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ABSTRACT

The detection of a constant weak signal in stationary Markov
noise is considered . The observation sequence is passed through a
ZNL and the sum of the outputs is compared to a fixed threshold.
Using the efficacy as measure , the nonlinearity that leads to a
min-max performance is obtained.

1. INTRODUCTION

Huber's ideas of robustness [1,2] are applied in {3,4 and 5] in order to
obtain structures that are asymptotically robust signal detectors. It is assumed
that the observation sequence isi.i d. and that the common probability density
belongs to an &— contamination class. In 3,4] the common density is also sym-
metric and the detection structure is a saun of zero memory nonlinear transfor-
mations of the observation sequence , compared to a fixed threshold. Using the
efficacy as the performance criterion ,the robust structure turns out to be the
canonical limiter correlator detector,when the signal is assumed small and the
number of observations large. In [5] the assumption of symmetry is dropped ;
instead symmetry within an interval around the origin is assumed. The same
detection structure is used as in the other cases but here the threshold cannot
be fixed if a desired level must be attained.

All of the above approaches assume that the observations are independent .
In [8] the same detection problem is considered but the observations come from
a moving average type process and are weakly dependent. In this paper we are
dealing with dependent observations too but we are using a different model of
dependency. It is assumed that the observations form a strictly stationary Mar-
kov sequence. As detection structure we use sums of memoryless nonlinear
transformations and our goal is to optimize this structure. Obviously this struc-
ture is not the most optimal but it will give us an idea on how much the indepen-
dence assumption structure changes under dependency and also if the perfor-
mance changes drastically.

II. PRELIMINARIES .

Let §N;{ be a strictly stationary Markov noise sequence. Since the statis-
tics of such a sequence are well defined if we specify the bivariate distribution of
two adjacent observations , we will assume that this bivariate distribution
belongs to a class F,,, which is defined as follows

flzy) = F2)f @)i+Mz y) (1)
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SN@y)f (2)dz = [Nz y)f ()dy = 0 :

f(z)=(1-g)g(z)+eh(z) O<eg< B

NMz.y)l=sm <1 g

Condition (1) defines a common representation of a bivariate distribution . Cor-
dition (2) says that the function f(z) isthe marginal density. With Conditic-
(3) we define an &— contamination model for the marginal. The density g{z)
is assumed to be known , symmetric , strongly unimodal and not equal to zerc
The density h{z) is unknown but symmetric and such that f(z) has finite
Fisher's information and the set §{z :f'{z)=0{ has f— measure zero. Con-
dition (4) limits our dependency model ; notice that when m =0 we are back
totheiid. case The two constants ¢ and m are assumed to be known . As
we will see shortly , Condition (4) is not only important because it makes

f(z,y) nonnegative but also because it makes the sequence {N;} a g~ mix-
ing sequence , a sufficient condition to guarantee asymptotic normality.

We now consider the detection of a constant signal ; in particular , we would
like to decide between the two hypotheses

Hyp: X; = N;
Hy: X; =N, +s i=1.2..

where {X;{ 1s the observation sequence and s a signal that tends to zero
Adopting the terminology from [5] , as our detection structure we will use the
nonlinear-correlator (NC) detector which is of the form

Ta(z) = 3 9(z) (5)
i=1

For the performance criterion we will use the efficacy. In order for the efficacy
to exist and to be a valid criterion we have to impose restrictions on the non-
linearity 4{z) . which will determine the allowable class ¥ of nonlinearities
Y(z) . We assume that %¥(z) is an odd symmetric , zero mean , and second
order function such that

o8¥) = ELYN)Y +2 5 BN YN ) § > 0 ()

We also assume that +(z) satisfles conditions that are sufficient for the vali-
dity of the Pittman - Noether theorem . Such conditions are given in [7]. The
assumption that ¥(z) is odd symmetric is reasonable since the marginal densi-
ties are assumed even symmetric functions.

Proposition 1 . Let {N;] be a strictly stationary Markov sequence with
bivariate density f{z,y)E& F., . also let {z)&¥ . Then (N} is a

¢-mixing sequence and 08(y) defined in (6) is absolutely summable,

Proof. Because_the sequence is stationary Markov , the bivariate density

between N, and Nj,., is given recursively by
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} fj*'l(nl‘nj)f(nj-nJH) d

T n;  j=23.. 7)
j

filnyn;g) =

where f,(z,y) = f(z.y) . Now using induction and Equations (1.2,4,7) we can
show that the density defined by (7) has the following form

filxy) = F @ity §=23. (8)

where A;{z.y) satisfles equation (2) and is given by
N(zy) = [Noalzz)A(=zy)f (2)dz 7=2.3, . (9)

and we define A {z.y) = Alz.y) . Also we have that

N (zy)| =m? {10)

