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Abstract—We consider multiple-input multiple-output
(MIMO) radar systems with widely spaced transmit and receive
antennas. We treat the problem of detecting point targets when
one or more target parameters of interest are unknown. We
provide a composite hypothesis testing framework for jointly
estimating such parameters along with detecting the target
while only a finite number of signal samples are available. The
test offered is optimal in a Neyman-Pearson-like sense such
that it provides a Bayesian-optimal detection test, minimizes
the average mean-square parameter estimation error subject
to an upper bound constraint on the false-alarm probability,
and requires a finite number of samples. While the test can
be applied for concurrently detecting the target along with
estimating any unknown parameter of interest, we consider
the problem of detecting a target which lies in an unknown
space range and find the range through estimating the vector
of time delays that the emitted waveforms undergo from
being illuminated to the target until being observed by the
receive antennas. We also analyze the diversity gain which we
define as the rate that the probability of mis-detecting a target
decays with the increasing SNR and show that for a MIMO
radar system with Nt and Nr transmit and receive antennas,
respectively, the diversity gain is 1 for point targets.

I. INTRODUCTION

In this paper we consider a widely-spaced antenna con-
figuration and treat two problems. First, we analyze target
detection when some radar parameters are unknown and we
are interested in estimating them. We offer a framework
for joint target detection and parameter estimation in a
Neyman-Pearson-like sense (exact definition of optimality
is provided in Section II-B) when the receive antennas
can acquire only a finite number of observations. While
the proposed framework can be exploited for detecting
the target in conjunction with estimating any parameter of
interest, we consider estimating the time-delays that the
transmitted waveforms undergo before reaching the receive
antennas. While such estimation is necessary for optimal
detection, they also can be utilized in order to estimate
the range of the target. We formulate this problem as a
composite hypothesis test which is shown to be solved

optimally via the widely-known generalized likelihood ratio
test (GLRT). Note that the existing optimality results of
the GLRT hold for the asymptote of an infinite number of
observations under certain assumptions [1, Sec. 5.6].

As the second problem, we adopt the notion of diversity
gain from MIMO communications and define it as the rate
that the probability of target mis-detection decays with the
increasing signal-to-noise ratio (SNR), while the false-alarm
probability is kept below a certain level. We analytically
assess the diversity gain yielded by MIMO radars as a
function of the number of transmit and receive antennas.
We treat the same problem for phased-array radars as well
to furnish a benchmark for comparisons. The summary of
the contributions and results of this work is as follows.

We propose an optimality measure which is shaped by
target detection performance, parameter estimation accu-
racy, and false-alarm probability. The corresponding opti-
mal composite hypothesis test which satisfies all the opti-
mality criteria is introduced and is deployed for detecting
a target in an unknown range. The range of the target is
estimated via estimating time-delays. The existing literature
on MIMO radars with widely-space antennas either embed
the effect of the time-delays only as phase-shifts while
ignoring the signal attenuation due to path-loss which is also
a function of the time delay [2]–[4], or consider identical
path-losses corresponding to different time-delays [5] and
absorb it in the scatterer’s reflectivity factor. We provide a
model which considers different path-losses corresponding
to different time-delays.

We characterize the maximum likelihood (ML) estimate
of the time-delay vector which consists of NtNr compo-
nents each corresponding to a pair of transmit-receive an-
tennas. We also provide the optimal detector corresponding
to the ML estimates found. Finally, we show that in an
Nt × Nr MIMO radar configuration with widely-spaced
antennas the mis-detection probability decays as SNR−1 for
point targets.



II. SYSTEM DESCRIPTIONS

A. MIMO Radar

We consider a MIMO radar system comprising of Nt

and Nr transmit and receive antennas, respectively, and
adopt the classical Swerling case I model [6] extended for
multiple-antenna systems [3], [4]. According to this model,
a target consists of one or more small scatterers exhibiting
random, independent and isotropic scintillation.

