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Abstract-New LS and SVD based methods for the es- 
timation of frequencies of complex sinueoids in white 
noise are presented. The methods are based on a new 
prediction problem that has some very useful proper- 
ties leading to algorithms that have considerably re- 
duced complexity. Thie is achieved without practically 
sacrificing any performance with respect to existing 
methods that are based on the Forward - Backward 
predictor. 

I. INTRODUCTION 
It is well established that fitting linear prediction mod- 
els to processes consisting of complex sinusoids in noise 
results in high resolution spectral line estimation beyond 
the limits of traditional techniques. The associated linear 
predictor may be computed either by using LS spectral 
analysis techniques [ 11 ,[2] or using SVD based techniques 
[2],[5] to reduce the effect of noise in the associated auto- 
correlation matrix. At medium to high SNR both tech- 
niques have comparable performance but at medium to 
low SNR the SVD based methods seem to outperform 
considerably their LS counterparts. 

In the case of undamped exponentials in noise the prob- 
lem leads naturally to the use of conjugate symmetric 
predictors. Until recently the only known symmetric 
predictor applicable to this problem was the symmetric 
Smoother [1],[3]. In [4] a new symmetric predictor, the 
Bidirectional, was introduced and shown to be suitable 
for spectral line estimation. This predictor was defined 
only for the real data case and there was no study of its 
performance. 

In this paper, first, the LS complex bidirectional pre- 
dictor is defined. The extension to the complex case is not 
straightforward and requires a solution to a double mini- 
mization problem. Asymptotic as well as extensive exper- 
iments show the superiority of the Bidirectional predictor 
with respect to Smoother. This performance is accompa- 
nied with a significant computational saving. Second, an 
SVD based technique for the symmetric prediction prob- 
lem is developed. Two methods one for the Bidirection- 
al and one for the Smoother are presented. Due to the 
rich structure of the bidirectional prediction problem the 
corresponding method performs almost identically as the 
modified Forward-Backward linear prediction method [5] 
but requiring much less computational burden. 

11. THE COMPLEX BIDIRECTIONAL PREDICTOR 
Let us assume that we are given a complex data sequence 
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{ r ( n ) } ,  n = 1,. . . , N consisting of p undamped exponen- 
tials in white noise, i.e. 

D V 

k=l 

where z k  = ej2"jk and hk = Akejek.  Let us call pp(t.) 
the polynomial of order p that has as roots the Z k ,  k = 
1, . . , p ,  that is 

D D 

Since the all roots of Pp(z) lie on the unit circle the c e  
efficients of the polynomial have some very characteristic 
properties [l]. Notice that the coefficient up has unit mod- 
ulus (as being the product of all Z k ) .  Thus if up = ej20 
and we define Gp(z) = e-'Pp(z) then it can be shown 
that the polynomial Gp(z) has conjugate symmetric co- 
efficients, namely, if gp+l is the vector of its coefficients 
then 

where J is the so called exchange matrix having unities 
along the cross diagonal and zeros everywhere else, and 
"*" denotes complex conjugate. If we apply the filter 
GP(z) to noiseless data then we conclude that 

P 
e-j'r(n) + &'r(n - p )  + g k Z ( n  - k )  = o (4) 

Equ. (4) denotes some special form of prediction where 
using z(n - l), . , r ( n  - p  + 1) we predict in the forward 
and the backward direction a combination of z(n) and 
r ( n - p ) .  It is exactly this predictor we are going to call the 
Complez Bidirectional Predictor (CBP) which constitutes 
a generalization of the Bidirectional Predictor introduced 
in [4] for the real case. 

Our goal is, using the available data samples, to esti- 
mate a CBP of order M and then by rooting the corre- 
sponding polynomial to estimate the frequencies f k  . we 
must select M 1 p in order to be able to identify cor- 
rectly all frequencies (actually we must select M > p 
in order to have a good estimation). Thus if gw+l = 
[ e - j e  dl dz . . .  d; di e j e ] t  then because of the conjugate 
symmetry property we must estimate [%pi parameters. 
Notice that the parameter 0 is of a special form and thus 

k = l  



we need to  distinguish it from the other parameters d k ,  
thus let 

gM+l = [e-je dh,l ejelt (5) 
where dM-1  is again a conjugate symmetric vector. If we 
now use least squares to  estimate 8 and dM-1 then we 
can easily show that we must minimize the following cost 
function with respect to 8 and dw-1 

