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ABSTRACT 

FIR filters obtained with the classical L2 method 
have performance that is very sensitive to the form 
of the ideal response selected for the transition re- 
gion. In this paper we propose a means for selecting 
the unknown part of a compIex ideal response opti- 
mally. By selecting a proper L2 criterion and using 
variational techniques we succeed in minimizing the 
criterion with respect to the ideal response and thus 
obtain its corresponding optimum form. The com- 
plete solution to the problem can be obtained by 
solving a simple system of linear equations suggest- 
ing a reduced complexity for the proposed method. 
Using the optimum form of the ideal response we 
also propose a new suboptimal method for the de- 
sign of weighted FIR filters. Design examples are 
presented to illustrate the performance of the pro- 
posed method. 

1. INTRODUCTION 

A very important class of 1-D filters is the class of 
linear phase Finite Impulse Response (FIR) filters. 
This class is tractable because the linear phase re- 
striction converts the filter design problem into a 
real approximation problem. However, the linear 
phase restriction is not needed in the stopbands of 
the filter. Imposing the linear phase requirement 
only inside in the passbands of the filter improves 
significantly the approximation error. On the other 
hand the design problem becomes a complex ap- 
proximation problem. Complex approximation is 
also needed for the design of filters with nonlinear 
phase such as FIR equalizers, beamformerms and 
seismic migration filters. 

The most common techniques used for the design 
of complex FIR filters use as approximation crite- 
rion the minimization of the L2 or L,  measure. 
The L,  criterion is considerable more difficult to 
use in the complex case than it is in the real one. 
This is because in the complex case the alternation 
property of the error function is not necessary for 
optimality [7]. Thus the minimization of the L,  
measure needs the use of sophisticated optimiza- 
tion tools as iterative constrained linear program- 
ming [l], [2], or iterated reweighted least squares [4], 
that require a large computational effort. 

The L2 criterion is the simplest criterion and re- 
sults in an easily computable Fourier series approxi- 
mation. Unfortunately this method is known for its 

poor performance that is more pronounced at the 
discontinuity points of the ideal response (Gibb’s 
phenomenon) [9], [lo]. The performance of the L2 
method can be improved if transition regions are in- 
troduced between passbands and stopbands. There 
are two categories of design techniques based on 
this idea. The first includes methods that define 
the ideal response inside the transition region using 
some arbitrary class of functions and the second 
category considers the transition region as “don’t 
care” and simply removes them from the error mea- 
sure [8], [lo]. 

In [ll] a new L2 method for the design of the 
zero phase FIR filters was presented. Specificaly, 
by minimizing a properly selected L2 measure with 
respect to the filter coefficients and with respect 
to the unknown ideal response (using variational 
techniques [SI) optimum L2 filters were designed 
that had a very good performance as compared to 
the L ,  measure. 

In this paper we extend this idea to the complex 
FIR filters. In the next section we are going to 
define our optimization criterion and present the 
solution. 

2. OPTIMIZATION CRITERION AND 

Let us consider a complex function D(w) that 
we like to approximate in the L2 sense using 
linear combinations of the complex exponentials 
dnw, n = NI,. . . , N2 where we assume that N2 - 
NI is an even number (odd length filter). We can 
easily prove that this problem is the same as ap- 
proximating D(w)e-jT” with linear combinations 
of the exponentials ejnW, n = -N, . . . , N where 
N = (Nz - N1)/2 and T = (NI + N2)/2. So for 
now on we will assume that we have this case. If 
we define the vector function 

OPTIMUM APPROXIMATION 

4 ( w )  = [ 4 - - N ( W )  .. ’  4o(w) . ’ .  4 N ( W ) l t  (1) 

with &(U) = eJnw then, it is well known that the 
Fourier approximation of function D(w) can be ex- 
pressed as H D  ( w )  = 4’(w)ho and the optimal coef- 
ficient are given by ho =< 4, D > where <, > de- 
notes the usual inner product of two complex func- 
tions. 

