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Abstract—We consider the problem of simultaneous binary
hypothesis testing and parameter estimation. By defining suitable
joint formulations we develop combined detection and estimation
strategies that are optimum. Key point of the proposed method-
ologies constitutes the fact that they integrate both well known
approaches, namely Bayesian and Neyman-Pearson.

I. INTRODUCTION

There are important applications in practice where one
is confronted with the problem of distinguishing between
different hypotheses and, depending on the decision, the need
to proceed and estimate a set of relevant parameters. Character-
istic examples are: Detection and estimation (segmentation) of
objects from images [1]; Retrospective changepoint detection,
where one desires to detect a change in statistics but also
estimate the time of the change [2]; Defect detection from
radiographies, where in addition to detecting presence of
defects one would also like to find their position and shape [3];
finally radar applications where one is interested in detecting
the presence of a target and also estimate several target
characteristics as position, speed, etc. All these applications
clearly demand for detection and estimation strategies that
address the two subproblems in a jointly optimum manner.

In the literature, there are basically two, mainly ad-hoc, ap-
proaches that deal with combined problems. The first consists
in treating the two subproblems separately and applying in
each case the corresponding optimum technique. For instance
one can use the Neyman-Pearson optimum test for detection
and the optimum Bayesian estimator for parameter estimation
to solve the combined problem. As we will see in our analysis,
and it is usually the case in combined problems, treating
each part separately with the optimum scheme, does not
necessarily produce overall optimum performance. The second
method consists in using the Generalized Likelihood Ratio
Test (GLRT) which detects and estimates at the same time,
with the parameter estimation part relying on the maximum
likelihood (ML) estimator. Both approaches are not optimum
in any finite-sample-size sense.

Surprisingly, one can find very limited literature that deals
with optimum solutions of joint detection and estimation
problems. There are purely Bayesian technique reported in [4],
[5] where the performance criterion combines the estimation
and detection efficiency in order to capture the collective
detection/estimation power. The overall cost is then optimized
to yield the optimum combined scheme.

In this work we will consider two different methodolo-
gies. The first will resemble the formulation proposed in
[4], [5] only here, instead of a purely Bayesian formulation,
we adopt a combination of Bayesian and Neyman-Pearson
approach. Specifically we will mimic the Neyman-Pearson
setup and replace the decision error probabilities, used in

classical Neyman-Pearson, with estimation costs. The resulting
optimum combined scheme will clearly have similarities with
the ones reported in [4], [5]. However, in this part, we will
place our main emphasis in proving an interesting optimality
property for GLRT and in developing alternative to GLRT
detection/estimation structures which rely on estimators that
are different from ML.

In the second methodology, we will concentrate on the esti-
mation subproblem and after defining a suitable performance
measure for the estimator we will optimize it, assuring in
parallel satisfactory performance for the detection subproblem
through suitable constraints. This formulation will give rise
to novel one- and two-step optimum detection and estimation
structures that allow for the trading between detection power
and estimation quality. This desirable characteristic is not
enjoyed by the previous class of combined schemes.

II. BACKGROUND

Let us define the problem of interest. Motivated by most
applications mentioned in the Introduction, we limit ourselves
to the binary hypothesis case with parameters appearing only
under the alternative hypothesis. Suppose we are given a
finite-sample-size observation signal X for which we have the
following two hypotheses

H0 : X ∼ f0(X),
H1 : X ∼ f1(X|θ), θ ∼ π(θ),

where f0(X), f1(X|θ) and π(θ) are known pdfs. Specifically,
we assume that under H1 the pdf of X contains a collection
of random parameters θ for which we have available some
prior pdf π(θ), whereas under H0 the data pdf is completely
known. The goal is to develop a mechanism that distinguishes
between H0,H1 and, every time this mechanism decides in
favor of H1, it also provides an estimate θ̂(X) for θ. If D

denotes our decision then our combined detection/estimation
scheme is comprised of the triplet {δ0, δ1, θ̂}, where δi(X)
denotes the probability of a randomized detector for decid-
ing D = Hi; and θ̂(X) is a vector function that provides
the necessary parameter estimates. Clearly δi(X) ≥ 0 and
δ0(X) + δ1(X) = 1.

