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ABSTRACT

The detection of signals in noise with possibly asymmetric probability
density functions is considered. The noise density model allows a symmetric
contaminated-nominal central part and an arbitrary tail behavior. For de-
tection of known signals the robust likelihood-ratio (LR)-type detector is
obtained, based on detector efficacy as performance criterion. The robust
M-detector structure for constant-signal detection is also explicity ob-
tained.

I. INTRODUCTION

Following the fundamental works of Huber on robust estimation [1] and
robust hypothesis testing [2], many further developments and applications cf
robustness theory have been formulated by researchers in the communications
sciences. Ccncepts of robustness in signal processing applications were
certainly in existence prior to Huber's results [e.g., 3, 4]. However, it
is generally accepted that the techniques and results in [1l, 2] formed an
important basis for much of the considerable subsequent research activity on
robust schemes for signal estimation, detection and filtering applications.
A recent survey paper [5] lists a large number of references on robust
techniques.

In [6] Huber's ideas were applied to obtain the structures of asymptot-
ically robust signal detectors. This resulted specifically in the canonical
limiter-correlator detector for a weak deterministic signal in nominally
Gaussian noise modeled as having a mixture or contaminated probability den-
sity. In [7] this result was extended to apply to other nominal noise den-—
sities. Both [6] and [7] considered detection structures of the type where
the sum of memorvless transformations of each discrete-time input observa-
tion (the test statistic) is compared to a fixed threshold. For example,
the limiter-correlator robust detector for a signal vector (si, 52,...sn) in
an observation vector (X, XZ""Xn) with independent and identically dis-
tributed additive noise computes the test statistic T, =.i . L;j(Xj), where
Li(Xg) = siQ(Xi) and %is a limiter characteristic. We will call such detec
tor structures LR-detectors, since this is the usual structure for a likeli
hood-ratio test on independent observations. More recently Huber's results
were used in [8, 9] to obtain directly the robust M-detectors for both the
fixed-sample and sequential cases. An M-detector structure is obtained when
the detection test statistic Q, is obtained as that function of the observa-
tions minimizing,g M(X.-s5.Q_), where M is some appropriately chosen func~-
tion. Note that Q may be used as an estimator for the signal amplitude,
and such an estimator is called an M-estimator because of its similarity to
maximum likelihood estimators in general.

Two major factors limit the applicability of such results for signal
processing schemes. One of these is the requirement of independence for the
sequence of discrete-time input data to the detectors. This requircment of
independence has recently been addressed in [10], wherce it was shown that
robust detector structurcs can be derived for operation under conditicns of
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weak dependence in the input sequence. The results in [10] were developed
for detection applications following similar considerations which had earli-
er been applied in [11, 12] for robust estimation. The second main limita-
tion of many previous results on robust detection has been the assumption
that the allowable noise density functions are symmetric. In this paper we
will be concerned with this latter problem, and we will develop the struc-
tures of the robust IR~ and M-detectors for robust detection of weak deter-
ministic signals with a noise model allowing asymmetry in the univariate
noise density functions. Our study was largely motivated by some recent
work on robust estimation with asymmetrically distributed noise [13, 14]; in
particular, we will adapt and draw upon the techniques and results in [14]
for this work.

Specifically, we consider the class F of noise densities f given by

g:€,d
Foo=(f |f= ${1-®)g + eh, on [-d,d] h&H) (1)
g,€,d arbitrary, outside [-d,d]

Here ¢ &€ (0,1) is the maximum degree of contamination of a nominal density
function g. The density g is assumed to be strongly unimodel (i.e., -log g
is convex) and symmetric, and in addition we assume it to be sufficiently
regular so that g' is absolutely continuous. The parameter d is a positive
parameter specifying the interval around the origin in which the noise_.den-
sity f is a bounded, symmetric, contaminated version of g. The class H is
the.class of all bounded, symmetric, density functions. Note that a valid
f&F could be zero on (-~,-d), and place a probability of 2(1l-¢)[1-&{d)]
+e o’ (d,*), where G is the distribution function corresponding to g. If g
is the zero-mean Gaussian density with variance ¢4, a reasonable specifica-
tion of d may be a number between 20 and 40, and € is typically between
0.001 and O.1.

