosis problem, namely deciding
which eigenvalues and eigenvectors -of F in (1) or
equivalently of the AR part in (2)- have changed, our
approach js the following. We still use the instrumental
statistics Wy(6) (5), together with a relationship between
changes in the eigencharacteristics of the system and
changes in the AR parameters . As we look for small
changes, we use first order Taylor expansions for ® .
Let ¢ be a minimal parametrization of the AR part of
the process, for example the modal characteristics, namely
the eigenvalues yof F and the observed par_Hy of the
corresponding eigenvectors. Assume that¢ *@ = f(¢)
is continuously differentiable in the neighborhood of the
nominal model ¢, . For monitoring a particular subset
of the coordinates of ¢, we use the test given by formula
(8) with:
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(10)

M = (fhp,N DT®lr)g
where; is the matrix obtained by selecting the convenient
columfls of the jacobian matrix f'( ¢ g). For example, it
may be shown |3} |11] that writing equation (3) in the
modal basis and differentiating it lead to the'J of interest.

Examples of such may be found in [3]. We call such
type of tests "sensilivity tests". They will be of key
importance for the sensor location problem, as will be
seen in the next paragraph.

This approach for detection and diagnosis turns out
to be very powerful, even for small changes in the
eigencharacteristics. Numerical results may be found
in |2| {3]. A detailed theoretical analysis of the
performances of these tests may be found in [12].

2. THE CRITERION TO BE OPTIMIZED

We now discuss the problem of optimal sensor location:
given a reference model Fy in (1), how to choose the best
measurement (selection) matrix H in order to maximize
the detection performances of the global test tg (8) (9)
and/or the sensitivity tests (8) (10). As for investigating
the theoretical properties of these tests T, the criterion
we consider is the power 8, for a fixed false alarm rate
o More precisely, we maximize:
(11)

B=P; (T>2)

where the threshold Ais chosen according to:

P (T>N)ga (12)
-
Let us now emphasize that all the tests we have introduced
have the following form. Let U be a gaussian random
variable:

U~ Cy(l«l,l‘.) .

Assume first that:

u=Mv (13)
is one parametrization of the mean value of U such that
M is of full column rank m and v € R™"

The test of Hp:u = 0 against Hy: M
by:

Mv is defined

- SRS N
T=0T gV s M ) M 5Ty (14)

and is asymptotically distributed as a x 2 variable with
m degrees of freedom under both Hg and Hj. Under Hj
T is centered, by under Hj the distribution of T has a
non centrality parameter equal to:

2
Y

where

-\)TI‘v

- (15)
r=M Ty

(15')

If we now assume that the rank of M in (13) is q<m,
let D be the matrix containing the basis vectors of a
complement of the kernel of M. Then it may be shown
f11] that, whatever the rank of M in (13) is, the non
centrallity parameter is defined by (15).

Consequently, the threshold ) depends only upon the
number of degrees of freedom (which is equal to nr for
the global test (8) (9)), while the power B is an increasing
function of y (15), for a given A . We will thus concentrate
our efforts on the optimization, with respect to the
measurement matrix H, of the quadratic form defined
by I (15°).

2.1 Choice of parametrization

In order to optimize this quadratic form, we have
to choose a scalar criterion. As many other authors (see
Section 1), we have chosen the trace norm and thus the
following criterion:
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C(M) = Tr(T 1
= Tr(M! 27! M) (16)
This choice may be justified using the following remark
8]:
£ oM My dv = cM) L Co/m (17)

where we integrate over the unit sphere in R™ and where
Cyy, is the area of this sphere. In other words, the criterion
C(M) is nothing but the mean value of the non-centrality
parameter when v covers the unit sphere in R™M,

The key point here is that the criterion C(M) does depend
upon the parametrization which is chosen for the mean
value § of the instrumental statistics L under H{, since
C(MP) is generally different from C(M) even if P is a
change of basis. The first basic consequence, as far as
optimal sensor location is concerned, is that it is necessary
to choose a parametrization of the mean of fLwhich does
not depend upon the location of the sensors. From (3)
we can see that the ARMA representation (2) depends
upon the sensors location. Thus we conclude that the

criterion: —
E%P'" ® 1) 5 (’&L,@xrj

Cy = tr(I‘N) =Tr
which was used in |12] for optimization over N for fixed
H, is no more convenient for optimizing over H.
From now on, we will thus consider parametrizations
related to the own characteristics of the system: eigen
(or modal) parameters, state transition matrix F. Before

doing that, we notice that the following invariance
property of the criterion C (16):
PPl =1, =>cMP)=c(m) . (18)

2.2 Several possible criterions

According to the previous discussions about the choice
of parametrization for sensors location in paragraph
2.1 and, on the other hand, about diagnosis via sensitivity
tests in paragraph 1.2., it results that several criterions
of the type (16) may be considered, using various jacobian
matrices in M (10).