Let us recall, very briefly, the basic detection and estimation
results when the two subproblems are considered separately.

Neyman-Pearson hypothesis testing: Fix a level α ∈ (0, 1);
since D denotes our decision, we are interested in selecting
a test (namely the randomization probabilities δi(X)) so that
the detection probability P1(D = H1) is maximized subject to
the false alarm constraint P0(D = H1) ≤ α. Equivalently, the
previous maximization can be replaced by the minimization of
the probability of miss P1(D = H0). The optimum detection
scheme is the well celebrated likelihood ratio test which takes
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the following form for our specific setup
f1(X)

f0(X)
=

�
f1(X|θ1)π(θ) dθ

f0(X)

H1

�
H0

γNP. (1)

In other words we decide H1 whenever the likelihood ratio
exceeds the threshold γNP; H0 whenever it falls below and ran-
domize with a probability p when it is equal to the threshold.
The threshold γNP and the probability p are selected to satisfy
the false alarm constraint with equality. The randomization
probabilities δNP

0 (X), δNP
1 (X) corresponding to the Neyman-

Pearson test are given by
δNP
0 (X) = { f1(X)

f0(X)<γNP}
+ (1− p) { f1(X)

f0(X)=γNP}

δNP
1 (X) = { f1(X)

f0(X)>γNP}
+ p { f1(X)

f0(X)=γNP}
,

(2)

where A denotes the indicator function of the set A.
Bayesian parameter estimation: Suppose that we know with

certainty that the observations X come from hypothesis H1,
then we are interested in providing an estimate θ̂(X) for the
parameters θ. We measure the quality of our estimate with the
help of a cost function C(θ̂, θ) ≥ 0. We would like to select
the optimum estimator in order to minimize the average cost
E1[C(θ̂(X), θ)], where expectation is with respect to X, θ.

From [6, Page 142] we have that the optimum Bayesian
estimator is the following minimizer (provided it exists)

θ̂o(X) = arg inf
U

C(U |X), (3)

where C(U |X) is the posterior cost function

C(U |X) = E1[C(U, θ)|X] =

�
C(U, θ)f1(X|θ)π(θ) dθ�

f1(X|θ)π(θ) dθ
(4)

and expectation, as we can see from the last equality, is with
respect to θ for given X . Finally we denote the optimum
posterior cost as Co(X), that is,

Co(X) = inf
U

C(U |X) = C(θ̂o(X)|X). (5)

This quantity will play a significant role in the development
of our theory as it constitutes a genuine quality index for the
estimate θ̂o(X).

Let us now consider the combined problem. We recall that
the hypothesis testing part distinguishes between H0 and H1.
As we have seen, the Neyman-Pearson approach provides the
best possible detection structure for controlling and optimizing
the corresponding decision error probabilities. However with
a decision mechanism that focuses on the decision errors,
we cannot necessarily guarantee efficiency for the estimation
part. Consequently, we understand, that the detection part
cannot be treated independently from estimation. Following
this rationale, in the next two sections we propose two possible
approaches for the joint problem.

III. BAYESIAN/NEYMAN-PEARSON-LIKE FORMULATION

Consider the case where the true hypothesis is H1 and the
true parameter vector is θ. We then distinguish two possible
costs: C(θ̂, θ) ≥ 0 denotes the cost for deciding D = H1 and
providing the estimate θ̂(X), while D(θ) ≥ 0 the cost for
deciding in favor of H0 and therefore providing no estimate.
We can now define the average cost under H1 as follows

J (δ0, δ1, θ̂) = E1[C(θ̂(X), θ)δ1(X) +D(θ)δ0(X)], (6)

where expectation is with respect to X, θ. We observe that
the average cost incorporates the complete detection and
estimation structure, that is, the detector (expressed through
δi(X)) and the estimator (expressed through θ̂(X)). We should
note that the second part involving the cost D(θ) measures the
contribution of the missing detections in the overall cost.