In this paper we consider pint targets and define the loca-
tion of the target’s scatterer in the Cartesian coordination by
X

4= (x, y, z). Also, we denote the reflectivity factor of the
scatterer by ζ and assume that ζ is distributed as zero-mean
complex random variables with variance 1, i.e., E[|ζ|2] = 1.
The target and the reflectivity factor are assumed to remain
constant during a finite number of observations denoted by
K and change to independent states afterwards.

Motivated by capturing the inherent diversity provided
by independent scatterers, the antennas are spaced widely
enough (such that they satisfy the conditions in [3, Sec.
II.A]) to ensure having uncorrelated reflections from the
target to the receive antennas. We assume that the trans-
mit antennas are located at Xt

m
4= (xt

m, yt
m, zt

m), for
m = 1, . . . , Nt, and the receive antennas are located at
Xr

n
4= (xr

n, yr
n, zr

n), for n = 1, . . . , Nr. The transmit
antennas emit Nt narrowband waveforms of duration T

whose lowpass equivalents are given by
√

E
Nt

sm(t) for
m = 1, . . . , Nt, where E is the total transmitted energy and∫
T |sm(t)|2dt = 1. In contrast to the conventional phased-

array radars which deploy waveforms which are identical
upto a scaling factor [7], in MIMO radar systems these
waveforms are designed such that they facilitate acquiring
independent observations of each scatterer and often are
assumed to be orthonormal, i.e.,

∫

T
sm(t)s∗n(t) dt = δ(m− n), (1)

where ∗ denotes complex conjugate and δ(·) is the Dirac’s
delta function. The waveform illuminated by the mth trans-
mit antenna to the scatterer and received by the nth receive
antenna passes through an end-to-end distance which we
denote by dm,n and undergoes a time delay which we
denote by τm,n

4= dm,n/c, where c is the speed of light.
By defining β as the path-loss exponent and superimposing
the effects of all scatterers, the base-band equivalent of
the signal received by the nth receive antenna due to the
waveform sm(t) transmitted by the mth transmit antenna is
given by

rm,n(t) =
√

E

Nt
ζ
( 1

dm,n

)β
sm(t− τp

m,n)e−j2πfcτm,n

+ zm,n(t). (2)

Note that this model differs from those of [3] and [4] in the
sense that we have added the attenuation effects of path-

losses by including the terms
(

1
dm,n

)β
=

(
τm,n c

)−β
. The

exponential term exp(−j2πfcτm,n) in (2) represents the
effect of propagation phase shift, where fc is the carrier
frequency, and zm,n(t) ∼ CN (0, 1

Nt
), denotes the additive

white Gaussian noise.
Using (2), the received signal at the nth antenna, which

is a superposition of all emitted waveforms, is given by

rn(t) =
√

E

Nt

Nt∑

m=1

c−β

τβ
m,n

sm(t− τm,n)hm,n + zn(t),

where hm,n
4= ζ e−j2πfcτm,n and zn(t) 4=

∑Nt

m=1 zm,n(t) ∼
CN (0, 1). Furthermore, we assume that the waveforms are
narrowband. Based on the narrow-band assumption, for
m = 1, . . . , Nt and n = 1, . . . , Nr [4], we get

∀τ, sm(t) = ej2πfcτ sm(t− τ), (3)

which in conjunction with the orthonormality assumption
(1) implies that

∀ τm,k, τn,k,

∫

T
sm(t− τm,k)s∗n(t− τn,k) dt = δ(m− n).