E ( ~ M - I , ~ )  = g$+iQM+1SM+i (6) 

where the matrix Q M + ~  is the associated data autocorre- 
lation matrix defined as 

(7) 
QM+I = RM+I + J f l ~ + 1  J 
R M + ~  = C L + ,  4 4 + 1 ( ~ > 4 4 + 1  (n) 

where ~ ~ + l ( n )  = [z(n) z(n - M)]'. The matrix 
Q M + ~  is positive definite, Hermitian and Persymmetric, 
that is Q M + ~  = Q$+l and Q M + ~  = J Q & + l J .  Let us 
define a partition of Q M + ~  that is necessary for our prob- 
lem 

9 QM-1 
H ] (8) QM-1 Q M - 1  JqL-1 

S* Q t - l J  9 

To obtain the optimum parameters we shall perform the 
minimization of Equ. (6) in two consecutive steps, first we 
shall minimize E ( d ~ - 1 ,  8) with respect to dM-1 assuming 
8 given and then the resulting expression with respect to 
8. One can easily show that 

€ ( e )  = min &(dM-1 ,8 )  = 2 R e { a ~ + l e j ~ }  (9) 

where Q M + ~  and the optimum vector dMM-1 are defined 

d M - 1  

by 

dM-1 = -(JpL-,e-je +pMwleje) 

u M + ~  = qe-je + seJe + q E - l d M - l  
P M - ~  = 42l-1 JQh-1 (10) 

Minimizing now E ( 8 )  with respect to 8, after some algebra 
it can be shown that the optimum 8 is given by 

0 = 0.5 (r - arg{s + q$-lpMM-l>) (11) 

Eqs. (10, 11) constitute the complete solution to the es- 
timation problem. If we are though interested in solving 
the problem efficiently it is possible to derive an order re- 
cursive algorithm. Notice that all optimum quantities can 
be written in terms of the auxiliary vector pM-1 .  This 
vector can be easily obtained as a by-product of the or- 
der recursive modified covariance algorithm of complexity 
O(M2) presented in [l]. 

Until now the only well known symmetric predictor ap- 
plicable to the problem of spectral line estimation is the 
Complex Smoother Predictor (CSP), which estimates in 
the Least Squares sense the sample z(n) using m past 
and m future samples. The CSP is a conjugate symmet- 
ric predictor of only odd length that has the form 

The optimum CSP is estimated using a similar as the 
CBP Least Squares problem, namely the predictor that 
minimizes 

f(Bzm+1) = sZH,+l Q 2 m + 1 ~ 2 m + l  (13) 

The optimum predictor is found by solving the following 
equation 

An interesting fact is that the CSP can also be derived as 
a by-product of the same order recursive algorithm used 
for the CBP [l]. 

The estimation of the frequencies (which is our final 
goal) is achieved by rooting the polynomials formed by 
the predictors (CBP or CSP). 

Q2m+1~2m+l  = [Of, P Of,]t (14) 

111. ASYMPTOTIC PERFORMANCE OF CBP AND CSP 
It is very difficult in general to compute a performance 
measure for the two frequency estimators for the finite 
data case. In order to be able to derive some semi- 
analytic results we shall consider the asymptotic (infi- 
nite data number) case. For the asymptotic case we shall 
show some very important properties for both predictors. 
These properties seem to hold for the finite data case as 
it is confirmed by a large number of experiments. 
A .  Asymptoiic Bias. 
Both predictors are biased even for the asymptotic case. 
Actually this is a fact for all known linear LS predictors 
applied to the same problem. Since the CSP can only be 
defined for odd orders, we shall compute the bias for this 
case only. As we have seen in the previous section the 
two predictors are defined through similar optimization 
problems. Let us see what is the form of these problems in 
the asymptotic case. Notice that the optimum estimated 
quantities remain the same if instead of the matrix Q we 
use the normalized matrix Q/N, where N is the number of 
available data points. Letting N - 00 the autocorrelation 
matrix takes the form 