Let us now proceed to the definition of the opti- 
mality criterion. To this end let -n = W O  < w i  < 

distinct points on the interval Z = [-n T] and let 
W 2  < w3 < . . . < W M - 2  < W M - 1  = A be ally M 
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D ( w )  be a complex function defined bn this interval 
as follows 

(2) 
F(w)  W E U i ,  i = 1 ,  ..., N, 

D ( w ) = {  G(w)  ~ E K ,  i = 1 ,  ..., Nt 

where N, = [TI, Nt = L$.J, Ui = [w~( i - - l )  w~i-11, 

71 = ( w ~ i - 1  w ~ i )  and F(w)  is assumed known while 
G ( w )  is unknown. Let us denote with U = U21Ui, 
7 = UzlK. Notice that the region U is the union 
of the Nu closed disjoint intervals Ui where D(w) 
is assumed known, while the region 7 is the union 
of the Nt open disjoint intervals 5 where D(w)  is 
assumed unknown. 

Since the part of the complex function D(w)  in- 
side the region 7 is not explicitly given this means 
that, by varying G(w) ,  we can have a whole class of 
possible functions D(w). 

As in the real case 1111 let us define the following 
LS criterion 

where D(l),  H g )  denote the derivatives of D and 
H D  respectively. Notice that for a meaningful de& 
nition of the criterion & ( D ,  h) the function D(w)  
must be continuous at all end points w z ,  a = 

Our goal now is to minimize &(D, h) with respect 
to the coefficients h of the filter and with respect 
to the unknown ideal response D. The first mini- 
mization with respect to the coefficients (for given 
D )  yields the well known Fourier coefficients. To 
further minimize the resulting error with respect to 
D we use similar variational techniques as in [ll] 
and we obtain the following relation for the opti- 
mum ideal response Do(w)  and its corresponding 
optimum filter H,(w) 

1,. . . , M .  

Do(w) = H,(w)+q2,o+q,,1w, w E 71, i = 1,. . . ,Nt 
(4) 

We realize from (4) that the optimum form of the 
complex function inside the region 7 is a combina- 
tion of a regular and a trigonometric polynomial. 

To this end, let h, denote the Fourier coefficients 
corresponding to the optimum complex function 
Do(w), then H,(w) = &(w)h,. Define now the 
vector function $ ( U )  = [l and the Nt vectors 
q2 = [q2 ,0  q2,1It. It  is then easy to show that we 
have the following system of equations from which 
we obtain our unknowns. 

N t  

(2x1 - A)h, - B,q, = & ( 5 )  
2 = 1  

where the involved quantities in the above system 
are defined as follows 

a = 1  

B2 = < 4 , 1 ~ $ ~  > 
and l x ( w )  denotes the index function of the set X .  
Notice that the 2N + 1 linear equations of (5) re- 
sult from minimization of the criterion with respect 
to the coefficients of the filter while the 2Nt linear 
equations of (6) and (7) are obtained by requiring 
the optimum function Do to be continuous on the 
end points of the Nt disjoint intervals x. Notice 
also that all quantities defined in (??) depend only 
on known functions integrated over known sets and 
thus can be considered given. 

Concluding we obtain the complete solution to 
the constrained optimization problem by solving 
the set of linear equations defined by (5), (6) and 

2.1. Weighted Least Squares Approxima- 

There are cases where we are interested in weighting 
the approximation errors in the bands of interest. 
This can be taken into account by incorporating 
a weighting function into the LZ measure. Gen- 
eralizing our result of the previous section to the 
weighted Least Squares (WLS) case was not pos- 
sible. In other words it was not possible to find a 
WLS criterion which optimized with respect to the 
filter coefficients and the unknown ideal response to 
yield a filter with good performance. On the other 
hand we are able to propose a method for design- 
ing weighted filters that have excellent performance 
just by properly extending the equations of the pre- 
vious section to the weighted case. We like to stress 
that the proposed filter in this section is not optimal 
in any sense except when the weights are all equal 
to unity. Thus let us assume that inside the bands 
of interest we are also given a function W ( w )  which 
is the necessary weight. The basic idea is to use 
inside each transition region the following equation 