We can now mimic the Neyman-Pearson formulation and
instead of simply minimizing the probability of miss which
is the usual practice in the Neyman-Pearson approach we can
replace P1(D = H0) with J (δ0, δ1, θ̂). In other words we
ask to minimize the average cost under H1. This minimization
will be performed subject to the familiar false alarm constraint
P0(D = H1) ≤ α. The constrained optimization problem and
the corresponding optimum solution are presented in the next
theorem.

Theorem 1. The optimum combined detection and estimation

scheme that solves the constrained optimization problem

inf
δ0,δ1,θ̂

J (δ0, δ1, θ̂); subject to P0(D = H1) ≤ α

is given by the Bayesian estimator θ̂o(X) defined in (3) and

the following detector

D(X)
H1

�
H0

Co(X), if P0(D(X) ≥ Co(X)) ≤ α, (7)

f1(X)

f0(X)
[D(X)− Co(X)]

H1

�
H0

γ, if P0(D(X) ≥ Co(X)) > α,(8)

where D(X) = E1[D(θ)|X]; Co(X) is defined in (5);
f1(X) =

�
f1(X|θ)π(θ)dθ; and the threshold γ is selected

so that the test in (8) satisfies the false alarm constraint with

equality.

Proof: First consider the case P0(D(X) ≥ Co(X)) ≤ α,
then for the average cost we can write

J (δ0, δ1, θ̂) = E1[C(θ̂(X), θ)δ1(X) +D(θ)δ0(X)]

=
�
[C(θ̂(X)|X)δ1(X) +D(X)δ0(X)]f1(X)dX

≥
�
{Co(X)f1(X)δ1(X) +D(X)f1(X)δ0(X)}dX

≥
�
min{Co(X),D(X)}f1(X)dX

= E1[C(θ̂o(X), θ) {D(X)≥Co(X)} +D(θ) {D(X)<Co(X)}]

= J (δo0 , δ
o
1 , θ̂o),

where δo0(X) = {D(X)<Co(X)}, δo1(X) = {D(X)≥Co(X)},
i.e. the test in (7) expressed in terms of randomization
probabilities. Also for simplicity in our proof we assumed
P1(D(X) = Co(X)) = 0. If this is not true then a ran-
domization is required every time D(X) = Co(X). Note that
the first inequality in the previous relations is true because
C(θ̂(X)|X) ≥ infU C(U |X) = Co(X) and from (5) we have
equality iff θ̂(X) = θ̂o(X). Furthermore the last inequality is
true because δi(X) ≥ 0 and δ0(X) + δ1(X) = 1. Equality in
this last inequality is assured iff δi(X) = δoi (X), that is, with
the randomization probabilities corresponding to the detector
defined in (7). The triplet {δo0 , δo1 , θ̂o} is thereby optimum since
it also satisfies the false alarm constraint due to our initial
assumption that P0(D(X) ≥ Co(X)) ≤ α.

Consider now the case where P0(D(X) ≥ Co(X)) > α and
assume for simplicity that G(X) = f1(X)

f0(X) [D(X) − Co(X)],
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when seen as a random variable due to the randomness of
X , has no atoms, namely, no single value attained by G(X)
has nonzero probability. We will first show that there exists
γ > 0 such that P0(G(X) ≥ γ) = α. In other words that there
is threshold γ so that the test in (8) satisfies the false alarm
constraint with equality. Define the difference

φ(γ) = P0

�
f1(X)

f0(X)
[D(X)− Co(X)] ≥ γ

�
− α.

Then we observe that, due to the assumption P0(D(X) ≥
Co(X)) > α, we have φ(0) > 0. Also limγ→∞ φ(γ) = −α <
0. Consequently there exists γ > 0 where we have φ(γ) = 0,
namely, the test in (8) satisfies the false alarm constraint with
equality. Let us now prove that this test minimizes the average
cost among all tests that satisfy the false alarm constraint.