where U: is the noise variance and 

We also have assumed that all complex exponentials that 
constitute the signal z(n) have unit amplitude. To find 
the optimum predictors for the asymptotic case we fol- 
low exactly the same steps as in the finite data case, that 
is Eqs. (10,ll) for the CBP and Equ. (14) for the CSP. 
The obtained predictors are functions of the frequencies 
fk, k = 1,.  . . , p .  Using these formulae for the predic- 
tors we can form the corresponding polynomials and thus 
by rooting them obtain estimates of the frequencies for 
both predictors. Unfortunately i t  is not possible to derive 
closed form solutions for the estimated frequencies except 
for very small orders m. In any case this is not so impor- 
tant since we can always find numerically for an adequate 
number of frequency combinations the asymptotic esti- 
mates and compare the two methods. For example in the 
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FIGURE 1 
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case of a process consisting of two exponentials in noise 
a 3-D plot is required to illustrate the performance of a 
method. However it can be shown that the asymptotic 
performance of both methods depend only on the differ- 
ence IA f = f 1  -f21 and the estimation problem of the two 
frequencies is equivalent to the estimatioz of A f. Thus 
in Figure 1 we plot the estimation error IA f - A f I versus 
Af for the two predictors. The solid line corresponds to 
the CBP and the dashed to the CSP. We used m = 7 for 
both cases and ut = 0.01. Clearly the CBP exhibits a 
much smaller bias with respect to the CSP. The results 
for other orders and other values of the noise variance are 
similar. 

A very important problem in the estimation of the un- 
damped exponentials through the use of predictors is the 
determination of the roots of the corresponding polyno- 
mials. We shall show that in the case of the CBP for the 
asymptotic case the roots are situated on the unit circle. 
Notice first that the asymptotic matrix Q M + ~  is Toeplitz 
and also positive definite because of the existence of the 
term ui1 .  If we use the partitioning of Equ. (8) and define 
the forward predictor [l aL-Jt that solves the following 
Wiener problem 

B. Location of the Roots. 

[ ' &-l  ] [ ] = [ f z  ] (17) 
q M - 1  &M-1 a M - 1  O M - 1  

which is known from the Levinson-Durbin algorithm that 
leads to a stable predictor [2]. If we define 

g ~ + 1  = e-Je[l O]* + eje[O JaE-,  11' (18) 

then this predictor is the optimum CBP. This statement 
can be proved by showing that the predictor satisfies the 
equations that define the optimum CBP (10,ll). Since 
our predictor can be written under the form of Equ. (18) 
from [8] we have that it will have all its roots on the 
unit circle. This property does not hold for the CSP as 
one can verify by a counterexample (take for instance the 
case M = 2 that can be solved analytically). Even though 
the result is asymptotic, extensive simulations have shown 
that it is still valid in the finite data case, provided that 
the matrix Q is well conditioned. Due to this property of 

the CBP a significant computational saving is achieved in 
the rooting procedure, since we can use algorithms that 
search zeros only on the unit circle (e.g. [7]). 
C. Asymptotic Variance. 
A very important performance measure is the estimation 
error variance. Analytic expressions for this case are very 
difficult even for the asymptotic case. However since this 
measure is very important we shall investigate this matter 
in the next section through extensive simulations, as it is 
usually the case in the literature. 

IV. COMPARISON OF LS SYMMETRIC PREDICTORS 
So far we have shown that the CBP exhibits less asymp- 
totic bias than the CSP and that its roots lie on the unit 
circle implying a simpler rooting procedure. 

To confirm these results for the finite data case and al- 
so study the variance of the frequency estimates for both 
symmetric predictors we conducted the typical experi- 
ment of [5]. A total of 500 independent data blocks, with 
25 data points each, were generated using the formula 