(4)

We also define the time-delay vector τ
4= [τ1,1, . . . , τNt,Nr

].
Based on the model given in (2) and noting that the noise-
terms are unit-variance, the transmission signal-to-noise
ratio, denoted by SNR, is given by SNR = E

T

B. Problem Statement

We assume that the receive antennas sample the received
signal at the rate of 1

Ts
samples per second. By defin-

ing rn[k] 4= rn(kTs), zn[k] 4= zn(kTs) and sm[k; τ ] 4=
sm(kTs − τ), the discrete-time low-pass equivalent of the
received signal when a target is present is, for k = 1, . . . , K,
given by

rn[k] =
√

E

Nt
c−β

Nt∑

m=1

1

τβ
m,n

hm,nsm[k; τm,n] + zn[k]. (5)

We also assume that the sampling rate is high enough
to ensure that the discrete-time signals sm[k; τm,n] re-
main orthogonal for arbitrary delays τm,l, τn,l, i.e.,∑

k sm[k; τm,l]s∗n[k; τn,l] = 1
Ts

δ(m − n). Let us define
r[k] 4= [r1[k], . . . , rNr

[k]]T for k = 1, . . . , K and R
4=

[r[1]T , . . . , r[K]T ]T . Also let f0(R) denote the probability
density function (pdf) of the received signal when a target is
not present. When a target is present, the pdf of the received
signal depends on the unknown parameter τ and is denoted
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by f1(R | τ ). Therefore, by defining the estimate of τ by
τ̂ , the detection part of the problem can be cast as

{ H0 : No target exists at delay τ̂ where R ∼ f0(R),
H1 : Target exists at delay τ̂ where R ∼ f1(R | τ̂ ).

(6)

Our objective is to detect a target when the vector time-
delays τ is unknown such that that the following conditions
are satisfied.

C1) The average ML estimation error of the time
delays τ is minimized.

C2) The false-alarm probability of the target detector
is kept below a certain level.

C3) For the given set of ML estimates τ̂ , the target
detector is Bayesian-optimal, i.e., the Bayes risk
is minimized [8, Sec. II.B].

C4) The test requires only a finite number of samples,
i.e., K < ∞.

We call the composite hypothesis test that satisfies all
the conditions above Neyman-Pearson-like optimal as it
follows the same spirit as the standard Neyman-Pearson
(NP) criterion (minimize the detection error probability
subject to a constraint on false-alarm probability).

Compared to the existing literature, e.g., [3] and refer-
ences therein, in addition to the objectives (conditions C1-
C4) and the model (including path-loss effects) our pro-
posed framework has also a slightly different application.
The existing models aim at detecting a target given that
it lies within a given range, while in this paper we aim
at estimating the range for the potentially existing target
within any arbitrary subspace of the entire search space
and detecting the presence of the target based on those
estimates.

Note that when we are only interested in hypothesis
testing (and not in estimating τ ), the optimal test is given
by

f1(R)
f0(R)

=
∫

π(τ )f1(R | τ )dτ

f0(R)

H1

≷
H0

λ, (7)

where λ is found by the conditions enforced on the toler-
able level of false alarm. On the other hand, the optimal
test that satisfies all the conditions C1-C4 given above is
characterized by the following Theorem.

Theorem 1 (Moustakides [9]): For a finite cardinality
vector R ∈ C|R| and an unknown vector parameter x, the
optimal test in the NP-like sense (that satisfies C1-C4) for
estimating x and deciding between H0 and H1 given as

{ H0 : R ∼ f0(R),
H1 : R ∼ f1(R | x), (8)

is
f1(R | x̂)

f0(R)

H1

≷
H0

λ, where x̂ = arg max
x

π(x)f1(R | x),

(9)
and π(x) is the prior distribution of x.

In the theorem above, x̂ given in (9) is the maximum
a posteriori (MAP) estimate of x. As we do not have
any prior information about the location of the target,
throughout the analysis we assume that π(τ ) has a uniform
distribution. Hence, the MAP estimate of τ becomes its
ML estimate. The above Theorem essentially establishes
the GLRT as the optimal estimation/detection strategy that
satisfies the conditions C1-C4. Several other asymptotic
optimality results are known for the GLRT which are all
based on having an infinite number of observation [9] and
[10, Chapter 22].