If γ > 0 is the quantity defined above, then for any
combined test satisfying the false alarm constraint we have

J (δ0, δ1, θ̂) + γα ≥ J (δ0, δ1, θ̂) + γP0(D = H1)

= E1[C(θ̂(X), θ)δ1(X) +D(θ)δ0(X)] + γE0[δ1(X)]

=
�
[C(θ̂(X)|X)δ1(X) +D(X)δ0(X)]f1(X)dX

+
�
γδ1(X)f0(X)dX

≥
�
{[Co(X)f1(X)+γf0(X)]δ1(X)+D(X)f1(X)δ0(X)}dX
≥

�
min{[Co(X)f1(X) + γf0(X)],D(X)f1(X)}dX

= E1[C(θ̂o(X), θ) {G(X)≥γ} +D(θ) {G(X)<γ}]

+ γP0 (G(X) ≥ γ) = J (δo0 , δ
o
1 , θ̂o) + γα.

Comparing the first with last term, we conclude that
J (δ0, δ1, θ̂) ≥ J (δo0 , δ

o
1 , θ̂o) where θ̂o(X) is defined in (3)

and δo0(X) = {G(X)<γ}, δo1(X) = {G(X)≥γ}, namely the
test in (8) expressed with randomization probabilities.

As we can see from both versions of the test in (7),(8)
Co(X) plays the role of a quality index for the estimate θ̂o(X).
Indeed the larger this quantity, the less reliable the estimate
is considered, since the less chance the test has to decide in
favor of H1. We will see that Co(X) continues to enjoy the
same role in all test that we introduce in the sequel.

We would like to point out that the proof and the results
developed so far, present definite similarities with [4]. As
far as Theorem 1 is concerned the pure Bayesian approach
in [4] captures only the test in (8) and not the version in
(7). Even though this difference is not dramatic we continue
in this direction because we would like to present an inter-
esting optimality result for GLRT not mentioned in [4] and,
furthermore, with the help of Theorem 1 introduce alternative
to GLRT tests. Let us first apply Theorem 1 to demonstrate an
important optimality property for GLRT.

A. Finite sample size optimality of GLRT

Suppose that under H1, parameter θ can assume a finite
number of possible values θ ∈ {θ1, . . . , θN} with prior
probabilities π1, . . . ,πN . Consider now the following cost
functions C(θ̂, θ) = {θ̂ �=θ} and D(θ) = 1. It is then very
easy to realize that J (δ0, δ1, θ̂) expresses the probability of

making an error under H1. Indeed, from (6) we can see that
the first part involving the cost C(θ̂, θ) corresponds to the case
where we select correctly the hypothesis but we make an error
in the selection of the parameter, whereas the second term

involving the cost D(θ) is the probability to select incorrectly
the hypothesis. Consequently the resulting average cost is a
legitimate performance criterion that makes a lot of sense.

We would like to minimize the error probability under H1

assuring, at the same time, that the false alarm probability is
no larger than α. We should point out that if in Theorem 1 we
select the prior pdf π(θ) to be a collection of Dirac function,
then we can easily accommodate the case where θ assumes a
finite number of values. Note that f1(X) =

�N
k=1 f1(X|θk)πk

and for U ∈ {θ1, . . . , θN}, we can write

C(U |X) = 1− {U=θn}f1(X|θn)πn

f1(X)

Co(X) = 1− maxθn f1(X|θn)πn

f1(X)

θ̂o(X) = argmax
θn

f1(X|θn)πn.

As expected, θ̂o(X) is simply the MAP estimator. Applying
now Theorem 1 and observing that D(X) = 1 we first
conclude that (7) leads to a trivial test. Consequently the
optimum test that minimizes the error probability under H1

is the version in (8) which takes the form
maxθn f1(X|θn)πn

f0(X)

H1

�
H0

γ.