= 22r0.5n + &'(2~0.52n+s/4)  
+W(. )  (19) 

for n = 1, .  . . ,12500, where w(n)  is a complex white noise 
with variance U:. The SNR per exponential is defined as 
10 10g lo (1 /2~~)  and SNR values range from lOdb to 30db. 
For each block of data, each SNR value and each estima- 
tion method, as frequency estimates were taken the angles 
of the roots that were closest to the true frequencies. This 
is an ideal case of course but it is indicative of the true 
performance of each method. In Figure 2 the variance u2 

scale vs SNR, for the different methods. For each par- 
ticular method the order that had the best performance 
was selected. The top solid line depicts the Cramer-Rao 
bound. The dashed line corresponds to the CBP with 
order equal to 12. The bottom solid line corresponds to 
the CSP of order 13 and the dotted line corresponds to 
the Forward-Backward Linear Prediction (FBLP) method 
with order 13. The performance of the CBP is slightly in- 
ferior to that of FBLP while the CSP has a significantly 
poorer performance. Finally the dashed-dotted line cor- 
responds to a combination of the CBP and CSP which 
unfortunately due to the limited space shall not be dis- 
cussed here. Notice that the combination is superior to 
the performance of the FBLP and can be achieved with 
negligible added complexity. 

of the frequency estimate of f 1  is plotted in logarithmic f 

V. SVD BASED ESTIMATION FOR CBP AND CSP 
In this section a minimum norm method, similar to the 
one in [6], will be presented for obtaining symmetric pre- 
dictors. In all these methods there is the need of perform- 
ing SVD to a data correlation matrix in order to reduce 
the effects of the noise. In our case this role is played by 
the matrix Q M + ~ .  Because of the symmetry properties of 
this matrix the singular vectors can be conjugate symmet- 
ric. The collection of singular vectors can be divided into 
two parts, one spanning the signal subspace and the other 
spanning the noise subspace. The signal subspace has di- 
mension p and the noise subspace M +  1 - p .  The problem 
is to find a conjugate sym'metric vector of a specific form 
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FIGURE 2 

(CBP or CSP) that is orthogonal to the signal subspace 
and has minimum norm. Thus the vector we are look- 
ing for belongs to the noise subspace and in consequence 
it is a linear combination of the corresponding singular 
vectors. Since these vectors are conjugate symmetric, in 
order the resulting vector to be conjugate symmetric as 
well, we must use real coefficients for the combination. If 
we consider first the CBP gM+1 then 

gM+1 = VncM+l-p (20) 

where V, is a matrix that has as columns the M + 1 - 
p singular vectors of the noise subspace and CM+1-p is 
a real vector. Let now UM+l-p denote the top row of 
the matrix V, then because of the orthonormality of the 
singular vectors we have IlgM+lII = )IcM+1--91) and thus 
the problem we need to solve is equivalent to 

minIIcM+l-pll subject to 
(21) 

C 

Iu~+l--pcM+l-pl = 1 

The constraint in (21) expresses the requirement that the 
first element of g M + l  is of unit modulus (see Equ. (5 ) ) .  
For the CSP the corresponding problem is exactly similar, 
the only difference being the vector U which now is the 
central row of the matrix V, expressing the requirement 
that the central element of azm+l is unity (see Equ. (12)). 
If U = U R  + jur it can be proved that the solution in the 
CBP case is the eigenvector corresponding to the largest 
eigenvalue of the rank-2 matrix U R U ~  + UIU: and in the 
C S P c a s e c = u .  

Significant saving in the SVD process can be achieved 
by utilizing the symmetries of the matrix Q M + ~ .  Specifi- 
cally the SVD problem can be reduced to the SVD of the 
following real symmetric matrix 

[ A R + B R J  - A I + B I J ]  (22) 

where AR + j A I  is the upper left quadrant of the matrix 
Q M + ~  and BR + jBI is the upper right quadrant of the 
same matrix. If [yk y:]‘ is an eigenvector of the matrix 
in (22 then the corresponding eigenvector of Q,+1 is 
[y’ y 4’ where y = p R  + jy,. 

LM+l = -Ai + JB: AR - B R J  

2 

Simulation Results. 
To test the performance of the presented SVD methods 
we conducted the same experiment as in Section IV. The 
results are presented in Figure 3. The top solid line is 
again the Cramer-Rao bound. The dashed line shows the 
performance of the CBP with order 16, the bottom eolid 
line is the CSP method with order 16 and the dotted line is 
the FBLP method with order 18. Finally the dash-dotted 
line is the combination of the CBP and the CSP. Notice 
that the CBP performs almost identically with the FBLP 
while the combination CBP and CSP performs slightly 
better. Also extensive simulations have shown that the 
roots of the CBP polynomial lie on the unit circle leading 
again to fast rooting algorithms. 

FIGURE 3 
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