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ABSTRACT

We consider the Wiener filtering problem, when
the cross spectral density matrix of the signal and
noise is not exactly known. We obtain filters
which are saddle point solutions for the criterion
of performance (mean square error, MSE) over the
classes of allowable density matrices. Solutions
for various classes are given.

I. INTRODUCTION

In classical Wiener filtering, we need to as-
sume exact knowledge of the spectral density ma-
trix of signal and noise. In many applications
this assumption of exact knowledge is unreasonable.
A more realistic assumption is that our matrix be-
longs to a class of density matrices. This class
can be defined according to our knowledge of the
true density matrix. For this problem we will de-
rive a filter that performs in an optimum way over
the whole class.

Nahi and Weiss [1,2] derived the bounding fil-
ter. This filter is a Wiener filter for some den-
sity matrix Db and if it is applied to any matrix

from the class the MSE error is bounded by the min-

imum MSE for Db' Because Db does not usually be-

long to the class, there is no matrix in the class
that can reach the bound of the MSE. This means
that there is a possibility for better performance.

Kassam and Lim [3] derived the robust Wiener
filter, when signal and noise are uncorrelated
(density matrix diagonal). This filter sets a
bound on the MSE and the bound can be reached by
some matrix from the class. In [4] and [5], Poor
generalized some of this work. The present paper
extends the above idea to the correlated signal and
noise case.

Presence of correlation is possible in many
applications. An example is a multipath channel
with a strong signal component, weak unwanted mul-
tipath signals and regular noise. The total
"noise" 1is correlated with the signal.

IT. ROBUST WIENER FILTERS

Let us assume that our processes are real,
wide sense stationarv and zero mean and the noise
process is additive. We also assume that there ex-
ists a spectral density matrix D for the signal,
noise processes, given by:

{Ds(w) Dsn(w)
D =

LDZn(W> D, (w)

where s is for signal, n for noise and (*) for com-
plex conjugate. The properties that characterize
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such a matrix D for real processes are:

i. 'Ds(w), Dn(w) real, even, non-negative functions
12 .

. [p_ () ]% < D (w)eD () n

So D is non-negative definite, and diagonal elements
are even functions of w.

Given random processes s(t) and n(t) with den-
sity matrix D and a filter h(t) with Fourier trans-
form H(w), the MSE for signal estimation using this
filter is

o

e(D,H) = E[%(t)— j h(v)x(t—v)dv:)2

—x

20

= R__(0-2 [ h(WR_ (vV)dv + {ih(v)h(u)Rxx(v-u)dvdu,

-0

(2)

where x(t)=s(t)+n(t) and Rij(r) is the cross corre-

lation between i and j. Using Fourier transform and
Parseval's theorem, (2) can be written as:

W= [ (D (-20G)D_ ()+[BG) | *D () ]du  (3)

The optimum filter for D is given by

DSX (W)

o DGy @
X

If we substitute (4) into (3) we have that the op-
timum MSE is given by:

; 2
oyl D (D ()-[D_ ()]
op 2m | D (w)
) X

dw  (5)

2.1 Definition of Robust Filter

Assume that a class A of density matrices is
given. A robust filter Hr is defined by the fol-
lowing properties:

a. Hr is an optimum filter for some matrix DreA,
so that e(Dr,Hr) < e(Dr,H) for any filter H.

r r
b. For any DeA we have: e(D,Hr) < eop(D )y=e(D ,Hr

Combining a and b we have the saddle point relaticn

e@H) < e (D7) < e(D',H) (6
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for any DeA and any filter H.
2.2 Theorem 0.

Let A be a convex class of density matrices.
Then the pair (Dr,Hr) is a saddle point solution

‘or MSE over class A and the class of all linear
Zilters (it satisfies (6)), if and only if:

max

DeA eoD(D)

r
eop(D ) =
“he proof is given in appendix A.
Theorem 0 is the key point in our search for
~he robust filter, because based on it we have on-
v to maximize eop(D).