Now let A, be an event I{rom the o-—algebra generated by
N, Na....N;{ and A, an event from the o—algebra generated by
§Ngri Nesisr... | . Since the set §Neyy.....Nesi—i! is not involved in the event

A;NAz we have that

f Jnaung)f(ngng) - f(mo1my) I

P4
42) = FRAVR Fing)fing)  flme-1)

o Sl e ) T (M M)

T e Y Frny o ddmdne (2D

Using (8,20) and noting that the first and the third term in (i1) are the mul-
tivariate densities of IN; Np.....Ne} and $Nes;.... | respectively , we have

[ P{AINA) — P(A)P(Ag) | < m' P(A)P(Ap) {1R)

So the sequence is symmetrically ¢-mixing with ¢, = m' . Clearly since
m <1 we have that ¢; -0 as 1 » = and also that E;«:‘*<w . And this
i=1
takes care of the first part of Proposition :
To prove now that ¢§{3§) is absoiutely summable , we use Equations {8,10)
and we have

$y) = J¥Ha)f (2)dz + zzlffw' y)f;(z.y)dzdy
J zJ

sfwz f’zdx+22"” fwz);f(z)d-rlz

=wa Vf (z)dz +%[_f§¢<:)ff<z)dr]2 (13)



and , finally , using Schwartz inequality and that ¥(z) is second order we hz-

1

o§{¥) = 12

+m 7 12¢ / o
oy _!;"r’ (z)f (z)dz <
and this proves the second part of Proposition :.
Proposition 2 . Assume that {N;{ is a noise sequence defined as abc::

and that E[¥(N))] =0 and E{[¥{N))]?) <= where (z) is a measurao..
function. Then

n D

YN)nH s N(0.05(y))

i=1

h

Proof. It is a direct consequence of {8, Theorem 21.1 ].

. MIN - MAX DETECTION.

As our performance criterion we will be using the efficacy. Under the
preceding assumptions it takes the following form

[ [y(e)f (2)az

ef fl¥(z) flzy)]= — (8)

o§(¥)

The problem we want to solve is the following. We would like to find a nonlinear-
ity ¥,(x) &€ ¥ andadensity f,.(z.y)£& F,, suchthat

sup inf ef f ¥(a).f(zy)] = eff [¥r (2).fr(zy)]
vz)E¥  flay) & F,p

7

The first step is to try for a given ¥%(z) to minimize {18) over the density .
Notice that the density depends on two functions, the marginal f{z) and the
function A(z.y) . Since it makes no difference , we minimize over A(z,y)
first. From (13) we have that

o5 = [V @)t + 2l [ 1Y) S (@)ae (:6)

Equality is achieved when Az y) is givenby
Mz y) =m sny(z) snyly) (19)
where sny{z) isanodd symmetric function which for z >0 is given by

M it Ylz)>0
sny(z) = -1 if y{x)<O (20)
tor—1  if Y(z) =0



Notice that the definition leads to a legitimate bivariate density since all condi-
tions ( 1to 4 ) are satisfied . Also applying (9) we have

N(Ey) = m) snyz)snyly)  j=i2. (21)

Thus if A(z.y) is given from (19) the efficacy becomes only a function of
¥(z) and f(z) and takes the form

[S¥(z)f (z)dz]?
— (22)

of 1 W=) f(2)] = = :
J¥E)s (2)az + 2 [ y@)|f )z P

In order to continue we have to minimize (22) over f(z) and then maxim-
ize the result over ¥(z) . This is a min-max problem in itself with criterion
function the eff’ given by (22). It turns out that this new problem has a sad-
dle point ; in other words , there exists a pair ¥,{z) and f,(z) that satisfies
the following saddle point relation

eff W) fr@)<eff [ (z) fr(z)] < eff (4, (z).f (z)] (23)

for any allowable ¥(z) and f(z) . As we know , any pair that satisfles (23) also

satisfies a min-max relation like {17) , so the pair ¥,{z).f,(z) is the one we

are seeking. The left side inequality in (23) says that ¥,.(z) is the optimum

nonlinearity for f,{z) , the one that will maximize the eff  over the class
¥ The form of this optimum nonlinearity is given by the following theorem.