Additionally, if the prior is uniform, that is, πn = 1/N , then
the previous test is equivalent to

maxθn f1(X|θn)
f0(X)

H1

�
H0

Nγ = γ�

which is the GLRT while θ̂o(X) = argmaxθn f1(X|θn) is
the ML estimator. We thus conclude that by adopting as cost
function the one that leads to the MAP estimator and then
assuming uniform prior for the parameter θ, we can prove
finite-sample-size optimality for GLRT. This interesting result
in not reported in [4] and, furthermore, GLRT is not known
to enjoy any finite-sample-size optimality property.

Similar conclusion can be drawn when θ assumes a con-
tinuum of values and we use as cost function C(θ̂, θ) =

{|θ̂−θ|>∆}, where 0 < ∆ � 1, i.e. the one that leads to the
MAP estimator in the classical Bayesian estimation theory [6,
Pages 145-147]. Considering also D(θ) = 1 and uniform prior
for θ, if we follow similar steps as in the finite case, we can
show that the resulting test takes the familiar GLRT form

supθ f1(X|θ)
f0(X)

H1

�
H0

γ, (9)

with the corresponding optimum estimator being equal to the
ML estimator θ̂o(X) = arg supθ f1(X|θ).

B. Alternative tests

If one is not content with ML and desires to use instead
MMSE or minimum mean absolute error (MMAE) estimates,
the question is whether it is possible to develop tests, that
employ these estimates, and can replace GLRT. Theorem 1
gives the general framework that allows for the development
of such results. We recall that key assumption in obtaining the
GLRT is that the prior π(θ) is uniform; assumption that we
also adopt for the MMSE and MMAE criterion.
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1) MMSE Detection/Estimation: We consider the cost func-
tion C(θ̂, θ) = �θ̂ − θ�2. The second cost function D(θ) will
be specified in the sequel. From Theorem 1 we have that the
estimator in the optimum combined scheme is the minimizer
of the conditional mean square error which is the conditional
mean of θ given the data X [6, Page 153]. Under uniform
prior we can thus write

θ̂o(X) = E1[θ|X] =

�
θf1(X|θ)dθ�
f1(X|θ)dθ

.

Similarly for the optimum posterior cost Co(X) we have

Co(X) =

�
�θ�2f1(X|θ)dθ�
f1(X|θ)dθ

− �θ̂o(X)�2.

Let us now apply the optimum tests proposed in Theorem 1.
Recalling that

D(X) = E1[D(θ)|X] =

�
D(θ)f1(X|θ)dθ�

f1(X|θ)dθ
,

we have that the first version in (7) is equivalent to

�θ̂o(X)�2
H1

�
H0

�
[�θ�2 −D(θ)]f1(X|θ)dθ�

f1(X|θ)dθ
and the second in (8) equivalent to
�
f1(X|θ)dθ
f0(X)

�
�θ̂o(X)�2 −

�
[�θ�2 −D(θ)]f1(X|θ)dθ�

f1(X|θ)dθ

�H1

�
H0

γ.

For D(θ) it seems reasonable to select D(θ) = �θ�2. This
becames particularly apparent when f0(X) = f1(X|θ = 0),
that is, when we are interested in detecting whether the value
of a parameter has changed from the nominal value θ = 0 to
some alternative that we also like to estimate. Consequently,
when under H1 we decide D = H0, it is as if we select θ = 0
which yields a squared error �θ − 0�2. With this selection of
the cost function D(θ), the first version of the test is never
used because it always decides in favor of H1. For the second
version we have the following simple form

�
f1(X|θ)dθ
f0(X)

�θ̂o(X)�2
H1

�
H0

γ.

As we can see, the estimate plays an explicit role in the deci-
sion process. This is the equivalent of the GLRT test defined
in (9) but with the MMSE replacing the ML estimation.

2) MMAE Detection/Estimation: Following similar steps
for the case C(θ̂, θ) = |θ̂ − θ| and assuming for simplicity
that θ̂, θ are scalars, we end up with the optimum estimator
being the conditional median [6, Page 153], that is, the solution
of the equation

θ̂o(X) = arg
�
θ̂ :

� θ̂
−∞f1(X|θ)dθ
�
f1(X|θ)dθ

= 0.5
�
. (10)

Furthermore if we select D(θ) = |θ| which, again, makes
sense under the frame we discussed in the MMSE criterion,
we end up with a unique version for the optimum test which
has the following interesting form

� θ̂o
0 θf1(X|θ)dθ

f0(X)

H1

�
H0

γ.