2.3 Maximization of eop(gl

From (5) if we write the error in terms of s
and n we get:

©

2
e (D) = 1 DS(W).DH(W)_IDSH(W)} dw
op 21 Ds(w)+Dn(w)+2Re[Dsn(w)] N

-0

“or every w and for given Ds(w),Dn(w),[Dsn(w)‘, the
worst Re[Dsn(w)] is —[Dsn(w)[, because it minimi-

zes the denominator. This gives:

< 2
D_(w)*D_(w)=|D_ ()]
_ 1 s n sn
eop(D) T 27 Ds(w)+0n(w)—2 Dsn(w)( dw (8)

—o0

Tor given Ds(w),Dn(w) expression (8) as a function

: §Dsn(w)l is:

9]

:. increasing for:

0 < stn(w)l < min{Ds(w),Dn(w)}
-. decreasing for:

min{Ds(w),Dn(w)} < [Dsn(w)[ < VDS(w),Dn(w)

“rom condition a and b we can say that, given
Tow), Dn(w), the worst ]Dsn(w)l is the one that
3

s as close as possible to min{Ds(w),Dn(w)}. The

warst Dsn(w) is Dsn(w) = —(Dsn(w)l.

IIT. APPLICATIONS

. pé(w), Dn(w) given with upper and lower bounds

Let 0 ¢ L(w) 2 |D_ ()] < UG, with L(w),U(w)
: . sn
ziven. If we define:

Alw) = min{Ds(w),Dn(w)} (9)

. . T v, .
-~en the worst-case characterlstic‘Dsn(w)‘ls given

L(w) if A(w)
A(w) 1if L(w)
U(w) if U(w)

A

L{(w)
Alw) < UMW)

o ] =
sn Aw)

AN

where A(w) defined in (9). . r
From section 2.2 we have that Dsn(w)=—len(w)L

Figure 1 illustrates this case.

2. Upper and lower bounds on Ds(w) and Dn(w).

We assume that bounds Li(w),Ui(w) for Di(w) are
given:

0 < Li(w) < Di(w) sUi(w) i=g,n.

In addition we will assume knowledge of the total
power of signal and noise,

2
JDi(w)dw = Znoi i=s,n

where o, are known.

A. TIf there are no bounds on ]Dsn(w)l, it can
reach the value min{Ds(w),Dn(w)}. Under this con~

dition the error is:

o

eop(D) = é%— min{Ds(w),Dn(w)}dw (10)

—oo

Because of the power constraints, there are several
sub-cases. First we will give some definitioms.

As(w) = min(Us(w), max[LS(w), Ln(w)]}
An(w) = min{Un(w), max[LS(w), Ln(w)]}
Bs(w) = minfts(w), max[LS(w), Un(w)]}

Bn(w) = min{Un(w), max[Ln(w), Us(w)]}

Figure 2 illustrates the definition of Ag(w),Bs(w).
= = ]
jA (w)dw > Zvcn then:

9
Al. JA (w)dw > 2nc”,
s s n

= s}

Ls(w) if As(w) = Ls(w)

Dg(w) =

Qs(w) otherwise

L (w) if A_(w) = L_{(w)
DE(W) - n n n

in(w) otherwise

’

2 ar (LS(W)+Ln(w)—min(Ln(w),Ls(w))}dw

r 2
eop(D )-Os+0n—§_

Where 1S(w), Qn(w) are arbitrary functions with
is(w) < As(w) and Qn(w) < An(w)

but enough for DZ(W) and Dz(w) to fulfill the power

constraints.
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A2, o ©
JA (w)dw > 2ﬂ02, JA (w)dw < 2v02
s s n n

o oo

D;(w) is as in case A1l
Un(w) if Un(w) = An(w)

Drrl(w) =
Rn(w) otherwise

where ln(w) arbitrary function with Rn(w) > An(w).

e, @) = 0% - 217J (L) - min(L () ,U_(0)}

—ca

l

A3. “ ®
JBS(w)dw >,2“0§ > JAS(w)dw

JBn(w)dw > ZWOi > JAn(w)dw

—®

© w

also assume 2ﬂ02 - JA (w) > 2ﬂ02 - fA (w)dw
n n s J's

| il -

As(w) if As(w) = Bs(w)

r
Ds(w) ls(w) otherwise

. A (w) if A (w) = B (w)
D (W) - n n n
n Qn(w) otherwise

Where As(w) < Rs(w) < Bs(w) and D;(w) < Qn(w)

< B (W)
{er]
s 2w

eop(Dr) = 02 iAJ{Ls(w)-min(Un(w),Ls(w))}dw

-0

( 2 2 'W
Ab. JBs(w)dw > 2WOS > JAs(w)dw, 2von > Bn(w)dw

‘o Yo o |

D;(w) as in case A3.

