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Abstract—We consider MIMO radar systems with widely-
spaced antennas. We treat the problem of detecting extended
targets when one or more target parameters of interest are
unknown. We provide a composite hypothesis testing framework
for jointly detecting the target along with such parameter estima-
tion while only a finite number of signal samples are available.
The test offered is optimal in a Neyman-Pearson-like sense such
that it offers a Bayesian-optimal detection test, minimizes the
average maximum likelihood parameter estimation error subject
to an upper bound constraint on the false-alarm probability,
and requires a finite number of samples. While the test can be
applied for concurrently detecting the target along with estimating
any unknown parameter of interest, we consider the problem of
detecting a target which lies in an unknown space range and find
the range through estimating the time delays that the emitted
waveforms undergo from being illuminated to the target until
being observed by the receive antennas. We also analyze the
diversity gain which we define as the rate that the probability
of mis-detecting a target decays with the increasing SNR for a
controlled false-alarm and show that for a MIMO radar with NV,
and N, transmit and receive antennas, respectively, the diversity
gain is N; x N,.

Index Terms—Delay estimation, diversity gain, finite samples,
GLRT, MIMO radar, target detection.

I. INTRODUCTION

In this paper we consider a widely-spaced antenna configura-
tion and treat two problems. First, we analyze target detection
when some radar parameters are unknown and we are interested
in estimating them. We offer a framework for joint target
detection and parameter estimation in a Neyman-Pearson-like
sense (exact definition of optimality is provided in Section II-B)
when the receive antennas can acquire only a finite number of
observations. While the proposed framework can be exploited
for detecting the target in conjunction with estimating any
parameter of interest, we consider estimating the time-delays
that the transmitted waveforms undergo before reaching the
receive antennas. While such estimation is necessary optimal
detection, they also can be manipulated in order to estimate the
range of the target. We formulate this problem as a composite
hypothesis test which is shown to be solved optimally via the
widely-known generalized likelihood ratio test (GLRT). Note
that the existing optimality results of the GLRT hold for the
asymptote of an infinite number of observations under certain
assumptions [1, Sec. 5.6].

As the second problem, we adopt the notion of diversity gain
from MIMO communications and define it as the rate that the

probability of target mis-detection decays with the increasing
signal-to-noise ratio (SNR), while the false-alarm probability is
kept below a certain level. We analytically assess the diversity
gain yielded by MIMO radars as a function of the number
of transmit and receive antennas. We treat the same problem
for phased-array radars as well to furnish a benchmark for
comparisons. The summary of the contributions and results of
this work is as follows.

We propose an optimality measure which is shaped by tar-
get detection performance, parameter estimation accuracy, and
false-alarm probability. The corresponding optimal composite
hypothesis test which satisfies all the optimality criteria is
introduced and is deployed for detecting a target in an unknown
range. The range of the target is estimated via estimating time-
delays. The existing literature on MIMO radars with widely-
space antennas either embed the effect of the time-delays only
as phase-shifts while ignoring the signal attenuation due to
path-loss which is also a function of the time delay [2]-[4], or
consider identical path-losses corresponding to different time-
delays [5] and absorb it in the scatterer’s reflectivity factor.
We provide a model which considers different path-losses
corresponding to different time-delays.

II. SYSTEM DESCRIPTIONS
A. MIMO Radar

We consider a MIMO radar system comprising of N; and
N, transmit and receive antennas, respectively, and adopt the
classical Swerling case I model [6] extended for multiple-
antenna systems [3], [4]. According to this model, a target
consists of one or more small scatterers exhibiting random,
independent and isotropic scintillation.

We define P as the number of the target’s scatterers and
denote their locations in the Cartesian coordination by X, =
(Tp, Yp, 2p) for p=1,..., P. Also, we denote the reflectivity
factor of the p' scatterer by ¢, and assume that {(,})_, are
identically and independently distributed as zero-mean complex
random variables with variance %, ie., E[|([?] = & for
p = 1,..., P. The target and reflectivity factors are assumed
to remain constant during a finite number of observations
denoted by K and change to independent states afterwards.
Motivated by capturing the inherent diversity provided by
independent scatterers, the antennas are spaced widely enough
(such that they satisfy the conditions in [3, Sec. II.A]) to ensure



having uncorrelated reflections from the target to the receive
antennas. We assume that the transmit antennas are located
at Xt = (b, 4l 2t), for m = 1,...,N,, and the receive
antennas are located at X = (xh,yr,z0), form=1,...,N,.
The transmit antennas emit N; narrowband waveforms of
duration 7" whose lowpass equivalents are given by \/sz Sm(t)
for m = 1,..., Ny, where E is the total transmitted energy
and [, |8, (¢)[2dt = 1. In contrast to the conventional phased-
array radars which deploy waveforms which are identical upto
a scaling factor [7], in MIMO radar systems these waveforms
are designed such that they facilitate acquiring independent
observations of each scatterer and often are assumed to be
orthonormal, i.e.,

