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ABSTRACT:  We present a  systematic  approach  for  the  design of change 
detection and model validation  algorithms  for  dynamical  systems. We show 
how  to  associate  to  any  identification  algorithm  a  change  detection and a 
model validation  procedure,  which  are optimal in some  asymptotic 

meaning.  The  foundations of our method go  back  to  the  #asymptotic  locals 
approach in statistics, and our method generalizes  this  approach. 

INTRODUCTION 

The  problem  of  detecting  changes in dynamical  properties  of  signals  and 
systems  has  received  a  growing  attention  these  last  fifteen  years,  as  can 
be seen  from  the  survey  papers  [Willsky 1976-a], [Basseville 19661, and 

the  monography  (Basseville & Benveniste 19661. Actually,  this  problem 
arises in several  areas  of  automatic  control  and  signal  processing,  which 
may be classified as follows: I/ failure  detection in controlled  systems, 2J 
segmentation  of  signals  or  images  for  the  purpose  of  pattern  recognition, 
3/ gains  updating in adaptive  algorithms, for tracking  quick  variations of 
the  parameters.  Many  applied  fields  have  been  already  concerned, as 
discussed for  example in [Basseville 1986], and  a  significant  amount  of 
methodological tools are  now  available,  see  the  above  mentioned 
reference  for  an  extensive  bibliography  on  this  subject. 

On  the  other  hand,  the  areas  of  system  identification  and  system 
monitoring  are  primarily  concerned  by  the  problem  of  model  validation in 
the  following  cases: I/ check  whether  a  given  model  set  fits  the 
considered  system  (identify  the best model  within  the  chosen  model  set, 
and  perform  model  validation  to  ultimately  accept  or  reject  the  selected 
model  set); 2/ check  whether  a  given  nominal  model  (intended,  for 
instance, to describe  the  ideal  behaviour  of  a  given  system)  fits  the 
considered  system.  Most.  of  the  control  softwares  provide  routines to 

perform  model  validation;  the  usual  way  is to monitor  *prediction errors., 
equation errors#, etc ... (see  [Ljung & Soderstr-om 19831 for  example). 
However,  most  of  the  model  validation  techniques  are  rather  ad  hoc  from 
the  statistical  viewpoint. 

The  purpose  of  this  article  is to present  a  fairly  general  methodology to 

associate  closely to any  identification  procedure,  and,  more  generally, to 
any  adaptive  algorithm,  a  change  detection  and  a  model  validation 
procedure.  The  foudations  of  our  approach  are  found in Le Cam's work  on 
contiguity of probability  measures,  which  lead to the so-called 
.asymptotic  local^ point of  view in statistics, see the  book  [Roussas 19721, 
and  also  the  fundamental  papers  [Nikiforov 19861 and  [Deshayes & Picard 
19861. This  approach  provides  an  effective  way to design or  analyse 

likelihood  ratio  based  testing  procedures  when  the  alternative  hypotheses 
become  closer  as  the  length  of  the  record  goes to infinity, Starting  from 
this  idea,  IBasseville 8 81. 19661 and  [Moustakides 8 Benveniste 1986) 
studied  a  situation in which  no  likelihood  ratio  approach  could  be  effective 
due to the  presence of nonstationary  nuisance  parameters;  hence,  starting 
from  the  wellknown  Instrumental  Variable  method,  they  derived  a  closely 
related  testing  Procedure  using  again a local  asymptotic  approach.  The 
Present  paper  shows  that  this  situation  is  indeed  general:  the  asymptotic 
local approach provides US with  a general methodology  to assmiate to any 
adaptive  algorithm  an  .optimal*  testing  procedure  for  both  the  change 
detection  and  model  validation  problems, 

Finally,  the  problem  of  identifying  the  origin of  the  detected  changes  has 
been  mainly  addressed  via  the  multiple  model  approach  [Willsky 1976 -a], 
IWillsky 19861; this  approach  is  for  example used in the  aeronautics,  We 
shall show  that  our  approach  trivially  extends to this  problem,  thanks to a 
Sensitivity  method  suited to the  identification  of  the  origin of small 

changes.  Moreover,  as  we  shall  see,  this  will  allow us recognize  the  origin 
of  changes in terms of non identifiable models  (think  of  a  complex  system 
modelled On one  hand  by  a  large  physical,  often  non  identifiable  model, 
and On the  other  hand  by  some  smaller  black - box identifiable  model,  and 
tW tO understand  the  origin  of  the  changes in terms  of  the  physical  model). 