U (w) if U _(w) = A_(w)
r n n n
D (w) =
En(w) otherwise

Where'ln(w) > D;(W)

@

eop @ = oi - 217 J{Ls(w)—min(Un(w),Ls(w))}dw

—

2 2 2 [
ZWUS > JBS(w)dw, 21T0n > JBn(w)dw

( -0 oo

A5.

U (w) if U_(w) = B _(w)
pLw) =g ° N s
N % otherwise
S
v W) if U W) = B (W)
D;(w) =

Qn(w) otherwise
Where QS(W) > Bs(w) and Qn(w) > Bn(w).'

o

eop(Dr) = é%’ min{Us(w), Un(w)}dw

—c0

In the cases above, interchanging the roles of s and
n in the conditions gives us similar results. The
proof for cases Al and A3 can be found in Appendix
B.

B. Suppose we are given a function R(w) such that

0< [D_(w] < R < min(L_(w), L_(w))

sn

Because of the maximization problem ‘Dsn(w)]has tobe

as close as possible to min(DS(w), Dn(w)), S0

|Dzn(w)[ = R(w). To find the pair DZ(W), D;(w)
notice that:
* 2
1 Ds(w)'Dn(w)—R (w) .
D (W)+D_(w)-2R () v

-0

eopP) = 7

o

1 S(w) N(w)

- % J R(w)dw + —- 1)

2r | SG)+N(w)
Where S(w)=Ds(w)—R(w)zO and N(w)=Dn(w)—R(w)zO. To

ma¥imize (11) it is enough to maximize the second
term. But this term is the expression for the min-
imum MSE for uncorrelated signal S(w) and noise
N(w), with

Ls(w) - R(w) < S(w)
L G0 - RG) < H(w)

2voi - I;(w)dw

™

2ﬂ02 - [;(w)dw.
n

w

A

Us(w) - R(w)
Un(w) - R(w)

A

and r; (w)dw

g~

N (w)dw

il

8

This problem has been solved in [3] and gives the
solution to the present case.

3. Given classes for Ds(w), Dn(g)

We assume again knowledge of the total power
of signal and noise. When there is no restriction
on Dsn(w) we have seen that the error is given by

(10) and it can be written in the following way:

@

eop(D) = g?[mg(x)'Dn(w)'dw (12)
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where

x for 0 < x <1

g(x) =
1 for x> 1
and
D, (w)
g(x) is a convex function of x for x 2 0. So (12)
can be used as a measure of distance between

Ds(w) and Dn(w). Now for given classes of Ds(w)

and Dn(w) we want the pair DZ(w), D;(w) that has

the maximum distance. It turns out as we can see
from [4,6] and [7] that this pair does not depend
on the form of g(x). As long as g(x) 1s any con-
vex function the pair is always the same. Solu-
tions to this problem are also given in these works
for various classes.

IV. NUMERICAL RESULTS

We will assume the case when signal and noise
are given as 1in Figure 3 and there is no restrict-
ion on [Dsn(w)l. The robust filter is simply:

1 when D _(w) 2 D_(w)
5 n
H (w) =
0 otherwvise

It turns out that this filter has the same error
performance for any Dsn(w)' If we use instead of

Hr(w) the filter

Ds(w)
H(w) = —< 7=
u Ds(w)+Dn(w)
assuming that signal and noise are uncorrelated,
then the error is given by (3) and it becomes max-

imum for Dsn(w) = - DS(W)DH(W)-

In Table 1 are given some numbers for differ-
ent b. The ervor is e when we use Hr(w) and e/

is the worst error when we use H (w). In the third
column we can see the percentage of performance
improvement. Also shown 1s the optimum error eﬁ of
Hu(w) when Dsn(w)=0.

APPENDIX A

Before proving Theorem 0, we will prove the
following lemma.