/ Sm(t)sy () dt = 0(m —n), (1)
T

where * denotes complex conjugate and d(-) is the Dirac’s
delta function. The waveform illuminated by the m** transmit
antenna to the p!* scatterer and received by the n'* receive
antenna passes through an end-to-end distance which we denote
by db, ,, and undergoes a time delay which we denote by
™ = dp, /¢, where c is the speed of light. By defining
0 as the path-loss exponent and superimposing the effects of
all scatterers, the base-band equivalent of the signal received by
the n*” receive antenna due to the waveform s,, (t) transmitted
by the m!" transmit antenna is given by

E & 1 \8

ﬁtzgz(m) S (t —
p=1 ’

+  Zmoa(t). 2)

Note that this model differs from those of [3] and [4] in
the sense that we have added the attenuation effects of path-

losses by including the terms (ﬁ) = . The
exponential term exp(—j2m chﬁm)’in (2) represents the effect
of propagation phase shift, where f. is the carrier frequency,
and zy, ,, (t) ~ CN(0, N%), denotes the additive white Gaussian
noise.

We define X, = (20, Y0, 20) as the location of the gravity
center of the target and denote its associated time delays and
distances by 7., and d,, ,, respectively. We assume that the
distances d,, , are considerably larger than the dimensions of
the object such that we can replace the distances and the time-
delays associated with the scatterer X, with those correspond-
ing to the gravity center of the target Xo, i.e., d}, ,, = dp, » and
T n = Tm.n, V. Therefore, form =1,..., Ny,n=1,..., N,

7

andp=1,...,P,

rm,n(t) = Trl;L’n)e_j2ﬂ'ch‘I€L,7L

P
hon c)

St =75 n) = Sm(t — Tmn)- 3)
Using (2)-(3), the received signal at the nt" antenna, which is

a superposition of all emitted waveforms, is given by

\/f Ji B
— —— St — i) P + 20 (1),
Nt mzﬂ T;?,,,n m m,n)tmmn n

where hp,, = 25:1 ¢ e eTmn and 2,(t) =
ij;:l Zmn(t) ~ CN(0,1). Furthermore, we assume that
the waveforms are narrowband. Based on the narrow-band
assumption, for m = 1,...,N; and n = 1,..., N, [4], we
get

V1, sm(t) = el fer Sm(t —T), )

which in conjunction with the orthonormality assumption (1)
implies that

V’Tm’k,Tn’b/Sm(t—Tmyk)S;kL(t—Tnyk) dtz&(m—n)
T

We also define the time-delay vector T = [11.1,...,7n,.N,].
Based on the model given in (2) and noting that the noise-
terms are unit-variance, the transmission signal-to-noise ratio,
denoted by SNR, is given by SNR = £

B. Problem Statement

We assume that the receive antennas sample the received

signal at the rate of % samples per second. By defining ,, [k] =
AN AN

T (kTs), zn[k] = 2, (kTs) and sy, [k; 7] = $pm(KTs — 7), the
discrete-time low-pass equivalent of the received signal when
a target is present is, for Kk = 1,..., K, given by

Ny
ralk] = ,/% Y % BonnSm [k Tonm] + 2alk]. (5)

m=1 Tm,n

We also assume that the sampling rate is high enough to ensure
that the discrete-time signals s, [k; Ty, ] remain orthogonal
for arbitrary delays 7, 1, Tn1, 1.€., D1 Sm[Fs Tint]sh [k Tny] =
T%é(m — n). Let us define r[k] = [r1[K],... 7~ [K]]T for
k=1,...,K and R = [r[1]7,...,7[K]T]T. Also let fo(R)
denote the probability density function (pdf) of the received
signal when a target is not present. When a target is present, the
pdf of the received signal depends on the unknown parameter
7 and is denoted by fi(R | 7). Therefore, by defining the
estimate of 7 by 7, the detection part of the problem can be
cast as

R ~ f 0 (R)v
R ~ fi(R]|7T).
(6)
Our objective is to detect a target when the vector time-delays T
is unknown such that that the following conditions are satisfied.
Cl)

Ho : No target exists at delay 7 where
H; : Target exists at delay 7 where

The average ML estimation error of the time delays
T is minimized.