(7). 

tion 

W ( w ) D o ( w )  = W(w)H,(w)  + q2,o + Q 2 , l W  

w E z ,  i = 1 ,  . . . ,  Nt (9) 

corresponding to (4). Notice that in the transition 
regions W ( w )  is not known. We just define it as 
a third order polynomial (different in each inter- 
val 71) and such that it insures continuity of W ( w )  
and of its derivative. We can show that the result- 
ing W ( w )  is monotone inside each transition region. 
Following a similar procedure as in the previous sec- 
tion the linear system that gives the solution to our 
problem is the following 

N t  

( E  - A)h, - B2qt = hu (10) 
a=1 
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where 

7 5  

Z = 1  
Bi = <d,17;qt >w 

v2i-1 = W(wZi--l-)F(wzi-l-) 
V2i = W(wai+)F(wzi+) 

Oevlation 0 7743 

and < f, g >W denotes the weighted inner prod- 
uct of the complex functions f, g defined as < 
f ,  g > w =  S W 2 ( w ) f ( w ) g * ( w ) d w .  Notice that all 
quantities defined in (13) can be computed since 
they depend only on known functions integrated 
over known sets. 

In the next section we are going to apply our 
method to the design of complex FIR filters. 

3. DESIGN OF FIR DIGITAL FILTERS 

Let us assume that the region U is the union of the 
passbands and stopbands of the desired filter while 
the region 7 coincides with the union of the tran- 
sition bands. Under these assumptions it is easy 
to see that the filter design problem can be consid- 
ered as a special case of the general approximation 
problem defined in Section 2. 

Let us now apply our method to two different fil- 
ter design problems and compare it to other exist- 
ing techniques. Specifically we are going to compare 
our method against the min-max equiripple [7],[2] 
and the don't care region [3],[10, p. 701 methods. 

Example  1. Let D ~ p ( w )  be the ideal response of 
a lowpass filter defined as follows 

where w p ,  ws,  r are the desired cut-off frequencies 
and the desired passband group delay of the filter. 

Consider the special case wp = 0.46 ws = 0.5 
and T = 4N/5 where w is normalized in [-1 11. In 
Table I we present the maximum ripple e, in mag- 
nitude and the maximum ripple in the passband 
group delay e, for the two methods under compari- 
son, for different values of N. We can conclude from 
Table I that our method has at least 45% smaller 
maximum ripple in magnitude as compared to the 
other method. 

Let us now approximate the same ideal response 
with a filter of length 249 and by using weights 10 
and 1 in the stopbands and the passband of the fil- 
ter respectively. The resulting maximum approxi- 
mation errors in magnitude and passband group de- 
lay are 3.80 x lop4 and 0.0716 respectively. These 
results compare favorably with the corresponding 
min-max values 2.03 x and 0.150 given in [2] 
where the same design problem was considered. 

Example  2. This example corresponds to a nearly 
linear phase bandpass filter with the following spec- 
ificat ions 

0 w E [-1 - 0.81 

(15) 
E [-0.6 - 0.41 e--jlow 

0 w E [-0.2 01 
,-jSw w E [0.2 0.81 

D B P  (U)  = 

(16) 
1 in passbands 

10 in stobands W ( w )  = 

By approximating the above ideal response with a 
filter of length 25 the resulted maximum approxi- 
mation errors in magnitude and passband group de- 
lays are 0.0552 and 0.7743. These deviations com- 
pare favorably with the values 0.037 and 0.6858 
given in [7] where the same filter was designed. 
Fig. 1 depicts the magnitude of the resulting op- 
timum filter. Finally in Fig. 4 we plot the approx- 
imated and the desired passband group delays of 
the filter. 

. . . . . . I 
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Figure 1. Magnidute response in dB of the nearly 
linear phase bandpass filter. 
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outperformed the “don’t care” method while at the 
same time compared well with the optimum min- 
max approximation. The complexity of the pro- 
posed method was low because it required the so- 
lution of a linear system. 
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