III. JOINT DETECTION AND ESTIMATION FOR POINT

TARGETS

In this section we consider the application of MIMO
radars for high-resolution detection in terms of detecting
point-object targets or exposing single-scatterers. In this
case, the target is modeled by one scatterer located at its
gravity center X0. Note that in (3) by setting P = 1 we get
hm,n = ζ e−j2πfcτm,n , where ζ ∼ CN (0, 1). Therefore, the
null and alternative hypotheses are given respectively by




H0 : rn[k] = zn[k],

H1 : rn[k] =
√

E
Nt

ζ
∑Nt

m=1
e−j2πfcτm,nc−β

τβ
m,n

sm[k; τm,n]
+zn[k].

(10)

We are interested in solving the optimum test given in (9)
and we start by determining the ML estimate of the delay
vector τ .

A. Time Delay Estimation

The following lemma is instrumental to deriving the ML
estimate of the delay vector.

Lemma 1: For any given set of functions {gi(t)}N
i=1

where gi(t) : R→ C and α, t ∈ R, we have

max
t2,...,tN∈R

∣∣∣∣∣
N∑

i=1

ejαtigi(t1)

∣∣∣∣∣ =
N∑

i=1

|gi(t1)| .

The main result of this section is stated in the next theorem.
Theorem 2: The ML estimate of τ for point targets is

given by

τ̂ =

arg max
τ

∣∣∣∑Nt

m=1

∑Nr

n=1
ej2πfcτm,n

τβ
m,n

∑K
k=1 rn[k] s∗m[k; τm,n]

∣∣∣
2

∑Nt

m=1

∑Nr

n=1
1

τ2β
m,n

.
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B. Target Detection

Based on the ML estimate of τ provided in Theorem
2 the optimal detector is characterized by the following
lemma.

Lemma 2: The optimal test for point targets and for the
given estimate τ̂ is

∣∣∣∣∣
Nt∑

m=1

Nr∑

n=1

ej2πfcτ̂m,n

τ̂β
m,n

K∑

k=1

rn[k] s∗m[k; τ̂m,n]

∣∣∣∣∣

2
H1

≷
H0

θ.

Proof: As we are estimating τ jointly with ζ, by setting
x = [τ , ζ] and applying Theorem 1 the optimal detector is
given by

maxx π(x)f1(R | x)
f0(R)

=
maxτ ,ζ f1(R | τ , ζ)

f0(R)

=
f1(R | τ̂ , ζ̂)

f0(R)

H1

≷
H0

λ,

By using the estimates τ̂ given in Theorem 2 and similarly
finding ζ̂, the optimum test for a point target is given by

log

(
f1(R | τ̂ , ζ̂ )

f0(R)

)
=

log


e−

∑
k ‖r[k]‖2e

E

Ts Nt
|ζ̂ |2 ∑Nt

m=1

∑Nr
n=1

c−2β

τ̂
2β
m,n

e−
∑

k ‖r[k]‖2


 =

∣∣∣∑Nt

m=1

∑Nr

n=1
c−β

τ̂β
m,n

ej2πfcτ̂m,n
∑K

k=1 rn[k] s∗m[k; τ̂m,n]
∣∣∣
2

1
Ts

∑Nt

m=1

∑Nr

n=1
c−2β

τ̂2β
m,n

H1

≷
H0

λ. (11)

Moreover, by setting θ
4=

∑Nt
m=1

∑Nr
n=1 (cτ̂m,n)−2β

Ts
log λ, the

test can be cast as
∣∣∣∣∣

Nt∑

m=1

Nr∑

n=1

ej2πfcτ̂m,n

τ̂β
m,n

K∑

k=1

rn[k] s∗m[k; τ̂m,n]

∣∣∣∣∣

2
H1

≷
H0

θ.