C2) The false-alarm probability of the target detector is
kept below a certain level.

C3) For the given set of ML estimates 7, the target
detector is Bayesian-optimal, i.e., the Bayes risk is
minimized [8, Sec. I.B].

C4) The test requires only a finite number of samples, i.e.,

K < oo.

We call the composite hypothesis test that satisfies all the
conditions above Neyman-Pearson-/ike optimal as it follows



the same spirit as the standard Neyman-Pearson (NP) criterion
(minimize the detection error probability subject to a constraint
on false-alarm probability).

Compared to the existing literature, e.g., [3] and references
therein, in addition to the objectives (conditions C1-C4) and the
model (including path-loss effects) our proposed framework has
also a slightly different application. The existing models aim at
detecting a target given that it lies within a given range, while
in this paper we aim at estimating the range for the potentially
existing target within any arbitrary subspace of the entire search
space and detecting the presence of the target based on those
estimates.

Note that when we are only interested in hypothesis testing
(and not in estimating 7), the optimal test is given by

fi(R)  [n(T)fi(R]|T)dT M
fo(R) fo(R) A (7)

where )\ is found by the conditions enforced on the tolerable
level of false alarm. On the other hand, the optimal test that
satisfies all the conditions C1-C4 given above is characterized
by the following Theorem.

Theorem 1 (Moustakides [9]): For a finite cardinality vector
R < CIEl and an unknown vector parameter «, the optimal test
in the NP-like sense (that satisfies C1-C4) for estimating x and
deciding between H, and H; given as

{ Ho: R~ fo(R), (8)
Hi: R~ fi(R|z),
is
fi(R| @) " > )\, where T = argmax7(z)f1(R [ x), (9)
fo(R ) Ho

and 7(x) is the prior distribution of x.

In the theorem above,  given in (9) is the maximum a
posteriori (MAP) estimate of . As we do not have any
prior information about the location of the target, throughout
the analysis we assume that 7(7) has a uniform distribution.
Hence, the MAP estimate of 7 becomes its ML estimate. The
above Theorem essentially establishes the GLRT as the optimal
estimation/detection strategy that satisfies the conditions CI1-
C4. Several other asymptotic optimality results are known for
the GLRT which are all based on having an infinite number of
observation [9] and [10, Chapter 22].

We will analyze this detection/estimation problem for ex-
tended targets which consist of many scatterers, i.e., P > 1.
This corresponds to targets with large dimensions, like land or
ocean surfaces, that cannot be modeled with a single scatterer
and therefore are modeled as a group of scatterers.

IITI. JOINT DETECTION AND ESTIMATION FOR EXTENDED
TARGETS

In this section we consider targets which are extended
enough to be modeled as a group of isotropic and independent
scatterers, i.e., P > 1 in (2). Our objective is to optimally (in
the NP-like sense) detect a target, based on the model in (6),
and simultaneously estimate the vector of time delays 7 with

a finite number of observations. According to Theorem 1 this
can be solved via the GLRT given in (9) for x = 7.

We start by deriving the ML estimate of 7 and then provide
the detection-related analysis.

A. Time Delay Estimation
The hypothesis test is

{Ho irplk] = znlk

Ha:rolh fz “h

Denote b = [hy1,hi2,. .., hx,.n, )T, where Ay, ,, as defined
in (4), accounts for the effects of the position and reflectiveness
of the scatterers corresponding to the m!” transmit and the
nt" receive antenna. The antennas are widely separated and
the reflectivity factors {(,} are complex and independently
distributed with zero mean and variance % and P > 1
Therefore, by also using the central limit theorem, {h,, ,} are
i.i.d. and distributed as CN(0,1) [3].

Based on the model given in (5), the vector of the received
signals R depends on the time-delays, which we are interested
in estimating, as well as the unknown random vector h and its
pdf for any given 7 and h is f1(R | T, h). In order to obtain the
ML estimate of 7 we have to either estimate it through solving
arg max, f1(R | 7) which requires recovering f1 (R | 7) from
f1(R | T, h) by averaging over all realizations of h or jointly
estimate it with h when deemed to be beneficial. Estimating
h is more beneficial than averaging over all realizations of h
when an accurate estimate of h is available, e.g., in high SNR
regimes, while averaging leads to a better performance when
the estimate is very inaccurate, e.g., in low SNR regimes. The
ML estimate of T is provided in the following theorem for both
scenarios.