In the nexi sections we will consider the robust LR- and M-detectors
for the noise model of (1).

IT. ROBUST LR-DETECTOR FOR ASYMMETRIC NOISE DENSITIES

For a vector of observations (Xl X2 X ) of length n, described by
Xj = N, + Os. s i=1,2,...,n
where (s,,s,,...,5_) is a deterministic signal vector and the N are inde-

n

pendent and 1denL1ca11y distributed noise components, we want t5 test the
null hypothesis H. that 6=0 versus the alternative Hl that 8 > 0. For an
LR-detector using test statistic

n
T =73 s.2(X.),
n =11 i

we want to obtain the characteristic £ which results in a robust.detector,
for allowable univariate noise density functions f in the class F As
a criterion of performance we will use the detector efficacy L(f, %) &ﬁlch is
dependent on f and £, and defined as [15]

E(f,9) = lim [do O{T }l

e varg {T }[O -0 (2)

It is clear that for an LR-detector to be consistent for all fefF
the characteristic % has to vanish outside [-d,d]. Since [ consiftsof
densitics symmetric on [-d,d], we additionally require that g1fe%a110wable ¢
are symmetric. Let L denote the class of all LR-detector characteristics i
satisfying ¢



i) L(x) = 0, Ix[ > ¢,
ii) L(x) = -2(-x),
iii) % is absolutely continuous,

the parameter ¢ being a non-zero cut-off value, ¢ < d; the value of ¢ is set
by consistency requirements, as we will discuss soon.

Solution for Efficacy-Robust Detector

~

We want to find a least—favorable density fR in F a and a correspon~
ding optimum characteristic fp in LC such that B>

1an E(f,RR) = E(fR,ZR) (3)

fng’%d
Note that we will then have

E(fR,ZR) = sup E(fR,R)
2&L (4)
c
since we require ZR to be optimum for fR.

The following theorem establishes the condition under which a pair
(f_,%2_) can be found in F q X L satifying (3) and (4 ) with a finite,
non-zero value E(fR,ZR). gI% is dfrectly related to Theorem 3.1 in [14].
Theorem 1: If the condition

e < (1-c){2ce(0) - [2G(c)-1]} (5)

is satisfied, where G is the distribution function corresponding to g, the

density function

(1-e) g (x) , |x|<a
(1-¢c)glag)

2.1 -
cosh [2al(c ao)]

0 (6)

coshz[%ﬂl(c—lxl), 3O<lX‘§9

fR(x) =

arbitrary s ]xl>c

and the corresponding optimum characteristic in LC

"f]')(X) l [
2 (x) ={——F<, |x| < ¢
R R (7)
0 s le > ¢
-g' (a,)
satisfy (3) and ( 4), with 0 < a, < ¢ and ——— < a, being the unique
. i 0 g(a.) 1
solutions of c 0
e = [ f()dx~(1-¢) [ g(x)dx
~-c —C
and
-g' (ap) 1
'gl—g—(:“)“ = Lanh[gal(c—ao)]
0
Comments on Theorem 1. If condition (5 ) is not satisfied, then f can be

picked to be a constant on [-c,c] so that E(f ,2)=0. In {14, Table 1] and
in Table 1, some numerical values are given for the upper bounds c(c) on £,
for different ¢, for which ( 5) is satisfied with g the unit variance Gaus-
sian density. The value of c(c) is larger than 0.1 if ¢ is larger than
unity. The proof of Theorem 1 is a dircct extension of the proof of Theorem
3.1 in [14], which placed more restrictive conditions on the allowable den-
sity functions and estimator characteristics. Our criterion of detection



efficacy is used as an estimator criterion in [14]; however, its interpre-
tation as an estimation variance for the statistics in [14] requires further
assumptions which are not simply characterized as conditions on the allow-
able density functions. We will elaborate on this in the next section.

