Acceleration of the Remez Exchange Algorithm for the
Design of L, Optimum FIR Filters

Emmanoull Z. Psarakis and George V. Moustakides
Department of Computer Engineering and Informatics, University of Patras, Patras 26500, GREECE
Computer Technology lunstitute (CTI) of Patras, P.O. Box 1122, Patras 26110, GREECE.

ABSTRACT

In this paper a new initialization scheme for the Re-
mez exchange algorithm is proposed. More specif-
ically, the solution of the well known “don’t care”
filter design method is proposed as a new eflicient
initialization scheme for the Remez algorithm. Our
proposal is motivated by the fact that the “don’t
care” least squares optimum solution satisfies the one
of the two basic conditions that are sutlicient for ob-
taining the L., optimum solution according to the
Alternation Theorem and at the same time it ad-
equately approximates the second one. Because of
these properties we have a significant speed up of
the convergence of the Remez exchange algorithm to
the L., optimum solution.

1 Introduction

In FIR filter design theory, the L., norm is a
very widely used approximation measure. Approx-
imations obtained by this criterion, also known as
Chebyshev or Min-max, exhibit equiripple behav-
ior in the frequency bands of interest (passband and
stopband). 'This type of behavior is clearly very de-
sirable in practice because it completely eliminates,
in an optimum way, the Gibb’s phenomenon ob-
served in other (especially L2} approximation tech-
niques.

Obtaining the optimum L, solution is quite a dif-
ficult task. All existing algorithms that obtain the
Chebyshev approximations are iterative and require
an increased complexity. Most well known such algo-
rithms are the Remez Exchange Algorithm (REA),
the Iterative weighted least squares and algorithms
based on Constraint linear optimization. In this
work we will concentrate on the REA [6],[7],[12].

In most iterative techniques the time required by
the algorithm to converge depends closely on the ini-
tial “guess” of the solution. The “better” this se-
lection is, the faster the algorithm converges to the
final solution. It is also not uncomimon, bad initial
selections, to lead to divergence, 'L'he first initializa-
tion method for RISA was presented in [7] and addi-
tional methods aiming in speeding up the algorithm
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in [1],[4]. In this paper we propose an alternative ini-
tialization scheme. Specifically we propose the use of
the “don’t care” least squares optimum solution [11,
page 70} as a starting point for the REA. This pro-
posal is strongly supported by a theoretical result
stating that the “don’t care” solution has the right
number of alternating in sign extrema, required by
the Alternation heorem, inside the bands of inter-
est. Thus it satisfies exactly one of the two conditions
that define the optimum L, solution. On the other
hand the “don’t care” method is known to yield very
good (in the L., sense) filters that approximating
sufficiently close the second condition that defines
the optimum L. filter.

2 L. Approximations and the Alternation
Theorem

Let us first define the approximation problerm we are
interested in. Consider a collection of a finite number
of closed nonoverlapping intervals [;, ¢ = 1,..., K
that are subsets of [0 #]. Consider also a real func-
tion D{w), continuous and known on each interval
I;, which we like to approximate in the L., sense.
Let ¢y, (w) = cos{nw), or ¢p(w) = sin((n + L)w), n =
0,..., N—1Dbe two sets of base function we like to use
to approximate the function D(w). Finally let W (w)
be a weighting function which is known, continuous
and nonnegative on each interval /;.

The correspondence with the filter design prob-
lem is obvious. The intervals [; constitute either the
passpands or the stopbands, D(w) is the desired re-
sponse and W(w) is the weight in each band. The
first set of base functions-can be used to approxi-
mate even symmetric desired responses (defined on
[~ 7]) while the second odd symmetric. It is also
clear that the open intervals between consecutive I;
constitute the transition regions between the bands
of interest.

Let h =[hphy ... hy_1]t be a vector of coefficients
and denote by H(h,w) = Zﬁ:_ol hydn(w) a linear
combination of the base functions. We are interested
in obtaining the optimum h,, in the L. sense, that
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satisfies

hy = arg {inf sup W (w)[D{w) — H(hw)][}

b LuEU{;lI,
(0

We have now the following theorem that gives nec-
essary and sufficient conditions for A,.

Theorem 1: The vector h, is the optimum in the
L sense if and only if the following two conditions
are satisfied:

i). The weighted error function W(w)[D(w) —
H(h,,w)] has at least N + 1 local extrema with
alternating sign at points wy < wq < -+ < wy 41
that belong to the bands of interest (le. w, €
UL 4).