Theorem 1. let f{z) be a symmetric density function with finite
Fisher's information and such that the set Ez Y (z) = — ;E =0 ; has
f — measure zero . Then the nonlinearity +y(z) that maximizes (22) is given

by
Yolz) = Yo () — ugolz) 24)

where go(z) is defined as

1 1
—Yp(z) when -1= —y,(z)<:
“ Io P Yo (Z)
polz) = 1 when 1< =y, {z) (R9)
-1 when -1 > —y,{z)

and u is a constant that satisfles

J 1 (z)pe(z)dz
S =p+am| = _ ]=0 (26)
1-m+2m f;;ng(z)dz
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The proof of the theorem is in the Appendix . From Equations {24.25) we can see
that the optimum nonlinearity +¥q(z) is closely related to the locally optimum
Y (z) . Also the role of the function go{z) is to eliminate +,{(z) whenever
it takes on values between —u and u . Now we are ready to define the pair
that satisfies the saddle point. Since #,{z) is the optimum for f,.(z) we
need to define only f,(z)

Theorem 2. The density f,(z) that gives the solution to the saddle point
problem is the following

(1—¢&)g (:r])ez‘(”zl) for z < -z,
fr(z) =1 (1-8)g(z) for [z] <z, (27)

(1—g)g(zy)e “E=)  for z>z,

where r,>0 andsuchthat f,{(z) has total mass equal to unity.

Proof . This density is nothing else than the one defined by Huber in [1.2]
It betongs to the &— contammination class with a legitimate density h{z) { see
[1]). To find #,(z) we apply Theorem 1 and if we denote by ¥{z) the
locally optimum nonlinearity of f,.{z). we gel

0 for 0<z <z,
Yr(z) = Yi(z) —Yb(zz) for z,<z <z, (28)

Yo(z\) —Vh(ze) for z 2>z

For z <0 we recall that %,(z) 1is an odd funclion The constant z, Iis
defined as

Vi (z2) = 1 (29)
and in order for (28) to be valid it has to satisfy 0<z,<z, . In the Appendix

wc show that such an z, always exists.
Lel us now for convenience define

M =v5(z,) — vh{z2) (30)

Since ¥,(z) is nondecreasing we will have that [¥,{(z)| <M . Up lo now we
have shown that +,(z)and f,(z) satisfy the left inequality in (23). To prove
the righl one is straightforward . If we define as m{f) and d(f) the numera-
tor and the denominator of the eff” then

n() = [ fvr@ @)z ] = (G0 [v g a)as + o [y, @Inim)z ]|

> [ -0 [yrte) )] = i) (31)

and

ar) = JVie) @t + 2] ] ) g (@)as ||
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NN, 2 o o : Ll
(A—s)fi/zr(:r)ag(z)dz + e M2+ —-——”_T;L) [(,—s}f Yozl g ozaz -l
Y (1

as,) 32

From (31) and (32) we see that f,(z) simultaneously minimizes the numera-
tor and maximizes the denominator of eff’ , so that the
¥-(z) and fr(z) satisfies also the right inequality in (23). This completes
proof.
Summarizing the results , the solution to our min - max problem is the foi-
lowing : the density f,(z.y) isgiven by

Fr(zy) = f(@)f @)L+ mosny (z) sny (y) 3 (33)

where f,(z) is defined in (27) . The nonlinearity %,(z) is defined in (28) and
these are all of the things we were looking for.

IV. NUMERICAL EXAMPLE .
Let the density g{z) bethe N(0,!) normal Thenthe #.(z) is

0 for |z | =<z,
vix) =4 (lz|-zy)sgniz) for zp< |zi<zx, (35)
(z,-Z3)sgn(z) for z,< |z

For the density f,.(z.y) we have the usual definition , only here the function

sny (z) can be equal to sgn{z) . In the following we give two tables, Table I
contains the values of z; for different values of ¢ and m and Table II the
ARE of #,(z) over ¥L(z) when the underlying density is f,{(z.y) . Values
for z, are not given . Since =z, depends only on & these values are the
same with those given in [ !] under the name &

TABLE I
em 1 o T8 T4 15 s |7 | 8 9 g |
| 001 | 147 276 400 _.515 | 635 764 | 912 | -.096 1.373 2630
.01 145 | 273 | .393 | 509 | 626 { 753 | .B95 . 1.069 . 1.320 | 1.945
05 1| .139 ! 261 | 372 483 | 591 | 704 826 . 986 _ 1.140 ' 1.399
10 132 247 | 352 | 452 | 549 | B4B | 75. | BBi | 987 _ :.140
[ .15 124 | 232 | 330 | 422 | 510 f.597 | 885 | 7761 872 | 980

20 117 | 218 1 309 | 393 - 472 - 540 625 . 702 | .7BO | .BB2
30 102 | ."90 . .267 | 337 . 402 | 463 | .52° | 577 | 631 | 685
40 | 087 | 181 | 226 | 284 | 337 | 385 . 430 | 472 512 | 550
50 073 | 134 | 188 ' 235 | 276 314 | .34B 380 | 409 | 436
65 || 05: | 093 | 130 | 162 | 190 214 | 236 | 257 | 274 | .28%:
B0 | 020 | 054 | Q74 407 121 | 1331 143 | 153 | 162