For ¢ < d, it can be easily shown that & of (7) results in a test
which is consistent for 6 in a positive nelghgoulhood of the origin. To
see this, it is sufficient to show that the slope at 8=0 of the mean func-
tion of QR’ given by

m' (0) = T 2} ()£ G)dx,
-C

is positive for all fggFg e d Now under the condition of Theorem 1,
: b 3

2 ) is positive, and ICSL'(x)f (x)dx is positive. Since F is con-

E(E g, e,d

R’

vex, it follows that m'(0) > 0 for all fe;Fg c.d
b b

Now even if m'(0) is positive, the mean function m(8) = f QR(x)f(x—e)dx

will become zero for some positive value 6 of 6. In Table II we show
the computed value of 6 as a function "“Fof ¢ and €, for the case c=d,
with g again the unit-vAtiance Gaussian density. These values were obtain-
ed by considering for each 8 the noise density minimizing m(6). These re-
sults indicate that for given ¢, increasing d with c=d lcads to a test con-
sistent for an increasing range of values of 8; in the limit, we get con-
sistency for all 8 znd the solution degenerates to that in [6,7].

It has not been possible to prove a stronger resultwhich simultaneously
bounds the worst-case asymptotic local slope of the power function and the
false-alarm probability as in [6,7], where the fixed threchold of the rcbust
LR-detector could also be determined. The reason why the stronger result
is not possible here is that £_ is not a monotone limiter characteristic,
so that the numerator and denominator in ( 2 ) are not separately minimized
and maximized, respectively, by f_ when 2 = 2_. In the next section we
consider an M-detector robust structure which allows a stronger robustness
property to be derived.

IIT. ROBUST M-DETECTOR FOR ASYMMETRIC NOISE DENSITIES.
We will restrict attention to the special case of constant signals,
and without further loss of generality we will take s. —l, i= l 2,...n. The
general case of non-constant signals requires further con51deratlons, as we

will indicate later. Our M-detectors will therefore be based on statistics
Qn satisfying

n
Lb(X;-Q) =0, (8)
i=1

so that we are implicitly assuming M to be sufficiently regular.

We are interested in the class Fg cd (or a useful subset of the class
F ) of densities, and we imposc the following reasonable constraints in
dgthlng the LlaSSQ’ of allowable M-detector functions y we will consider:

(1) y(x) = lx\ > c,

(1) v(x) = —L"(“X),

(iii) ¢'(x) is bounded and piccewise-continuous on [-c,c].

An additional constraint will be added soon. The value of the paramcter
¢ < d, which defines the size of WC, is set by requiremcnts we consider
next.



To complete the specification of our class of M-detectors a solution
scheme has to be specified for obtaining Q satisfying (8). This is nec-
essary because a soluiton to ( 8) may not be unique. The scheme we specify
is a simpler iterative procedure than that considered in [14]. Although its
numerical convergence rate to the solution may be somewhat smaller, it
allows us to obtain more explicit robustness results than were obtained in
[14] (specifically, note remark 3.5 in [14]).

We define the test-statistic Q of an M~detector based on wEEWC in
terms of the sequence {Q%} given by

J41 3 A (Qj) €D
Q= .o Log1,0,. ..,
D
where
2@ = [ vGeayar 6o, (10)

F_ being the empirical distribution function cf the n observations, with D

being a positive constant. The solution Qn is defined as Q = %ig QJ, with
0 . , . 1

Qn a sample median (or any consistent estimator of the median of the Xi),

. . . . . 0
provided the limit exists. Otherwise Qn is taken to be Qn.

In terms of the quantities g, ¢ and d defining F g We now define a
new parameter kO by &>%>
-1.1 T
ko = 6 G+ 2! (11)
with
T = 2{1-¢) [1-G()] + =, (12)
or directly as
1 1

G being the distribution function corresponding to the density g. Note
that v is the maximum value of the total probability which may be distri-
buted, arbitrarily, outside [-d,d]. We will assume that our model is such

as to make T < 0.5, so that the median of any fGEFO lies in (-d,d).
This implies the restriction ¢ < 0.5. From (12) w8’ fiave
e S A S
d =G+ 2(1—5)]’

so that k., < d. Under this assumption (7<0.5) the maximum value of |m|,

where m is the median of fe;Fg e d’ satisfies
bl b
. 1
[(1-e)[6(nD-6(-d)] = 5
so that
¢(lm]) = 1-G(d) + =i
2(1-¢)
and thus the median is always in [—ko,k ], from (13).
Our objective now is to establish conditions for the asymptotic nor-
mality of Qn based on Y&y for f&F a4 We will finally be able to
define subscts of Y. and F; . d overPufitch asymptotic normality holds, and

we will obtain the saddlepoint solution for the asymptotic variance over



these classes. The following results are stated without proofs; proofs
will be given in a detailed version of the paper [16].

