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ABSTRACT

Tte problem of fixed filter design for equalization of an uncertain
channel is considered. A robust filter is derived by seeking the mini-
max filter for channel characteristics defined by bounds on amplitude and
phase functions for the mean-squared-error performance criterion. An ap-
plication of the results in equalization of a multipath channel is consid-
ered, and numerical values are given for the performance of the robust
filter.

I. INTRODUCTION

The use of some form of channel equalization is mandatory in many trans-—
mission schemes where the channel characteristics cannot be assumed to be
ideal, that is, where linear amplitude and phase distortion is present. In
many situations the channel characteristics are not simply non-ideal but are
in general not exactly known and may be time-varying. One approach which
has been widely applied in equalization in such cases is that of adaptive
schemes. In some cases, however, the use of adapative equalizers may be
impractical because of cost and complexity as well as speed-of-convergence
requirements.

In this paper we apply the minimax formulation to the problem of fixed
equalizer design for uncertain channel characteristics. Let G(w) be the
frequency response of the linear channel, and assume that a random signal
with power spectral density S(w) is transmitted through the channel and
observed in additive noise with power spectrum N(w) at the output of the
channel. The problem is to design an equalizer with some frequencv response
H(w) such that the output is a good estimate, in the mean-squared-error
sense, of the transmitted signal. In the minimax approach we define a class
of possible channel characteristics, and seek the equalizer Hg(.) which
minimizes its worst-case performance, in terms of mean-squared-error, over
the class of channel characteristics. The equalizer HR(~) is thus the mini-
max (robust) equalizer.

We consider the specific class of channel characteristics defined by
upper and lower bounding functions for the amplitude characteristic]G(w)]
and with the phase characteristics arg G(w) lying in subsets ¢(w) of
[-m,m] (as a function of w). The solution Hp (W) for this particular class
is obtained explicitly, and is shown to have a very interesting interpre-
tation. At frequencies for which the signal-to-noise is high relative to
channel uncertainties, the robust equalizer simply inverts the "average"
channel. Otherwise, a Wiener-filter type of equalizer is obtained. We also
present a numerical example to illustrate our results. The example consid-
ers an ideal transmission path and a secondary path with inexactly known
amplitude and time-delay. The signal has a first-order low-pass spectrum
and the noise is white for our example.

+ This research is supported by the Office of Naval Research under Contract
N0014-80-K-0945.
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Tt is interesting to note that the problem of fixed equalizer design “:¢
an ensemble of random channels was considered in [1], using a statistical
approach rather than the minimax approach. A slightly more general cost
function was utilized in [1], incorporating amplitude scaling. The resul--
in [1] are, nonetheless, of the same type as those obtained here. Further-
work will include use of the amplitude-scaled cost function in our formu-
lation, as well as a consideration of uncertainties in signal and noise
spectra.

IT. PROBLEM DEFINITION

The observed waveform at the channel output may be written as
(g*s)(t) + n(t), where g is the channel impulse response with correspondin:
frequency response G(w) and s(t), n(t) are the input random signal and
additive noise with zero means and respective power spectral densities
S(w) and N(w). The signal and noise are assumed to be uncorrelated and
their powar spectra are assumed to be known. Let a filter with frequency
response H(w) be used at the channel output to obtain an estimate of the
signal waveform. Then the mean-squared-error e(G,H) between the signal
s(t) and its estimate can be easily shown to be

©

e ) = 3| |1-6@HW | s@) + 1) *Nw) o @)

—x

We now assume that the channel frequency response is not precisely knowm,
but that its amplitude characteristic is bounded by known functions

AL’ AU’ so that

AW < Gw)| < Ayw) (2)

Furthermore, the argument ¢ (w) of G(w) = ]G(m)\exp[j¢(m)] is assumed to iie
in a known closed subset ¢#(w) of [-m,n] for each w. Let the class of
allowable frequency responses G so defined be G. Our objective is to find
the filter frequency response HR(m) which will satisfy

min  max e(G,H) = max e(G,HR), (3)
H GEB GEG

so that H, will be the frequency response of a minimax robust filter which
optimizes worst-case estimation performance, chosen from the class of all
linear filters.

IIT. SOLUTION FOR MINIMAX FILTER

In (1), we first fix H and obtain max e(G,H). To do this we need to

maximize pointwise the term |1 - G(m)H(m)]z in the integrand in (1). Now
this can be written as

l1-G)H@ 2 =1 - 2[6) | |HG) [cos(6(w) + 8@) + [Gw)!? H(w)[? &)
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where H(w) = |H(w)|explio(w)].