2.2.1 Global modal sensitivity

One subset of parameters which is of particular interest,
as far as vibration monitoring is concerned, is the set
of the modal parameters, namely the vibrating pulsations
wj and the eigenvectors yj. Of course, only the observed
part H ¢; of the eigenvectors can be monitored, but
we nevertheless choose the whole set ( wj, Wj) to
parametrize the system independently of the observation
matrix H. We have chosen not to monitor the damping
coefficients c; (real part of the eigenvalue xj) because
they are usually not precisely identified. In ‘this case,
the mean value of under H; has the following
parametrization |11} [12]

dyre

*T .
£y < € @ 10y ayim

(]
where tﬁ is the controllability matrix of (1) in the
modal basis, anddis such that Eﬁl:r.

Thus, because of the discussion following formulas (15)
and of (18), the global modal criterion is defined according

to (16) as:
*T .
gy © Ir){l . (19)

- T * -1
Cory TrB er® 1) 5!«
interest to notice that, because the block

It is of
decomposition of involves block diagonal matrices

11}, we hav&:
= - 9'
Casp = 341 G (19°)
where Cj is the sensitivity criterion corresponding to
only one mode, i.e. one pulsation and one eigenvector
I11].Numerical results concerning the criterion (19) will
be presented in Section IV. The optimization is done
by exhaustive search.




2.2.2 Sensitivity w.r.t. the F matrix

Using the same approach as in the previous paragraph,
we now differentiate (3) to obtain a connection between
variations in and variations in F through a Jacobian
matrix Jg.

The sensitivity criterion with respect to the variations

in F is thus:
-1 T
G = Tr JF (6 ® 105t (E @1 %]
As %in (19) and Jp have respectively (2r + 1) 1 and (21)2
columns (n=21), and because r<<l, the criterion Cg is much
more computationaly expensive than the criterion C v (19).
*

. COMPARISONS OF DESIGNS WITH
DIFFERENT NUMBER OF SENSORS

According to the discussion presented in Section II.2,
up to now we have basically been able to compare different
sensor locations corresponding to the same number of
sensors: recall that the criterion (16) is directly related
to the test power 8 (11), which is defined for a fixed
threshold 2, and that A depends upon the number q of degrees
of freedom.

The purpose of this section is to define a correcting
factor with allows the comparison between different number
of sensors.

First notice that the power 8(11) is computed as:
B = Pl o . v xE Y1) EP(D))
where Xxj = zj + Yj
and (zj) are zero mean independent identically distributed
gaussian variables, and Yj is the mean of xj.
Because of symmetry, we have:

P(@)‘) = P(xf +.__+x§ > A)=P((Z1+Y)2*z§*‘---+zz

q? )

(20)
where |2 = Yj *+... + y%is the noncentrality parameter.

Since we consider only small changes, i.e. y is small,
we can keep only the first two nonzero terms of the Taylor
expansion of (20): B =a + y2 €g/2 * 0( Y 3), where o is
the level (12).

1t may be shown |11] that:

q exp(-s2/2) / Y/7Nq

where 6 = ¢ “1(1- @) and ¢ is the gaussian cumulative
distribution function.

Since § does not depend upon g, the convenient quantity
to compare locations of different number of sensors is:
(8 - ) exp{ 82/2) which is equal to: v2/2 /T q up to
second order.

Because of (15) and (17), integrating the two sides
of this last equality leads to:

(8-a) exp(s2/2) = C(M) / 2/Z0q . (21)

Therefore, the criterion (16) has to be divided by the
square root of the number of degrees of freedom.

Numerical results involving this criterion will be
presented in the next section.

£ =

IV. NUMERICAL RESULTS

In this section, we present numerical results concerning
the criterion (19) computed for a simplified platform
model. This simulation model is a nonsymmetric tied down
system of 18 masses of one degree of freedom, connected
by springs, as shown in figure 1, with known weights,
stiffness and damping coefficients. No signals were
generated; the theoretical values of this criterion were
computed from the physicel characteristics of the system
and for a given excitation. Actually, it may be shown
that everything in (19) can be computed as functions of
(H,F) and the theoretical covariances Rk of the observation
Y. We insist upon the fact that, even though the tests
(8) may be computed without knowing the excitation V
in (1), our criterion does depend upon the excitation {through
its covariance Q). This dependency is analytically complex,
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and thus will be studied only via numerical computations
made with four different covariance matrices Q.

In order to mimic the effect of the swell, and assuming
that the excitations at different points are independent,
we selected diagonal covariance matrices Q;(1£ig4).
Excitation 1 is stronger than excitation 2 on the top level
of the structure. Excitation 3 trys to simulate a dominant
excitation on the "leg" 3-9-15. Excitation 4 acts in a similar
way on the leg 6-12-18.