We consider first the consistency of Qn

Lemma 1. Let c.< d - k_ and y be any characteristic in ¥ . Suppose that
for a given féF" the median lies in the open interval (~k.,k.) and the
function g:¢,d 0°0
ctq
Ma) = _ [ v f dx
is strictly decreasing on {-k,.,k.]. Then for D > 1 max lw'(x)[ in (9)
0’70 2[-c,c] ?

the M~-detector based on ¥ has for this f a test statistic Q which conver-
ges in probab111ty to 0; in addition,

yp pC L vcap -0 -
i=1
Note that this lemma implies that the iterations for Q in (9 ) will con-

verge (and therefore Q is not defined as Qg) with a p%obability approach-
ing unity as n > «,

The following lemma is concerned with asymptotic normality of Q

Lemma 2. Let (¢,f) be a pair in Y X Fg e d with ¢ < d - ko, for whlch
the conditions of Lemma 1 are satisfied. If in addition we have A'(q) < O
in a closed neighbourhood of the origin, then /;KQ -0) is asymptotically

normally distributed with variance V(f,y) given by

l,__
E(E,¥)

V(E,v)

<2
_éw ) f(x)dx

¢ 2
[Jo' (x)f (x)dx]

-C

Lemma 2 follows from results in [17, Section 4] where general conditions
are given ensuring asymptotic normality of M-estimators. That these con-
ditions are met under Lemma 2 can be easily cdemonstrated.

We are now ready to obtain a least-favorable density and corresponding
optimum M-detector characteristic which tegether form a saddlepoint for
performance in terms of asymptotic variance of a consistent and asymtoti-
cally normal detection test statistic. First we define ¥ c:¥ by wR(X) =
QR(X) of (7), where fR(x) was defined in (g ). Then we %ave

Lemma 3. TLet g, £, d be such that 1 < %—in (26) and k., of (13) is less

0
than ig} for ¢ < d ~ kO satisfying (5). [The parameter a, is present in
2
the definition of wR = QR in (7).] Then for f = f and ¢=wR the test
statistic Qn obtained from ( 9) with D > %'Taz ¢ lw (X)[ is consistent for

6, and /_(Q -0) is aqymprotlcal1y normally dlstrlbutod with variance
w (x)f (x)dx

VEstg) = e , (14)
R Go£) Godx)




~

* -
Let F CF be the subset of densities in F which are
g’E’d g’E’d g’E’d

strictly unimodal on [-d,d]. 1In addition, the parameters € and d are
restricted to satisfy the condition t < 0.5, with 1 defined in (12), and
the medians are assumed to lie in (—kO,k ), with k. defined in (13). This
last condition requires positive probabilities to be distributed both on
(~-=,-d) and on (d,»), and is an insignificant restriction. Finally, with
¢ = d-k., the parameter a,. defining £_ din (6) is assumed to be larger than
2k and also ( 5) is assumed to be sagisfied. It is easy to show that these
conditions are satisfied for reasonable choices of g, €, and d. For ex-
ample, let g be the zero-mean, unit-variance Gaussian density, let ¢ = 0.05
and d = 2, Then 1T = 0.093 and k., = 0.123. With ¢ = d-k, = 1.877 (5) is
satisfied, and the value of ig_ig 0.502. 0
2 *

We finally restrict consideration to the subset V¥ C:WC, containing
M-detector characteristics which are non-negative on (6,c) in addition to
satisfying the three conditions defining ¥ . This is a reasonable resfric-