For any value of [G(m)[, this is maximized by picking *(.)€& (. )to minirize
cos[f(v) + 6(w)]. This minimizing value ¢w(w) of ¢(w) is given as

arg tgin<L }(¢+e)mod(2n)_ﬂ[. We now consider maximization with respect to
YE

]G}l . Note that 1-2|G||H|cos(s. + 8) + ]G]Z]HIZ is quadratic in 'G| and has
W

a minimum at lG[ = cos(¢ +6)/!H[. Tt is therefore clear that the maximizing
w
value ’GJW of 1G] ig

A, cos[t (@) +o(w)]/|H@W)] > [A (w)+A () ]/2
lc(w)]w -]t v OVIRE] 2 oy Gy (o (5)
AU(w), otherwise

We now consider the minimization with respect to H of e(Gw,H), where
Gw = ]G]wexp[j¢w]. First consider minimization with respect to the phase

8(w). We interpret &(w) as some set of points on the unit circle in the
complex plane, and let 2a(w) be the largest angle subtended (in radians)

at the origin by any arc on the unit circle not in 2(w). Let R(w) be the
angular location of the middle of this arc (see Figure 1). Then the filter
phase 6 (w) = eR(w) minimizing e(Gw,[H[exp[je]) is

OR(m) = 1-3(w), 6)

or that phase which when added to 8(u) transforms this point to the point
mon the unit circle. With this phase angle we have

o0 2 2 2
o 7) = | 1 + 2N
e, [H|explia ) = 7'};{1 +2 16| |H|cosa + [l 873 + tH]7 -
The integrand in (7) can be written as
| 2 2
I=5+ (zs]c,wcosa)|H[ + (¢], st H| (8)
which is a quadratic in fH]. Note that in this expression‘GIw = AL when

]H’is less then or equal to —2cosa/(AL+AU), and is AU otherwise. Note that
for lH|= 0 or —2cosa/[AL+AU] , I has the same value for both ]G]W = ALand AU.

Tt is also clear that when cosa is non-negative, the minimizing value

iThe argument w 1s dropped henceforth wherever clarity is not affected.
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= ‘H}R is 1H3f= 0. We therefore consider the case where cosa< 0. Now
if we put GJ - in (8), the resulting function IU(gHJ) has a minimum
at a value of H' less than or equal to —2cosa/(AL+AL), at which point I of
(8) has 3G1w= AL. This follows from the fact that the minimum for I (IHI)

occurs at }H% = UAUCOS“/(ALS + N) so that 1/'H’ > —AL/cosa > -(A +AL)/2CL\

Let IL(fH{) be T of (8) as a function of ,H( when ‘Giw = AL. Then depend-
ing on whether I(;Hl) is described by Figure 2(a) or 2(b), we finally get

that the minimizing value H = HtR of T is
0 R cosf=(u)] >
[
| __~2coslal)] _Qz N S
l - A-L(*) + A‘U(“‘) s ) AL(‘L) [A.U(Lu) - AL(L)]
B, ()] | and cosla(2)] <0 )
R T
i _S(M)AL(*>COS[3(”11, otherwise

W8 + NW)
Note that (6) gives the phase of the minimax filter.

From the definition of «(x) we see that it is a measure of the degree to
which channel phase is known. For a(w)<~/2 the minimax equalizer produces
zero output, the mean value of the desired signal, regardless of the degree
to which the channel amplitude characteristic is known. Otherwise, note
that the condition in (9) dictating the choice of filter amplitude is

N(w)/[Ai(w)S(m)] <5 {[%(~)/A1(~>1—1}. The right side of this in-

equality is a measure of channel amplitude uncertainty, while the left side
is the maximum noise-to-signal ratio at the channel output. Therefore when
noise-to-signal ratio is not larger than the measure of channel uncertainty,
the robust filter is essentially the inverse of the "average" channel. Oth-
erwise noise suppression is more important and the filter behaves essentiallv
as a Wiener filter for the channel with lowest gain.

IV. UNCERTAIN MULTIPATH CHANNELS - AN EXAMPLE

Consider the particular situation where the channel freuqency response
is G(w) = l+aexp(-juT) where the secondary path attenuation 1/a and time
delay T are not precisely known. Let the noise be white with spectral density

NO and let the signal spectrum be
Yo
SG) = (10)
0.1 + 0.069570



where NO and T, are known parameters. We model the multipath uncertainty by
0.2<a<0.8 and T<T . Since Tt may be zero, it it clear that the upper
bound AU(w) for :G(m)l is 1.8. To determine AL(w) we observe that for w
such that WTy 27T We can always find a value < T, such that wr= 7 so that
AL(w) = 0.2 for » zrr/vo. From the geometry in Figure 3, we find that AL(@)

is in general given by

i
[1.04 + O.4cos{wi )]* , Wt < 101.5°
O —

sin(wTO) , 101.5°

[1.64 + 1.6cos(ut) 17 » 143.1° < wr, < 180°

tA

wT, < 143.1° (1)