Theorem 2: The ML estimate of 7, ,, for extended targets

mnSm|k; Tmon] + 2n[K].
(10)

1) through MAP estimation of h is given by

2
Sy Talk] 5 [ Tnn]

%S + % (CT7n,n)2ﬁ

MAP = argmax

Tm,n

VYm,nT,,

2) and through averaging over all realizations of h is given
by
K . 2
DTN EALTE

7+ S (cTnn)??

E _
log <T N; (CTm,n) 2 + 1> }

Proof: See [11]. [ ]
According to the theorem above, estimating the vector of
time-delays 7 boils down to estimating individual time-delays
Tm,n independently. Decoupled estimation translates into less
computational cost, especially when (N;N,.) is large. Estimat-
ing individual time-delays can be implemented via a correlator

m,n
Tm,n

Vm,n 72 = argmax{

)



and a multiplier for computing Zszl rnlk] sk, [k; Tm ] and in-
corporating the effect of 7, ,, in the denominator, respectively,
followed by a search for all values of 7, ..

B. Target Detection

Based on the ML estimates of the delay vector T provided
in Theorem 2, we proceed to find their corresponding optimum
detectors. We show that both estimates give rise to the same
optimal detector given in the following lemma.

Lemma 1: The optimal test for extended targets and for the
given estimate T is

2

K 4 ~

N N» Zk:l rn[k} sm[k;Tm,n] Hy
= 0. (11)

= 2

mz::lnz::l o, (Tnn)®
Proof: See [11]. u

It is noteworthy that our detection scheme has two major
differences with that of [3] provided in [3, Eq. (24)]. First, the
detection formulation in [3, Eq. (24)] tests whether a target
exists at a known delay while we try to detect a target with
unknown delays. Secondly, the model of [3] embeds the effect
of the time-delays only as phase shifts and ignores the path-loss
effect. By recalling that the path losses also depend on the time
delays we have modified the model of [3] to also capture the
effects of path losses in our model. Note that the path losses are
of the form (c7,, ,)” and if we eliminate the path loss effect
(as done in [3]) by setting 5 = 0 for instance, our detector
provided in (11) becomes exactly equivalent to that of [3].

IV. DIVERSITY GAIN ANALYSIS

In the previous sections we have provided closed-form ex-
pressions for the time-delay estimators as well as the optimal
detectors. In order to quantitatively compare the performance
of MIMO and phased-array radars, we analyze how fast their
corresponding mis-detection probabilities decay as the trans-
mission SNR increases. The counterpart of this notion in MIMO
communication systems is referred to as the diversity gain.

In what follows, we say two functions fi(x) and fo(z) are
exponentially equal when lim_, o, igg ggg = 1 and denote it
by fi(2) = fala).

In the following theorem we establish the diversity gain
achieved by the MIMO and phased-array radars for extended
targets. We denote the probability of mis-detecting a target at
the signal-to-noise ratio SNR by P,,,4(SNR).

Theorem 3: The diversity gain achieved by

1) an N; x N, MIMO radar system for extended targets is

N;N,, ie., PE,(SNR) = SNR™ ™ Vr;
2) an N; x N, phased array system for extended targets is

1, ie, PPA(SNR) = SNR™.

Proof: See [11]. [ |
According to Theorem 3, while adding transmit or receive
antennas in MIMO radar systems leads to more diversity gain
and thereof, more reliable target detection, doing so in con-

ventional phased-array systems yields no additional diversity
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Fig. 1. Average normalized MSE of time-delay estimates versus SNR.

gain. This is intuitively justified by noting that in phased-
array radars, as the transmit antennas are located closely they
illuminate the target scatterers with essentially identical angles
and the receiving antennas receive the reflected waveforms with
identical angles. Therefore, from the viewpoint of the scatterers
in a phased-array radar, emitting the waveforms via different
transmit antennas or summing them up and using only one
transmit antenna provide the same diversity gain. The same
argument holds for the receive antennas as well.

V. SIMULATION RESULTS

In this section we provide simulation results on the per-
formance of the proposed algorithms in terms of parameter
estimation and detection. We consider two antenna configura-
tions with Ny = N, = 2 and N; = 4, N, = 8 respectively.
We assume that the transmit and receive antennas are located
at X! = (m,0,0) for m = 1,...,4 and X’ = (0,n,0)
for n = 1,...,8, respectively, and the target to be detected
is located at Xy, = (20,15,0) where all the distances are
in kilometer (km). The path loss coefficient is § = 2, the
carrier frequency is f. = 5 MHz and we assume that the
target comprises of P = 10 scatterers and the number of signal
samples is K = 40. Finally, as the waveform design is beyond
the scope of this WOl‘k,‘ we have set the emitted waveforms to
be s (t) = —=exp (Z7) (U(t) = U(t = T)), where U(t)
is the unit step function and 7' denotes the duration of the
waveform and 7" = 10 7. In the phase-array radar, only s; (¢)
is used.