In order to determine the value of the threshold θ,
note that ej2πfcτ̂m,n

∑K
k=1 rn[k] s∗m[k; τ̂m,n] is distributed

as CN (0, 1
Ts

) under H0 and
∑K

k=1 rn[k] s∗m[k; τ̂m,n] is
independent of

∑K
k=1 rn′ [k] s∗m′ [k; τ̂m′,n′ ] for m 6= m′ or

n 6= n′. As a result, under H0 we have

Nt∑

m=1

Nr∑

n=1

ej2πfcτ̂m,n

τ̂β
m,n

K∑

k=1

rn[k] s∗m[k; τ̂m,n]

∼ CN
(

0,
1
Ts

Nt∑

m=1

Nr∑

n=1

1

τ̂2β
m,n

)
;

and consequently
∣∣∣∣∣

Nt∑

m=1

Nr∑

n=1

ej2πfcτ̂m,n

τ̂β
m,n

K∑

k=1

rn[k] s∗m[k; τ̂m,n]

∣∣∣∣∣

2

∼ Exponential


 Ts∑Nt

m=1

∑Nr

n=1
1

τ̂2β
m,n


 .

Therefore, for a given value of Pfa, the threshold level θ
is found as

θ =
1
Ts

Nt∑

m=1

Nr∑

n=1

1

τ̂2β
m,n

log
1

Pfa
.

IV. OPTIMAL JOINT ESTIMATION/DETECTION FOR

PHASED-ARRAY RADAR

We will compare the performance of MIMO radars
against that of conventional phased-array radar systems.
A phased-array system utilizes an array of closely-located
antennas and therefore, the channel coefficients hm,n are
fully correlated, i.e., hm,n = h. Moreover, all the emitted
waveforms are equal up to a scaling factor, i.e., sm(t) =
ŝms(t) for m = 1, . . . , Nt such that

∑Nt

m=1 |ŝm|2 = Nt (for
having the total transmitted energy equal to E). Therefore,
by using (5) and the narrow-band assumption, the system
model is, for k = 1, . . . , K, given by

rn[k] =
√

E

Nt
h s[k; τ1,1]

Nt∑

m=1

c−β

τβ
m,n

ŝmej2πfc(τ1,1−τm,n)

+ zn[k] (12)

For the purpose of analyzing the diversity gains as given in
Section V, as well as comparing estimation performance,
we provide the optimal detector and estimator for phased-
array radars in the following lemma. For further analysis
we define Sn(τ ) 4=

∑Nt

m=1
1

(cτm,n)β ŝmej2πfc(τ1,1−τm,n) and

Ŝn(τ ) 4=
∑Nt

m=1
1

(cτm,n)β ŝmej2πfc(τ1,1−2τm,n).
Lemma 3: The ML estimate of the time-delay vector τ

in phased-array radars for point targets is

τ̂ = arg max
τ

∣∣∣∑Nr

n=1 Ŝ∗n(τ )
∑K

k=1 rn[k]s∗[k; τ1,1]
∣∣∣
2

1
Ts

∑Nr

n=1 |Ŝn(τ )|2 .

Based on the ML estimate of τ provided in Lemma 3
the optimal detectors are presented in the following lemma.

Lemma 4: The optimal test for the given estimate τ is
given by

∣∣∣∣
Nr∑

n=1

S∗n(τ )
K∑

k=1

rn[k]s∗[k; τ̂1,1]
∣∣∣∣
2 H1

≷
H0

θ̂.
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V. DIVERSITY GAIN ANALYSIS

In the previous sections we have provided closed-form
expressions for the time-delay estimators as well as the
optimal detectors. In order to quantitatively compare the
performance of MIMO and phased-array radars, we analyze
how fast their corresponding mis-detection probabilities
decay as the transmission SNR increases. The counterpart
of this notion in MIMO communication systems is referred
to as the diversity gain.

In what follows, we say two functions f1(x) and f2(x)
are exponentially equal when limx→∞

log f1(x)
log f2(x) = 1 and

denote it by f1(x) .= f2(x). We will use the following
lemma in analyzing the diversity gain of MIMO and phased-
array radars.