1 PROBLEM  STATEMENT 

Consider  a  dynamical  system  subject to sudden  changes. Our purpose  is 
I/ to decide on-line whether  a  change  occurred  or  not, 2J if a  change 
occurred, to estimate  the  change  time, 3/ to identify  the  origin  and  the 
magnitude of the  change.  Let us first  investigate  some  examples. 

1.1 Examples. 

1.1.1 Jump in the  mean of a signal. 

Consider  a  signal  of  the  form 

Yn 5 Q#$(n) + v, (1-1) 

where (vJ is  a  sequence  of  i.i.d.  random  variables  with  distribution p ,  and 
8s is  a  piecewise  constant  function.  The  problem is to detect  the  changes 
in e*, and to estimate  the  magnitude of  the  jumps. 
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1 .1.2 Changes in an AR process. 

Consider an  AR process of the  form 

P 
Yn = ajyfl-; + uvfl (1 -2) 

where  (v,,)  is  a  zero  mean  i.i.d.  sequence  of  unit  variance.  The  model (1-2) 

is  summarized in the  parameter 

e&  : = (a l,...,ap ;u) (1 -3) 

Setting 

OJ-1 : (Yn-l$.,.>Yn-p) (1 -4) 

(1-2) can  be  rewritten  under  the  following  state  space  form 

@ n  A ( g * ) @ n -  1 + g(e*)Vn 
yn = (1, o,*.., O ) @ ,  

A @ * )  = [ :' ' 3 ,  B(9*) = [j (1-5) 

1 0  

where  the  unspecified  entries of  the  matrix A(B*) are  equal  to  zero.  The 
formulas (1-5) express  the  fact  that (a,,) is  a  controlled Markov chain with 
control  parameter 9*, This  means  that (a,,) is  a  Markov  chain  the 
transition  matrix of  which  depends  on  the  parameter 9*. Assuming 9* to 
be  piecewise  constant, it is  desired I /  to detect  its  jumps, 21 to estimate 
the  change  times, 3 to estimate  the  magnitude of the  jumps. 

1.2 Detection of changes in a controlled semi - 
Markov process. 

We shall say  that (X,,) is  a  Controlled Semi-Markov Process with conlrol 
parameter 9* if (X,,) is  of  the  form: 

P ( 5 n E G I 5 n - 1 , 5 n - 2 ' . . . )  = S,ngy(5n-lsdx) 
X n  f ( < A  (1 -6) 

where ng* ( 5 , d x )  is  the  transition  probability of a  Markov  chain ( t,,) 
depending  on  a  parameter 9*. The  model (1-6) represents  the  atrue 
systemn.  Accordingly,  the sequential change detection problem in the 
system (1-6) is  formulated as follows: 

IDS] There  exists an instant r: 0 c r 6  + eo, such that (X,,) is wntrolled by 
the  parameter 

e*  = eo  for n < r  
e* I e ,  for n 2 r  

The  questions we  want to answer  are  then  the  following.  Given  a  record 

x,, ... I x,, 

1) detection decide  between 
n < r (no  change  occurred  before n) 
and 
r 6 n  (a  change  occurred  before n) ; 

2) estimation  when r 6 n  has  been  decided, 
estimate  the  change  time r ; 

3) identification  if  anyone  is  unknown, 
identify B o  andlor 9 

Of course,  only  a  subset of these  problems  is  of  interest  in  some  cases. 

For  example,  only  the  problem 1) has  to  be  investigated in failure 
detection  when  no  diagnosis  is  required. 