. =
tion, in view of the strict unimodality reStriction used in defining Fg e.d
b b

With the specification of g, €, and d implicitly defining c = d—ko,

we get the following result:

Theorem 2. (i) Let wRezwz be defined by y =L, of (7), and let Q_be the
1

test statistic arising from the M-detector based on ¥ with D > = 2%

' * R’ 2 [-c,c]
IwR(x)I. Then for any féEFg c.d’ Qrl is a consistent estimator for 8;

VEKQH—G) is asymptotically normally distributed with variance V(f,wR)
satisfying
max V(f,wR) = V(fRawR),

feF&EJ

where V(fR,wR) was defined in (14).

(ii) For any v e,‘i‘; which gives a consistent statistic for all fEF; e
b b

V(Egstp) < V(E,0)

where V(fR,w) is the asymptotic variance of the normalized statistic

based on Y.

Thegrem 2 provides the main result of this section. We started from

classes F and ¥ of densities and detector characteristics, respec-—

] € c . A
tively, bt “dir least-favorable density and robust characteristic were
obtained from amongst functions in F¥ and ¥", respectively. The es—
sential restriction added was that tgégdénsitieg considered be strictly
unimodal on [-d,d]; this is not unreasonable, because the nominal density
g is assumed to have this property. In applving the robust statistic Q,
arising from Y _ in signal detection, one has to set a threshold based on
the maximum variance V(f ,¢_). Thus the false-alarm probability constraint
is automatically satisfied. In addition, for any fGZFg e d’ the asymptotic

b ’
power function or the slope of the power function at the origin can be
lower bounded by the corresponding values for f = fr, depending on gpecific
conditions on the signal strength paramcter and detection threshold values.
The details can be found in [8]; the main condition has been proved in
Theorem 2 (specifically, the condition in [8, Lemma 2]).



The major reason why we confined attention to the constant-signal
case in this section is that we need a reasonable initial value (e.g., the
median Qg) in starting the iterations in ( 9), to guarantee a consistent
statistic Q,. Extension of our results to the general case seems possible,
and would appear to require an initial estimate of the median based on some
nonparametric or other simple regression procedure [18,19]. The consis-
tency proofs and conditions would also have to be extended.

IV. CONCLUSION

We have derived the structures of robust LR~ and M-detectors for known-
signal detection in noise for which the probability-density has a symmetric,
contaminated central part and arbitrary tail behavior. This model has been
used previously for robust estimation studies.

The robust LR-detector was derived for performance defined by detection
efficacy, a weak-signal large sample-size asymptotic performance measure.
Although the detection efficacy is directly related to the slope of the
detector power function, it was not possible to obtain simultaneous control
on the false-alarm probability.

For constant-signal detection, the robust M-detector characteristic was
obtained for performance characterized by the asymptotic variance of the
test statistic. This result for the asymptotic variance, together with
earlier results on M-detectors, allow more interesting robust detection sol-
tions which can maintain the false-alarm probability within desired upper
bounds. Our robustness results differ from previous results on robust
estimation which also examined asymptotic variance in that we considered a
simpler solution strategy and obtained the explicit saddlepoint solution
for well-defined classes of noise and detector characteristic.
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TABLE T.

c e ()
1.0 0.103
1.5 0.248
2.0 0.391
2.5 0.502
3.0 0.583

Upper Bound on £ as Function

of ¢ for which (5) holds,

for Unit-

Variance Gaussian Density g.

e S 1.0 1.5 2.0 2.5 3.0
0.05 0.0 1.7 2.7 3.5 4.0
0.10 0.0 0.9 2.4 3.0 3.5
0.15 - 0.0 2.0 2.7 3.2
0.20 —— 0.0 1.5 2.3 2.8
0.25 - -— 1.2 1.9 2.4
0.30 - - 0.9 1.6 2.1
0.35 - —_— 0.5 1.3 1.8
0.40 ——— —-—— - 0.8 1.5
TABLE 1I. Upper Bound Oax on © as Function of ¢, € (with c=d)

x

for which Robust, LR-Detecctor is Consistent.
(Unit-Variance Gaussian g.)