Lemma 5: For any M independent Gaussian random
variables Ym ∼ N (ρ · µm, σ2), m = 1, . . . , M , where
ρ ∈ R+ and µm ∼ N (0, σ2

m), and for any given γ ∈ R+,
in the asymptote of large values of ρ we have

Eµ

[
Pr

(
M∑

m=1

Y 2
m < γ

)]
.= ρ−M , (13)

where µ
4= [µ1, . . . , µM ].

By using the lemma above, in the following theorem
we establish the diversity gain achieved by the MIMO
and phased-array radars for point targets. We denote the
probability of mis-detecting a target at the signal-to-noise
ratio SNR by Pmd(SNR).

Theorem 3: The diversity gain achieved by
1) an Nt ×Nr MIMO radar system for point targets is

1, i.e., PE
md(SNR) .= SNR−1;

2) an Nt ×Nr MIMO radar system for point targets is
1, i.e., PP

md(SNR) .= SNR−1;
According to Theorem 3, as long as diversity gain for

point targets is considered, both MIMO radar and phased-
array radar are identical.

VI. SIMULATION RESULTS

We consider different configurations and for the MIMO
radar we assume that the transmit and receive antennas
are located at Xt

m = (m, 0, 0) for m = 1, . . . , 4 and
Xr

n = (0, n, 0) for n = 1, . . . , 8, respectively. For the
phased-array radar we assume that the transmit anten-
nas are all closely-located around Xt

m = (1, 0, 0) for
m = 1, . . . , 4, and the receive antennas are closely-located
around Xr

n = (0, 1, 0) for n = 1, . . . , 8. Also we assume
that the target to be detected is located at X0 = (20, 15, 0),
where all the distances are in kilometer (km). The path loss
coefficient is β = 2 and the carrier frequency is fc = 5
MHz. We assume that the target comprises of P = 10
scatterers and the number of signal samples is K = 40.
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Fig. 1. Average normalized MSE of time-delay estimates versus SNR
for point targets.
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Fig. 2. Probability of mis-detection versus SNR for point targets and
Pfa = 10−6 for point targets.

Finally, for the MIMO radar the emitted waveforms are
sm(t) = 1√

T
exp

(
j2πmt

T

)
(U(t)− U(t− T )), where U(t)

is the unit step function and T denotes the duration of the
waveform and the sampling rate at the receiver is Ts = T

10 .
For the phased-array radar all the emitted waveforms are
equal to s1(t).

Fig. 1 illustrates the normalized average MSE in esti-
mating the time-delays versus SNR. It is observed that for
point targets, conventional phased-array and MIMO radars
exhibit similar target detection and time-delay estimation
accuracies. Therefore, when considering joint target detec-
tion and time-delay estimation, deploying MIMO radars are
not much advantageous for point targets. This conclusion is
nevertheless limited to the specific problem analyzed in this
paper and MIMO radars can be potentially advantageous in
other scenarios like those discussed in [4] and references
therein. This is due to the fact that point targets lack inde-
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Fig. 3. Probability of target detection versus probability of false alarm
for point targets and SNR=0 dB for point targets.

pendent scattering section and thereof provide no diversity
gain.

In Fig. 2 and Fig. 3 the probability of mis-detection
versus SNR and the ROC are plotted, respectively. For Fig.
2 the tests are designed such that the probability of false
alarm is Pfa ≤ 10−6 and for Fig. 3 we have set SNR=0
dB. It is seen from Fig. 2 that both the phase-array and the
MIMO radars exhibit a diversity gain of 1, which verifies
Theorem 3.

VII. CONCLUSIONS

In this paper we have first treated the problem of detect-
ing a point target while some of its parameters are unknown
and have proposed a framework for optimally detecting the
target and estimating such parameters. As an example, we

have formulated the optimal detectors and estimators for
the problem of jointly detecting the target and estimating
the time-delays that a transmitted waveform experiences
from being emitted by the transmit antennas until being
received by the receive antennas. Secondly, the analysis
of the diversity gain, which we have defined as the rate
that the probability of mis-detecting the target decays with
increasing SNR.
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