1.3 A basic problem and its solution:  change in the 

mean of independent Gaussian vector random 
variables. 

This  problem  is  the  easiest  change  detection  problem,  and  will  illustrate 
our  purpose.  As  a  matter  of  fact,  its  solution  will  appear  as  a  basic 
component of the  general  change  detection  problems we shall  investigate 
subsequently.  Consider  a  sequence of independent  Gaussian  vector 
random  variables (Y,,) with  constant  covariance  matrix R ,  and  with  mean 
equal to 0 until  time r - 1, and  equal to 9 from  time r ,  where 9 is  an 
unknown  parameter.  The  wellknown  solution  of  this  problem  is  the GLR 

test (n Generalized  Likelihood  Ratio n), see  [Willsky & Jones 1976- b]. 
Recall  briefly  how  this  test is obtained. First, fix r and 9. Given  the  record 
VI, ..., Yn , the  loglikelihood  ratio  between  the  hypotheses 

Ho: there  is  no  change until n 

HI: there  is  a  change at  time r of magnitude 9 

is  given  by 
n n 

s:(e) = ,I Y L R - ~ Y ,  - I (Y, - e ) T ~ - l ( ~ k  - e) 

- 2 I Y , T R - l e - ( n - r + l ) e T R - l e  (1-7) 

k =  r k - r  

n 

k =  r 

Replacing 9 by  its  most  likely  value  under  the  hypothesis  of  change  (with 
r still fixed), we  get 

S:: = max Sy(9) = (A3rR-iA; (1 -8) 
9 

where 

n 
A;; = ( n -  f + I yk 

k - r  

and 

e ( n , r ) :  = arg  max = (n - r + I ) - , ' ~ A ;  
h 

e 

Taking in (1-8) the  maximum  with  respect to r yields 

(1-10) 
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G,: = max Sy, r, = arg max Sf (1-11) 
r r 

Finally,  the  stopping  rule to decide  that  a  change  occurred  is  given  by 

v = min{n :G,kA} (1-12) 

while  the  estimates  of  the  instant of change  and  the  magnitude  of  the 
jump  are  respectively  given  by 

r = r , e = $ ( v , t )  (1-13) 

The  formulas (1-9 to 1-13) define  the  complete  change  detection  test 
procedure  for  this  case. 

X FOUNDATIONS  OF  THE ASYMPTOTIC LOCAL 

A h  A 

POINT OF VIEW. 

2.1 Some useful background on adaptive  algorithms, 

and problem  statement. 

We shall  first  introduce  the  kind  of  adaptive  algorithms we shall  consider; 
we shall  use  the  form  and  related  assumptions  of  [Benveniste 8 81. 19861, 
see also  (Metivier & Priouret 19841 f o r  slightly  diflerent  assumptions. 

2.1.1 Some background on adaptive algorithms.  

The  adaptive  algorithms we shall  consider  are  of  the  form 

e n =  e n - 1  + Yn H(en-lsXJ (2-1) 

where 8 belongs to R or to some  submanifold  of R d ,  and  the  state X, 

belongs to R k .  fhe gain yn can decrease to 0, or converge to a  positive 
constant  limit.  The  state  vector X,, is  generally  a semi- Markov process 
con&olled by the parameter 8;  this  means  that 

P ( 5 n f d 5 1 5 n - i , 5 n - 2 , . . . ; e n - l , e n - 2  ,...) = n e n - , ( < , - l 9 d < )  

x,, IC f(5J (2-2) 

where  the  extended  state ( <J is,  for 8 fixed,  a  Markov  chain  with 
transition  probability TI e ( 5 , dx)  which  depends  on  the  parameter 8. We 

assume  that,  for  every 8 belonging to the  domain of the  algorithm,  the 
Markov  chain (<J admits  a  unique  invariant  probability  measure  (Le.  is 
ergodic).  This  framework  includes  the  case  where  the  state (XJ itself is a 
stationary semi-Markov process  with  distribution  independent  of 8. It 
includes  also  the  case of conditionnally linear dynamics, such as  used in 
[Ljung & Soderstrom  19831,  i.e. 