Lemma 1. Let D', D"ed, define p¥=(1-¢)D'+ D"
0 € € < 1 then the expression:

L)
z

D€ () + DS () =] D 5, ()|

G(e,w) = -
D_(w)

is a convex function of €.

Proof. It is sufficlent to prove that:
G(e,w) = (1-e)G(0,w) + eG(1,w).

Subtracting each side from Dz(w) we have to prove
that

2 2 2
[pE o | [ov |
——»-55— < (Q-e) —F 4 ¢ 2 or
D D' D'l
X b.q X
2 2
S oy
_E)DSX + QDSX] < {(1—8) D' € D" }-
X X

{(1-e)D' + D"}
X X

But this is the Schwartz inequality.

Proof of Theorem 0.
The only if part is easy.

From (6)

0})

T
e(D,Hr) < e(D ’Hr) = eop

r
but e(D,Hr) 2 eop(D) s0 eop(D ) = eop(D).

To prove the if part, define Dt = (l—E)Dr + ¢D,
0 < e < 1 where DeA, Because of the lemma and the
fact that

€ 1
eop(D ) = §;~G(e,w)dw

eop(De) is a convex function of ¢. So:

ep @) 2 (1=e)e (D7) +ee (D) and

ep (@) = ey (0D .
02 . 2 e, (D) - e, (D) (13

£ r
eop(D ) - eop(D )
£

to ¢ and bounded as we can see from (13) its limit

Because is monotonic with respect

exlsts as e+o+. But:
> T
D) - D
eop( )eop( ) 1 {

e

G(e,w)-G(o,w)
€

e =2 dw o (14)

Now é%—G(e,w) is also monotonic with respect to e.

From (13) and (14), we have

@

N lim*ji G(e,w) - G(o,w) dw =
e>ro™| 2m 3

)
@

1 fldm G(e,w)= Glo,w) 4o
27 ) erot €

-
®

1 (d
=o)L
A e=o

But the last expression after we take the deriva-
tive and make some manipulations, equals e(D,Hr) -

be r
%pm). &>%p®) ze@&%%
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APPENDIX B

For the second application we will outline the
proofs for subcases Al and A3. In a similar way,
We can prove the rest of the cases.

Lemma 2. If a,b,c non-negative numbers with a > ¢
then:
a - ¢ 2 min(a,b) - min(b,c)
Proof. a-c202min(a,b) - b
a - c > min(a,b) - ¢ s0
a - ¢ 2 min(a,b) - min(b,c)

From (10) we have that the error is

w©

eop(D) = é%lmin{Ds(w),Dn(w)}dw

Case Al.
min{D_,D } = min{L_,D_} +
s’"'n s’ n
[min(D ,D } - min{L ,D }]
s’ n s’ n

. + _
(using Lemma 2) < mln{LS,Dn} DS LS

(using Lemma 2) < min{L ,L .} +D +D_ -L -1
S n S n S n

So

L
E}:[Ls(w)+Ln(w)—

—

e (D) < 02 + 02 -
op - n

min{LS(w),Ln(w)?]dw

r
And we have equality when D = D .
Case A3.
: = 4 ! in< SR
mln{DS,Dn} = mln{LS,Dn, + [mln,DS,Dn,

min{L_,D }] < min{L_,D } +D_ - L
s’'n s’’n s s
S min{L ,U } +D - L  and
s’’n s s
e (D) < czfl; (L (w)-min{L (w),U0_(w)}ldw
op = Ts 2w s s >’n

with equality when D = pt.
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FIGURES AND TABLES

Figure 1 Worst-case !D;n] for case 1, section ITI



D (9]

D (w) ‘\

Figure 2

-—— for AS(w)
—+— for Bs(w)

Illustration of functions definéd
in case 2A, section III

Figure 3

Example spectra of section IV

wur

b e, e, % eﬁ
0.10 0.09 0.12 34.5 0.07
1.00 0.50 0.62 25.7 0.33
5.00 0.83 1.10 31.7 0.62
10.0 0.91 1.20 34.5 0.73

TABLE I Performance Comparision of Robust and
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Nominally Optimum Filter gor Example of
Figure 3. (No bound on IDsn(w)l ).