1Y)
[es)
N

o
O
©
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TABLE 11

e m o1 o2 |03 lo4 (05 |06 |07 0B |09 -C
0.001 ] 101 [ 1.08] 107 ] 1.12 | 119 ] 1.2 ] 1.42 | 1.64 | 2.04 _ 2 <8
0.00 101 | 1.03 ] 1.06] 1.11 | 118 | 1.26 | 1.38 | 1.556 | 1.85 . 2,68
005 | 1.00]103]105] 109 1,14 121 ] 1291839 ] 154 .77
0.1 101 | 1.02 {105 1.08 ] 112 ] 117|122 ] 1.29 | 1.38 | 149
1
1

0.15 1.00 1102 | 104 | 1.07 | 1.10 | 1.13 18 11,23 | 128 | 1.35
0.2 100 /1017103106 108 111 {114 1.18 | 122 | 1.27
0.3 100 101} 103 104 1,06 108 | 1.10 | 1.12 | 1.14 | 1.16
0.4 100 [ 101 102|103 | 104 1051061 108 | 109 | 1.1

APPENDIX .

Proof of Theorem 1. Notice that the value of the eff” does not change if
we multiply ¥(z) by a constant . From one of the conditions for the validity of
the Pittman - Noether theorem ( Condition a) in [7] ) we conclude that

f‘gb(z)f (z)dz < 0 . Thus maximizing Expression (22) is equivalent to maximiz-

ing
HOW) =~ [y (z)dz -p ﬁ%zmz)iw o [fw ) ()az] | (36)

where p is a Lagrange multiplier. We will show that (36) is maximized by

V@) = gl = FEL - () ) (37)

where u and g¢o{z) are defined in Equations {25,26). Let now %,(z) be any
other nonlinearity from the class ¥ . Define the following variation

I7) = = JTGel@) + rn@))s @)z [f (1=MWel@) + T (@)Y (2)z

o0

(17 %e(z) | + 7[9ilz) if (I)d-r]zJ (38)

where £[0,1] . Notice that J(0) = H(¥o(z)) and J(1)=H(yi(z)) . By
manipulating (3B) we can rewrite it as

J(7) - J(0) =

7f[ —1(z)=2py0(z)f (z)dz ~ fwo (z)|f (2)dz )polz)f ()] [¥r(z)—Ho(z)]dz



- L(f Yolz >Jf<z>dx)[ﬁ Yi(z)|~[Ye(z) ] 1S (z)dz

- Jose o) e |

7| 0w Es @)+ 22t [ 1) = wol@) 1S ()as ) | (09)

It is enough to show that J(y) — J(0) <0 .
From the way that ¢g(z) is defined in (25) we can see that

Wolz)| = Yolz)eo(z) (40)

leolz)l =<1 (41)

By multiplying (37) by ¢o{z)f (z) and integrating we can show , using (26) and
(40) , that

T ol 1 ()ax] = £ (42)

If we substitute (42) in the firsl term of the difference J{(y) — J(0) and also
use (37) , we get zero. The second term using {40) becomes

([ o) 1)) | [Ine) —eo@niz)] 1 iz)as (49)

and because of (41) the quantity in the brackets is nonnegative. Thus for
p >0, the above expression becomes nonpositive. The third term for p >0
is clearly nonpositive too. And we have that the difference J(y)—J/(0) is nonpo-
sitive and in particular J(.) < J(0) . If we also define p =% . Equation {37)
becomes the same as {24).

For the existence of a u that satisfies (26) notice the following : since by
assumption V‘La (z)# 0 except on sets of f— measure zero we have that as

#~ 0 then —%o( ) > = and thus gp(z) » sgn (¥, (z) ) = ~sgn(f(z)) .
Thus from (26) we get

am 7 Lf |
==/ dr <0 44
SO == 7= [17@), (44)
.sing Schwartz inequality it is easy to show that the integral in 44) is bounded
oy Fishers information. As g > = the second term in S(u) remains

ounded so that S{u) » += . By continuity , there exist a u that satisfles



S(u) =0 . And this completes the proof of Theorem 1.

Fxistence of X, . To prove that there exists an zp; that satisfies
ZTp<x, for the density defined in (R7) it is enough to show that
S(¥f,(z)) =0 . Notice that when u=v[(z,) then

_ '9%(1)
polz) = 1#'__—"&(21) (45)

On applying this in the expression for S(u) and manipulating we get

_ ZmF/ -
WLz )P (1-m) + 2mFT |

Sh(z1)) =Yh(z,) |1 0 (48)

where by F7 we denote Fisher's information. Thus the solution to S{u) =0
must be less than 5 (z,) and since ¥5{(z) is a nondecreasing function we
get o<z, . And this completes the proof.
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