Xn=A(en-1)Xn-j + e(en-1 )wn 

where A(8) and B ( e )  are  matrices,  and (WJ is  an  i.i.d.  zero  mean 
sequence.  For 8 fixed,  (XJ  is  asymptotically  ergodic if and  only if the 
matrix A(B) is  asymptotically  stable.  The  function H(8,X) can be 
discontinuous,  but we shall  assume  that  the  following rneen vector field is 
smooth 

h ( 8 )  : = lim E e ( H ( B , X J )  (2-3) 
n-rm 

where Ee denotes  the  expectation  under  the  law P e  of  the  process 
(XJ,&o  for e fixed.  The ODE associated to the  algorithm is then 

6 = h ( e )  , e(o) = z (2-4) 

the  solution  of  which  will  be  denoted  by (e ( t ) ) d o  or (e ( ~ , t ) ) ~ ~ o  
accordingly. We  are  now ready to introduce  the  framework  we  shall  use 
for  the  change  detection  problem. 

2.1.2 Problem statement. 

2.1.2.1 Investigation of the lesst squares algorithm for AA identification. 
The  identification of 8*  in (1-5) can be for  example  performed via the 
least  squares  stochastic  gradient  algorithm 

e n =  en-1  + Y @nle*l enIQn-1,8*1 
en(e, 8%): = Yn(e,) - @;(e*). e (2-5) 

where @,,[e*] is defined in (1-5). In (2-5), the  dependence  on  the  true 
parameter 8% has  been  made  explicit,  although  this  parameter  is 
obviously  unknown  to  the  user.  The  motivation  for  introducing  the  true 
parameter  will  be  made  clear in the  sequel.  This  example  motivates  the 
following  form we shall  use  for  the  adaptive  algorithms 

O n  = B n - l  + y H(en_1,z : XJ (2-6) 

where  the  parameter z represents  the true system. More  sophisticated 
gain  strategies  can be used;  for  example,  the  classical  least  squares 
algorithm  makes  use  of  a  recursively  Updated  matrix gain instead  of  the 

crude  constant scalar one  used in (2-5). But  the  gain  strategy is irrelevant 
for our  purpose,  only  the  random  vector  field H(B,-,,z : XJ will be 
relevant. 

2.12.2 Problem stammnt and assumptions 

Our starting  point  is  now  the  random  vector  field 

w , z  ;XJ 

where 

8 is  the  adjustable  parameter  available to the  user 

z is  the  parameter  which  represents  the  true  system; z is  not 
available  to  the  user 

the  state X,, is  a  semi - Markov process controlled  by  the  pair (8, z), 

As usual  for  adaptive  algorithms,  the  following  mean  vector  field  is 
associated  to (2-7) 

h ( 8 , z ) :  = lim Ee;,(H(e,z ;XJ (2-8) 
n-rw 

This  is  nothing  but  the  usual  mean  vector  field  of  the  associated ODE, 
where  the  dependence  on  the true system I has  been  made  explicit. 

778 



WARNING:  Let  us  emphasize  that z is a  parameter  which  is  not  available 
to  the  user,  and  has  been  introduced  only  for  the  sake  of  the  theoretical 
analysis.  The  user  only  knows  the  form 

H ( e  ; X J  (2-9) 

which  is  directly  borrowed  from  the  usual  form  of  adaptive  algorithm. 0 
From  now  on,  we  shall  distinguish  a m i n d  model 

e = e o  

chosen  by  the  user.  The  problem  is  to detect Small deviations of the 
true system z from  the  nominal  model eo by only  monitoring 
the random  vector  field H(8,,z ;X&.  The  following  assumptions  will 
be  inforce in the  sequel,  and we shall  denote  by he and h, respectively 
the  first  and  second  partial  derivatives of h. 