We first consider the performance of parameter estima-
tion. Figure 1 depicts the average normalized mean-square
errors (MSE) for phased-array and for MIMO radar, ie.,
N Do Do | P |7 as a function of received SNR. It
is seen that the MIMO radar outperforms the phased-array in
all SNR range and in particular, by a large margin in the low
SNR regime, which is of more interest in radar applications.
Moreover, it is seen that in MIMO radars, the MAP estimator

FMAP performs better than the estimator 7"°in the high
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SNR regime, while the estimator 7" outperforms the MAP
estimator 7" in the low SNR regime, as expected.

It is seen that the 4 x 8 MIMO radar performs considerably
better than the 2 x 2 MIMO radar, which is due to the fact
that 32 time-delays provide much more information about the
position of the target than 4 time-delays do.

In Fig. 2 the probability of mis-detection versus SNR is
illustrated. The tests are designed such that the probability
of false alarm is Py, < 1076, As analyzed in Section IV

and observed in this figure, the slope of the mis-detection
probability of the phased-array radar is 1 decade per 10 dB,
whereas that of the MIMO radar is Ny N, times steeper. Figure
3 shows the receiver operating curve (ROC) for the MIMO and
the phased-array systems, for SNR = 0 dB. It is seen that the
MIMO radar significantly outperforms the phased-array radar
over a wide range of false alarm values.

VI. CONCLUSIONS

In this paper we have first treated the problem of detecting
a target while some of its parameters are unknown and have
proposed a framework for optimally detecting the target and
estimating such parameters. As an example, we have formulated
the optimal detectors and estimators for the problem of jointly
detecting the target and estimating the time-delays that a
transmitted waveform experiences from being emitted by the
transmit antennas until being received by the receive antennas.
Secondly, the analysis of the diversity gain, which we have
defined as the rate that the probability of mis-detecting the
target decays with increasing SNR where we have shown that in
a Ny x N, widely-spaced antenna configuration, the achievable
diversity gain is N; N,

REFERENCES

[1] B. C. Levy, Principles of Signal Detection and Parameter Estimation,
Ist ed. Springer, 2008.

1 E. Fishler, A. M. Haimovich, R. Blum, L. Cimini, D. Chizhik, and
R. Valenzuela, “Performance of MIMO radar systems: Advantes of
angular diversity,” in Proc. 38th Asilomar Conf. on Signals, Systems and
Computers, Pacific Grove, CA, November 2004.

[3] E. Fishler, A. Haimovich, and R. S. Blum, “Spatial diversity in radars—
models and detection performance,” IEEE Trans. Signal Process., vol. 54,
no. 3, pp. 823-837, March 2006.

[4] A. M. Haimovich, R. S. Blum, and L. J. Cimini, “MIMO radar with
widely seperated antennas,” IEEE Signal Process. Mag., vol. 25, no. 1,
pp. 116 — 129, January 2008.

[5] H. Godrich, A. M. Haimovich, and R. S. Blum, “Target localization
accuracy gain in MIMO radar based systems,” IEEE Trans. Inf. Theory,
2009, submitted.

[6] M. Skolnik, Introduction to Radar Systems, 3rd ed. McGraw-Hill, 2002.

[7]1 S. Haykin, J. Litva, and T. J. Shepherd, Radar Array Processing, 1st ed.
New York: Springer-Verilog, 1993.

[81 H. V. Poor, An Introduction to Signal Detection and Estimation, 2nd ed.
Springer-Verlag, 1998.

[91 G. V. Moustakdies, “Finite sample size optimality of GLR tests,” Sub-
mitted to the IEEE Trans. Inform. Theory.

[10] M. Kendall, A. Stuart, and S. Arnold, Advanced Theory of Statistics,
Classical Inference and the Linear Model. New York: Hodder Arnold
Publications, 1999, vol. 2A.

[11] A. Tajer, G. H. Jajamovich, X. Wang, and G. V. Moustakides, “Optimal
joint target detection and parameter estimation by MIMO radar,” IEEE
Journal of Selected Topics in Signal Processing.

D

[