This test is the alternative of the GLRT when we adopt the
MMAE in place of the ML estimator.

IV. FORMULATION WITH CONSTRAINED DETECTION

One may argue that the Bayesian/Neyman-Pearson-like
methodology of the previous section, presents an important
weakness due to the necessity to specify the cost induced
by the missed detections. As we realize from the previous
examples, proposing a suitable D(θ) is significantly more
arbitrary than specifying the cost C(θ̂, θ).

In this section we follow a different direction that com-
pletely bypasses the need to define this additional function.
As we will see, depending on how we incorporate the notion
of reliable estimate into our setup, this new formulation will
yield one- and two-step detection/estimation strategies that are
completely novel.
A. One-step tests

As before, the combined scheme consists of the triplet
{δ0, δ1, θ̂}. We like to decide between H0,H1 but in the
following sense: We decide in favor of H1 only if our decision

can lead to a reliable estimate of θ. In other words we do not
care to distinguish the null hypothesis from the alternative if
the latter cannot provide reliable estimates. There are various
application where this reasoning makes sense. For example in
Image Processing when one is interested in segmenting objects
in images, detection of an object is useless unless we can find
its border (estimation).

Focusing on the estimation subproblem, we can now define
the following performance measure

J (δ0, δ1, θ̂) = E1[C(θ̂, θ)|D = H1]. (11)
We use the classical Bayesian cost function for the estimator
θ̂ but we condition on the event that we have an estimate only
when we decide in favor of H1. As before the proposed perfor-
mance measure depends on the complete detection/estimation
structure. Clearly the goal is to minimize J (δ0, δ1, θ̂) however,
we observe that this criterion assesses only the quality of
the estimation subproblem. In order to guarantee satisfactory
performance for detection we will impose suitable constraints.

We propose to control the two decision error probabilities
as follows: P0(D = H1) ≤ α which is our familiar false alarm
constraint, but also, P1(D = H0) ≤ β which is a constraint on
the probability of miss. We need to select 1 > β ≥ βNP(α)
where βNP(α) is the probability of miss of the Neyman-
Pearson test defined in (1), because no test can have smaller
probability of miss than the Neyman-Pearson test. What we
are actually proposing here is to sacrifice part of the detection

power as compared to the Neyman-Pearson test (by allowing
more misses), in the hope that this will induce a significant
improvement in the estimation quality. We have the following
theorem that solves the constrained optimization problem.

Theorem 2. Consider the two constraints P0(D = H1) ≤ α
and P1(D = H0) ≤ β, where 1 > α > 0 and 1 > β ≥ βNP(α)
with βNP(α) denoting the probability of miss of the Neyman-

Pearson test. Let λo > 0 be the solution of the equation

P1 (λo ≥ Co(X)) = 1− β,

where Co(X) is defined in (5). Then the optimum combined

scheme that minimizes J (δ0, δ1, θ̂) in (11) under the two error

constraints is comprised of the Bayesian estimator θ̂o(X)
defined in (3) and the following two versions for the decision
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rule

Co(X)
H1

�
H0

λo, if α ≥ P0 (λo ≥ Co(X)) (12)

f1(X)

f0(X)
[λ− Co(X)]

H1

�
H0

γ, if α < P0 (λo ≥ Co(X)) , (13)

where in (13) λ, γ are selected so that the two error probability

constraints are satisfied with equality.