ASSUMPTlON NS.l the  model set matches  the  true  system  structure  in 

the  following  sense: for  every z, 

h(8,z)  = 0 o 8 = z (2- 1 0) 

CONSEQUENCE : The  following  relationship  holds : 

he (z, I) = - h, (z, z) (2-1  1) 

the  proof of which  is  obvious  and  left  to  the  reader. We are  now  ready  to 
present  our  problem  statement. 

CHANGE DETECJlON PROBLEM: given  a  nominal  model 8, chosen  by 
the  user,  and  a mrd X, ,  ..., X, of length  n of the state vector;  test  the 

following  hypotheses  against  each  other  by  using  the  random  vector  field 

traiectory ;Xk ) l l&Sn  

H, ; z = e 0 ;  

H, : z = Bo  + -, where 8 f 0 is  an  unknown  change; 

H ' ,  : there  exists T €10, 11, such  that 

e 
dn 

z =  8 0 f o r k < r n  

z = eo  + - for T nSkSn, where 8 it 0 is  en  unknown  change. 

COMMENT:  The  hypothesis Ho expresses  that  the  nominal  model is 
identical  to  the true system;  the  hypothesis H, corresponds  to  a  constant 

deviation  between  the  nominal  model  and  the  true  system of magnitude 
order n- 'I' ; finally,  the  hypothesis H ' ,  corresponds  to  the  occurrence of 
a  change  of  magnitude  order n-"' inside  the  record.  Introducing  the 
scaling  factor d n  is  classical in statistics,  and  is  known as the asymptotic 
local  approach. The  interested  reader  is  referred  to  [Nikiforov 19861, 

[Roussas  19721  and  IDeshayes  et  Picard  19861  for  further  information in 
the  asymptotic local approach  for  the  likelihood  ratio  testing  methods. 

e 
dn 

2.2 Main results. 

The  assumption NS is in force  throughout  this  section.  Fix  a  nominal 
model Bo, and  consider  the  following  cumulative sum, where m6n 

l r n  e o,,,(e,,e) : - - I w , , e o  + - ; x k )  
d n k -  1 d n  

We shall  now  describe  the  asymptotic  behaviour,  when  the  length n of the 
record  tends  to infinity, of this  cumulative  sum  under  the  three  hypotheses 
Ho,Hl and H ' , .  

2.2.1 Behaviour of the  cumulative  sum  under  the  hypothesis 

of no change. 

This  behaviour  is  described  in the following  theorem: 

THEOREM 1 ; 

(i) behaviour of the marginal  distribution: 

(2-  1 3) 

where R (e) is  given  by 

and Pe,e  denotes  the  law of X, when  the  adjustable  parameter  and  the 
true system  are  both  equal to 8, and Cove,, is  the  covariance  with 

to P e ,  8.  

(io lnvariancw principle: For t€ [0,1], set 

Then, 

(2-1 6) 

when  n  tends to infinify,  where (Wf) is  a  Brownian  motion,  and -. denotes 
the weak convergence of processes. 

PROOF: Of course  (i)  is  a  consequence of (ii). On  the  other  hand,  (ii)  is  a 
classical  invariance  principle  for  dependent  processes,  see  for  example 
[Mac  Leish  1975 - b, main  theorem]. 

2.2.2 Behaviour of the  cumulative  sum  under  the  hypothesis 
of change. 

We shall  directly  investigate H I , ,  since H, is  a  subcase  of  the  former 

hypothesis.  Consider T E IO, 11, and  let  us  introduce  for m6n the  following 
cumulative  sum 

This  cumulative  sum  reflects  the  effect  on  the  vector  field H of  a  deviation 
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of  magnitude  order n-"' between  the  nominal  model  and  the true 
system,  which  occurred  at  time n T .  The  behaviour  of  this  cumulative  sum 

is described in the  following  theorem: 

THEOREM 2 ; Behaviour of the  cumulative  sum  under  the  hypothesis H' 1. 