As we have previously mentioned, the optimization
has been done by exhaustive search among a set of possible
sensor locations. According to experiments currently
performed on real offshore platforms, the locations which
we have used correspond to the selection of r=2, 3 or
4, a total number of sensors located on each of the two
opposite "legs" 1-7-13 and 6-12-18, with 1 or 2 sensors
on each leg, resulting in a set of 36 possible locations.

The four global modal criterions Cj(1§i¢4) have been
computed applying formula (19'), and then multiplied by
the correcting factor 1/ vm according to (21). Here m=36r-
18, because we have chosen p to satisfy: rp=n=36 and
N=p and because we have omitted the damping coefficients
ci. The values of these four global criterions are plotted
on figure 2.

We first notice that the four curves of figure 2, are
quite similar, as far as their maxima are concerned, showing
a not too strong dependency of the criterions upon the
excitation. Another way of checking this relative
independency consists in sorting, for each excitation,
the different locations according to the decreasing values
of the global modal criterion. If the criterion C, , was
independent _uypon the excitation, we would get the same
rank value A; on each row (i.e. for each location). We
have shown |11] that the real situation is not dramatically
different from this ideal situation: see table 1.

Two other important facts may also be deduced from
table 1. First, it does not seem really necessary to have
4 sensors for good detection, because good scores are
obtained with 3 sensors coveniently located. Second, sensors
locations which do not involve mass number 1 always
get bad scores.

CONCLUSION

We have addressed the problem of optimal sensor location
from the nonstandard point of view of failure detection
with statistical tests. We have derived criterions based
upon the power of the detection and diagnosis tests we
recently developed for vibration monitoring [3{ [11(. Several
key points have been discussed and solved, namely: choice
of parametrization for optimization of sensor location,
comparison of designs with different number of sensors,
influence of the excitation.

Further investigations should include deeper understanding
of the adequacy of the mean criterion (17): actually we
compute the mean power of our test for detecting any
type of change with unit "magnitude”. Our opinion is that
a more convenient criterion could be obtained using
Jacobians with respect to physical parameters (masses
and stiffness parameters). This point is currently under
investigation.

Finally, it is of interest to notice that, because of our
approach for change detection and diagnosis, we have
also addressed in this paper the problem of optimal sensor
location for parameter identification. Actually, we show
in |12] that the inverse of the matrix T in (15), which
characterizes the asymptotic power of the instrumental
test (14), is equal to the asymptotic covariance matrix
of the estimation error of the optimel instrumental variable
identification method. As we have addressed the optimal
sensor location problem using as a criterion the power
of the instrumental test, we also solved the problem of
optimal sensor location for parameter identification.
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locations* g1 QZ 93 QA

1. 6. 0. 0. 10. 12. 711, 13,
1.12. 0. 0.] 15, 17. 17. 14,
1.18. 0. 0.} 23. 22. 24. 23,
7. 6. 0. O.F 24, 23, 2. 22,
7.12, 0. O.] 3a4. 38U, 36. 3o
7.18. 0. O.f 33, 2. 33. 33,
13. 6. 0. 0.] 25. 2&. 28, 25,
13.12. 0. 0.] 35. 33, 35, 34,
13.18. 0. 0.] 34. 34. 34. 35,
7.13. 6, 0.} 18. 19, 19. 14,
7.13.12, 0.} 32. 3. 32, 131.
7.13.18. 0. 27, 28. 29. 2sa.
1.13. 6. 0.1 12, 11, 12. 10,

1.13.12. 0- 8. 8' 3- 6'
1.13.18. 0. 21. 21.
1| 7- 6. 0. ‘- 5- 5- 5.
1. 7.12. 0. 3. 4. i. 1.
1. 7.18. 0. 16.
1.12.18. 0. 7. 9. 9. 8.
1. 6.18- 0. 13‘
1. 6.12. 0. 1. 2. 3. 4.

7.12.18. 0.] 31, 30. 31. 32,
7. 6,18, 0.1 19. 1&. 18. 19,
7. 6.12. 0.] 17. 13. 14. 14,
13.12.18. 0. 28. 29. 2a8. 29.
13, 6.18. 0.] 22. 24. 23. 24,
13. 6.12. 0.] 20. 20. 20. 21.
7.13.12.18.] 30. 36. 30. 30,
7.13. 6.18.] 26. 27. 27. 27.
7.13. 6.12.| 29. 26. 26. 26,
1.13.12.18.] 13. 14. 10. 9.
1.13. 6.18.] 14. 15. 15. 15,
1.13. 6.12. 2. 3. 2. 3.

1. 7.12.18. b, 7. 7. 17,
1. 7. 6.18. S. b, b. 7.
1. 7. 6.12. 9. 1. 4. 2.

Table 1:
Sensors locations and rank of these locations. -
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Figure 2 : The four global modal criterions.