Proof: Although the results appear to be similar, the proof
of this theorem is more involved than the one of Theorem 1.
Details can be found in [7].
B. Two-step tests

In most applications it is undesirable to give up part of
the detection power. This is for example the case in radars
where it is still helpful to detect a target even if we cannot
reliably estimate its parameters. For such problems we propose
the following two-step approach: We use an initial detector to
distinguish between H0 and H1; whenever this test decides in
favor of H1 then, at a second step, we compute the estimate
θ̂(X) and employ a second test that decides whether the

estimate is reliable or unreliable, denoted as H1r,H1u respec-
tively. Consequently we make three decisions H0,H1r,H1u

with the union of the last two corresponding to hypothesis
H1. As we can see, we “trust” the estimate θ̂(X) only when
we decide in favor of H1r, but we still have detection even if
we discard the estimate as unreliable.

For the first test we use our familiar randomization probabil-
ities {δ0(X), δ1(X)} and for the second we employ a new pair
{q1r(X), q1u(X)}. The latter functions are the randomization
probabilities needed to decide between reliable/unreliable es-
timation given that the first test decided in favor of H1. There-
fore we have q1r(X), q1u(X) ≥ 0 and q1r(X)+ q1u(X) = 1.
We conclude that the complete set of quantities needed to be
specified is now {δ0, δ1, q1r, q1u, θ̂}.

For the first test we minimize the probability of miss subject
to the false alarm constraint P0(D = H1) ≤ α. This of course
yields as optimum the Neyman-Pearson test defined in (1).
Having identified the test in the first step we proceed to the
second which involves the estimator θ̂(X) and the second
decision mechanism that uses q1r(X), q1u(X) to label the
estimate as reliable/unreliable. As in the previous subsection
we define the conditional cost for the estimator
J (δNP

0 , δNP
1 , q1r, q1u, θ̂) = E1[C(θ̂(X), θ)|D = H1r], (14)

with δNP
i (X) defined in (2) and expressing the fact that for

the first test we use the Neyman-Pearson test. Conditioning
is now with respect to the event {D = H1r} since this is the
only case where the estimate θ̂(X) is accepted.

We recall that not all detections lead to reliable estimates.
Since we do not want to characterise a great deal of our de-
tections as providing unreliable estimates, we need to impose
the constraint 1− β ≤ P1(D = H1r) in order to control their
probability. In other words the probability of reliable estimates
must be no smaller than a prescribed level 1 − β which,
of course, cannot exceed the level of the original detections
of the first step which is 1 − βNP(α); consequently β must
satisfy 1 > β ≥ βNP(α). We have the following theorem that
identifies the estimator and the second test that optimize the

cost in (14).

Theorem 3. Let 1 > β ≥ βNP(α), then the estimator and

the test that minimize the average conditional cost defined in

(14) subject to the constraint 1 − β ≤ P1(D = H1r) are the

Bayesian estimator θ̂o(X) defined in (3) and for the test we

have

Co(X)
H1r

�
H1u

λ, (15)

where λ is selected to satisfy the constraint with equality.

Proof: The proof presents no particular difficulties. De-
tails can be found in [7].

In all three detection/estimation schemes appearing in the
corresponding three theorems, the quantity Co(X) plays the
role of a quality index for the estimate θ̂o(X). This is
particularly apparent in the last case where Co(X) is explicitly
used to label the corresponding estimate as reliable/unreliable
by simply comparing this quantity to a threshold. Finally in
the last two combined schemes we observe that there is the
possibility to trade, in a very controlled way, detection per-
formance with estimation efficiency. This useful characteristic
is not enjoyed by the first schemes presented in Section III,
including the popular GLRT.

Numerical examples that demonstrate the possibility of en-
joying significant performance gains using the latter schemes
over the conventional methodology of treating the two sub-
problems separately, can be found in [7].

V. CONCLUSION

We have presented two possible formulations of the joint
detection and estimation problem and developed the corre-
sponding optimum solutions. The first formulation combines
the Bayesian method for estimation with the Neyman-Pearson
approach for detection. This leads to a number of interest-
ing combined schemes that can be used as alternatives to
GLRT and proves an interesting finite-sample-size optimality
property for this test. In the second formulation we propose
a Bayesian approach for the estimation subproblem assuring
in parallel the satisfactory performance of the detection part
through suitable constraints. This results in one- and two-step
optimum schemes that can trade detection power for estimation
quality under a completely controlled frame.
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