Let T E [0,1], Set 

D,,, , (90,9,~):  = D,,(B0,9,T) where  m = [ntl (2-1 8) 

Then,  when n tends to infinity,  the process IDn,, (eo, 0, T)]OS~S 1 converges 

weakly  towards  the process [D,(Bo,9, ~ ) ] ~ g ~ ~ ~ ,  solution of the linear 
stochastic differential equation 

dD, = - 1 { , ~ , ) . h e . 8 d t +  R 1 ' 2 ( 9 d . d W ,  (2-19) 

where R (9 0 )  is given in (2- 74), while 

hg : - he(9,,9d 

is defined in (2- 7 7). 

COROLLARY 3 : HVpOtheSiS HI 

D,,(90,B) -+ N I - h e . e , R ( e d l  
L 

n+w 
(2-20) 

This  corollary is directly  carried  out  from  theorem 2 by  taking T = 0. 

PROOF: A first order  Taylor  expansion  yields 

H(90, 90 + - ; x k )  
9 

<n 
1 

= H ( g o ~ 9 0  ; x k )  +z H~(gos90 ; x k ) . e  + 'J(\ln) 
1 

Summing  over  the  index k yields 

D,,,J~O~ 9, 1) - Dn,l(@OJ) + - t Hz(90,9, ;x&) . 9 + o(1) 
1 Inq 

n k=miq[ntj,[nTD+ 1 

= [l] + [2J + o(1) (2-21) 

The  behaviour of [l] is  described in the  theorem 1 -ii. TO analyse 121, we 
refer  again  to  [Mac  Leish 1975-a] for  a  suitable  law  of  large  numbers  for 
dependent p r o c e s s e s ,  which  yields 

121 -. ( t -T)+.hz(eO,ed.e (2-22) 

where x+ = max (0 ,x ) .  But,  the  theorem 1 and  the  formulas (2-11), 
(2-21),  (2-22) give  together  the  theorem 2. 

LOCAL APPROACH TO CHANGE 

DETECTION. 

From  the user's point of  view,  the  cumulative  sums Dqm given  by  the 
formulas (2-12) or (2-17) are  identical,  since  they  differ  only  via  a  change 
on  the  -true*  parameter z, which  is  not  observed  by  the  user.  This 
common user's form  is  simply  obtained  by  deleting  the  true  parameter z 
in these  formulas; in other  words,  the  user  knows  the  cumulative  sum built 
on  the  standard  random  vector  field H ( 9 , X J  of the  formula  (2-9): 

l m  

< n k =  1 
~ , , ~ ( e d  = - t vk(ed, yk (ed:  = w e ,  ;xk)  (3-1) 

We shall  interpret  the  theorem 2 as follows.  Assume  a  change of 
magnitude  order n-1'2 occurred at time r in the  direction of change 9, 
and n is  large  enough.  Then,  cunsidering  the  random  vairables V k ( 8 , j  as 
independent, and distributed as follows 

yk(ed e N[o,R(edlg k < r 
vk(ed N[ - hg (ed. e, ~(edl, k z r  (3-2) 

would  exactly result in the  asymptotic  behaviour described by (2-79). 

Hence,  we shall replace  the original festing  problem (Ho against HIl) by 
the  asymptotical!y  equivalent  problem  of  detecting  changes in the  mean  of 
the  independent  Gaussian  variables  according  to (3-1,  3-2). Restricting 
the  study  to  the  case  where  the  direction of change e is unknown, we 
shall apply  the  formulas  (1-9  to 1-13) to the  detection of a  change like 
(3-2). This  gives  the  formulas of the local change defection 
procedure: 

n 
sr(e) = -2 1 [Y;R-'hg.9 - ( n - r +  1) 9T.h5R"hg.9] 

k;.  r 

where 8 0  has  been  deleted  for  simplicity.  Fixing r and  maximizing  with 
respect  to 9 yields 

s:: - max sr(e) = ( A ~ ~ R - ~ A ; ,  
9 n 

A;: = (n - r + t)- ' l2 1 Y,, 

e ( n , r ) :  = arg  max s:(e) 5 - (n  - r +   hi'^: (3-3) 
A 

k - r  

e 

The  Stopping  rule  and  the  estimates  of  the  change  time  and  magnitude of 
the change  are  given  by  the  formulas 