AL(w) =
0.2 y wT >

From the geometry in Figure 3, we can similarly derive the upper and
lower bounds defining the uncertainty intervals % (w) for ¢ (w). Without
utilizing the above amplitude constraints, that is, considering only extreme
values of the phase ¢ (), we obtain for 5L(N) and éU(w) defining

P (w) = [¢L(m), ¢U(m)] the values

O,SSin (m'[o)

-sin T ——— ) 0 < Wty € 143,1°
. + 1. Y Z
o ()= [1.64 1.6cos( ro)]z 12)
L
-53.1° s Wty > 143.1°
and
0 , 0 CwTy <
0.8s1in (wt ,.) T<owt < 216.9° (13)
q = - 0 ’ — —
9y (w) —sipt 0
[1.64 + l.6cos(m'0)]/2
53.1° » Ty > 216.9°

We now use the above separately derived bounds for amplitude and phase
characteristics to define the channel uncertainty. Note that this process
results in a somewhat larger uncertainty class than is defined by the orig-
inal bounds on a and 7 . The quantity cos{a(w)] in the result (9) is
negative for all w. The point of intersection of the characteristic S$/N

and ?./AL(AL - AU) is at W R 27/3.



Thus we get for the minimax robust filter the characteristic

Zcos{[iL(w) + ¢U(M)]/2}

Jwe ] < 2w
’ 0 - —j
AL(M) + AU(M) i
ENOIE
. {
AL(”) COS\[QL(M) + ¢U(w)]/2} ot |> 21,
2 2 0 3
») + 0.1 + 0.
AL (w) 0.1 +0 O695(mTO)
X . . _ _ . .
where o ¢U’ and AL are given in (11)-(13) and AU 1.8. The phase o!
robust filter is SR(w) = —[¢L(m) + ¢U(w)]/2.
Without the minimax approach one might base the equalizer filter desi.:
on some 'mominal channel characteristic. 1In particular, we may take hoer:
the nominal channel frequency response to be GN(m) =1+ 0.5exp(~jmTO/2).

Let the filter which is optimal for this nominal channel have frequencv

response HN(m). The amplitude characteristic of this filter is given by

5
LNOTEE el

, Tt 2 13
1.25 + cos(mTO/Z) + 0.1 + 0.0695(m\0) (

In Figure 4 we compare the amplitude characteristics of the robust and nomi-
mal filters.

Some explicit values of mean-squared-error obtained with the nominal an.
robust filters are as follows: e(GN,HN) = 4.76 (ZNO/TO),

e(CN,HR) = 5.36 (ZNO/TO), e(GU,HN) = 7.4 (2N0/r0) and

e(GU,HR) = 6.94 (ZNO/to). Here LU(m) =1+ O.8exp(—JmTo), i.e. the channel

with the strongest secondary path and with maximum path difference. Note
that the robust filter loses some performance under nominal conditions, but
performs better under this deviation from nominal assumptions.

V. DISCUSSTON AND CONCLUSTON

The above numerical example provides an illustration of the practical
application of the results of this paper. While the performance of the
minimax robust filter in this case was not very much better than that of the
nominal filter, it should be kept in mind that the multipath channel un-
certainties involved only two unknown parameters, from which a larger class
of channel frequency responses was derived. Thus the robust filter is de-
signed for a larger uncertainty class than originally specified. 1In light
of this, the performance of the robust filter for the "nominal" channel is
quite good. It is possible to show significant gain in performance for the
robust filter relative to the nominal filter for other channel characteristics
chosen from this larger uncertainty class.



An important observation made in section III was that at freque
which the maximum noise-to-signal ratio is less than a measure of
uncertainty, the minimax robust equalizer is essentially the inverse
"average' channel. Here the "average' channel has frequency response :
lies in the "center'" of the bounded uncertainty class, and the measure o
channel uncertainty is [(AU(w)/AL(m))—l]/Z. Note that this measures oni-

amplitude uncertainty. 1In [1] the problem of equalization of a random char-
nel characterized by an ensemble of possible channel responses was consider~
ed. One basic conclusion there was also very similar to the above obser-
vation. For frequencies where the maximum noise-to-signal ratio is large
relative to channel uncertainty noise rejection becomes important and a
Wiener-filter type of behavior is indicated. At these frequencies the mini-
max equalizer characteristic depends on the signal and noise spectra. Thus
an extension of this work should consider uncertainties for these spectra

also.

REFERENCE

[1] F. J. Brophy, G.J. Foschini, and R.D. Gitlin, "A Compromize Equalizer
Design Incorporating Performance Invariance', BSTJ, Vol. 52, pp. 1077-
1095, Sept. 1973.

™
v
\
-\

2a

_CD(‘M):

Figure 1. 1Illustration of the uncertainty set ¢(w) and the
angles a(w), R(w) and SR(w).
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Figure 2. Minimization of I([HJ) [equation (8)] for solution
of robust filter magnitude.



Figure 3. Geometry for computing amplitude and phase bounds for
multipath channel example.
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