0,: = max S:, v = min{n :G,,1A) 

r,, = arg max S,, r = r 
r 

~ A A  Q = Q(v,?)  (3-4) 
I 

Note  that ( 3 - 4 - i )  is sufficient if the change  detection  only is of interest. 
The local test is given  by  the  formulas (3-1 - ii, 3-3, 3-4). The  threshold A 
is  easily  selected  by  knowing  that,  under  the  no  change  hypothesis,  we 
have 

Eeo(S? = d,  (3-5) 

since (n - r + 1)s: is (approximately)  a centra X' with d ( n  - r + 1) 
degrees of freedom. 

3.1 The local test. 
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COMMENT : A  probably  more  commonly  used  method is the  following 
one. 

1) run the  adaptive  identification  algorithm  with  constant  gain 

e,, = e,,-1 + yrwe,-l,xn), 

2) use  a x - test  of  the  form 

(e, - edTI-l(e,, - ed 2~ (3-6) 

with  a  suitable  matrix 1 using  the  fact  that en  - Bo is  approximately 
Gaussian  and  zero  mean  for  y  small in the  hypothesis of no change  (use 
a  Central  Limit  theorem  for  stochastic  approximations  to  select  the  proper 
matrix 1, see for example  [Kushner 19841, [Benveniste & al. 19661). This 
latter  method  is in fact  far  from being as efficient as  our  method. It is 
known in fact  that  the  deviation e,, - Bo is  quite  complex:  this  deviation 

behaves like a  first  order  Gaussian  Markov  process  [Kushner 19841. But in 
this  case, it is  known [willsky & Jones 19763 that  the  best  local  test 
involves  the  innovations  of  this  Markov  process,  which  gives  something 
different  from (3-6). Our  method  is  precisely  the right way  to test  for Small 
changes in the  true  system. We shall  now  illustrate  this  method  on  two 
non trivial  typical  examples,  and  show  that it is the convenient 
generalization of the &cal  likelihood ratio tests. introduced  by  Le  Cam 
([Nikiforov 19861, [Roussas 19721, [Deshayes & Picard 19861). 

3.2 Examples. 

3.2.1 Change  detection  in AR processes. 

The  objective  is  to  detect  changes in the  parameter 8 in the  system 

Y, = @;e + v,,, @; = ( Y n - l ~ . . . s Y n - d  (3-7) 

We apply  our  method  with  the  random  vector  field  of  the  classical  least 
squares  algorithm,  namely 

H(e,y,,,@A: = @,,e,,(e),  e,(@: = y,,- @;e (3-8) 

The  matrix R ( e d  corresponding to (2-14) is  given  by 

R(e,,) s Eeo(vfl@,,@,TvA = 02z(e,,) (3-9) 

where u2 Is the vwlance of v,, and x@,,) the  covariance  of  the  regression 
vector d),, for the  nominal  model Bo. This  gives 

n 
A;(~ ,J  = (n - r +  I ) - ” ~  I @,ek(eo) (3-1 0) 

k -  r 

It is easy  to  verify  that u-’ Ag(e,,) is  the  derivative  with  respect to 8 of 
the  loglikelihood  of  the  sample y l ,  ,.., y, under Ho, while u-‘ 1 (e,,) is 
the  Fisher  information  matrix.  Comparing  the  obtained  procedure  with 
(Nikiforov 19861 and  [Davies 19731 reveals  that (3-1 -ii, 3-3, 3-4, 3-9, 
3-10) yields  the so called locel likelihood ratio test,  which  is  the 
convenient  procedure to detect  small  changes in the  parameters of an AR 
process. 

(3-1  2) 

3.2.2 Detecting  changes  in  the p o l e s  of an ARMA process 
with  the  instrumental  local  test. 

This  example  is  much  more  interesting,  since we shall  derive  with  our 
method  a  new  test,  which  is non classical,  and  has  been  proposed  and 
analysed in details in (Basseville & al. 19861, [Moustakides & Benveniste 
19861. Consider an ARMA process of the  form 

P 4 
yn = I aiyn- i  + I b,v,,-, + v,, (3-1 1) 

i -  1 j -  1 

where (vJ is  a  white  noise.  Our purpose is to monitor possible changes in 
the AR parameters,  while  considering  the MA parameters  as  nuisance 
parameters.  This  is  recognized as a difficult problem,  since  the  poles  and 
zeros  of  an  ARMA  process  are  tightly  coupled  (the  Fisher  information 
matrix  exhibits coupling between AR and  MA  parameters).  However,  the 
lnsfrumental Variable (I.V.) method  is  known to be an identification 
procedure  which  satisfies  our  robustness  requirements:  for  example, it  is 

shown in (Benveniste & Fuchs 19851 that  the AR parameters  can  be 
consistently  identified  with  the I.V. method  even  if  the  MA  parameters  are 
time-varying. Recall  briefly  this  method  [Stoica & 81. 19851. Setting 

e T  : =  (a, ,...,a& 

@; : = (Y  f l - , , . . . ,Yn-& 
WX : = ( Y n - q - l , - . # Y n - q - &  

where W,, is the  instrument,  the 1.V. method  is  given  by 

e,, = e,,-1 +-r;l%,(yfl-@,Te,,-,) 

r,, = r,,- + -wn@n2 - r n -  ,) 

1 

n 
1 

n 
(3-1 3) 

The  random  vector  field  of  interest  is  here  equal  to 

w e ,  ;W,,,@,,yJ = *,(Y, - @,Ted: = v,,(ed Q-14) 

where 8, is the  nominal  model. To apply  our  method, we must  calculate 

the  matrices 

~ ( u :  = I [v,,(edv,(edT] 
flEZ 

+9 
-- 1 €0 [@#d(Y,, - @,Ted(Yo - @dW] 

n= - 4  

he(eo)  = -E~(*,,@,T) I (3-15) 

where Eo is  a  shortage  for Ee ,e . The instrumental test is  obtained  by 

combining  the  formulas (3-1 -ii, 3-3,  3-4,  3-14,  3-15). As expected,  this 
test  exhibits  very  pleasant  robustness  properties  with  respect  to  the 
nuisance MA  parameters:  for  instance, it is  proved in [Moustakides 8 
Benveniste 19861 that  the  intrumental  test  does effectively detect  changes 
in the AR parameters,  while  ignoring  possible  changes in the MA 
parameters,  a  property  which  is  certainly  not  satisfied  by  the  likelihood 
ratio  tests  associated to ARMA  processes ! Hence,  our  general  method 
allowed  us to derive  a  new,  non  classical  method  of  change  detection.  It 
is  not  our  purpose  here to discuss  the  details of practical  implementations. 
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The  interested  reader  is  referred  to  [Basseville 8 Benveniste  19861  for 
further  details. 

CONCLUSION 

We have  introduced  a  general  method  to  associate  to  any  identification 
procedure  a  change  detection  procedure.  This  general  approach  is  based 
on  the so-called *asymptotic  local-  approach  used in the  area  of  statistics 
as a  tool to analyse or design  likekihood  ratio  testing  procedures. Our 
method  extends  the  former  one  to  procedures  which  are  no  more  based 
on  likelihood  ratios.  The  method  was  illustrated  on two typical  examples: 
the  least  squares  algorithm,  where  the  classical local likelihood  ratio 
approach  was  rederived in this way, and  the  instrumental test, a 
procedure  recently  proposed  by  the  present  authors,  which  is  associated 
to  the  wellknown  instrumental  variable  method,  Furthermore,  this  method 

provides as a  direct  byproduct  correctly  sounded  procedures for model 
validation, as well as for the  diagnosis  of  the  origin  of  the  changes,  even 
when those changes  are  formulated in terms  of  (non  identifiable) l a r g e r  
models; these  latter  points  will be reported  elsewhere. 
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