11). 'L'he local extrema of condition 1) are all equal,
In ahsolute value, to the maximum weighted
absolute deviation sup,cux W(w)|D(w) —
H(hy,w)l. -

Proof: ‘L'he proof can be found in [8],[13]. |

The above theorem is also known as the Alterna-
tion Theorem and completely characterizes the opti-
mum solution h,. From i) and ) we can conclude
that a vector h can be regarded as a good initial guess
for any recursive algorithm that tries to estimate h,,
if it satisfies condition 1) exactly and condition ¢¢) ap-
proximately. Notice that the main difficulty for any
such initialization scheme is to insure the existence
of at least N +1 local extrema, with alternating sign,
INSIDE the set UL, ;.

3  “Don’t Care” Optimum Least Squares Ap-
proximations

Let _/.)(wv), W(w), ¢n(w) be as in the previous section.
Recall that W (w) was defined only on the set UL, J;.
If we extend W{(w) to the whole interval [0«], by
setting W(w) = 0 for w € [0 7] — UL /;, we can then
define a vector of optimum coefficients hy by solving
the following least squares problem

hy = arg {n]}f/ W3 w)[D(w) — H(h,w)]?dw}
Jo

(2)
Since the weighting function W{w) is zero outside
the set of interest U/ I; the values of D(w) outside
W | 1; play absolutely no role (this is why the term
“don’t care” is used). The optimum vector hg is the
solution to the linear system defined by the equations

/ W) [D(w) = H(hg,w)]gs(w)dw =0 (3)
0 . ) '
with e =0,..., N — L.

It is easy to show that the linear system obtained
by (3) has a Loeplitz plus Hankel structure. "This

allows for the use of specialized algorithms, with re-
duced complexity [9], for finding the solution. It is
also known that the “don’t care” method yields very
satisfactory solutions [2];[3], in the sense that the
maximum ripple is only a few dB larger than the
optimum L, ripple, thus approximating condition
). In order to prove that hy generates the correct
number of local extrema with alternating sign inside
the bands of interest, we are going to use a theorem
due to Motzkin and Walsh from their work in the
area of the Approximation Theory [10]. The same
theorem was used by Rice and Usow in [14] in order
to theoretically show the convergence of the Lawson
algorithm [5].

Theorem 2:  Let {¢n(w)} be a Chebyshev set

and let H(h,w) = Ziy;ol hp@n{w) be a linear com-
bination of this set, where h denotes the parameter
vector [hohy ... hy_1]. Then, if H(h*, w) is a best
weighted L,, (p < 1 < o¢0) approximation to a
continuous function f(w) on a set X which is com-
posed by a number of nonoverlapping intervals of
[0 7], W(w)H (h~,w) strongly interpolates W (w)f(w)
nside the set X.

FProof:  'The proof can be found in [10]. H

Notice that H(hg,w), with hg defined as in (2),
satisfies all the requirements of Theorem 2. Taking
into account that H(h,w) is sald to strongly inter-
polate f(w) N times if

(=D'[H(h,wi) = fw)] = 0 (4)

for some N + 1 points w; in the set X, it is clear that
the “don’t care” least squares optimum solution has
a weighted error that achieves at least & + 1 local
extrema with alternating sign inside the set U /;.
In other words it satisfies exactly condition ¢) of "L'he-
orem 1.

Summarizing, we have that the “don’t care” least
squares optimum solution hy is first of all easily com-
putable because of its special Toeplitz plus Hankel
structure, second it satisfies exactly the most diffi-
cult condition of the Alternation Theorem and third
from practice it is known that. it approximates the
second condition of the Alternation Theorem. 1t can
thus be considered as a good candidate for initializ-
ing the REA.

4 Examples

By modifying the Matlab function REMEZ to accept
our initialization scheme we designed a large number
of lowpass and bandpass filters with varying weights
in each band. We considered filter lengths ranging
from 21 up to 201. In all cases the REA, with the
new initialization scheme, required from 40% to 85%
less iterations to converge as compared to the classi-
cal initialization scheme. Some results obtained from
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the application of the proposed initialization scheme
are contained in Table | and 'I'able 1. Specifically, in
Table I we present the number of iterations needed
by the REA to converge under the two initialization
schemes for different specifications of a lowpass fil-
ter. The width of the transition band of the filters,
in all cases, was 0.1. From the last column of Ta-
ble | we can easily conclude that with the proposed
scheme we have a significant speed up of REA. Ta-
ble L1 contains the results obtained from the design
of a number of bandpass filters. For all cases the two
transition bands had width equal to 0.1, Again for
this type of filters the proposed initialization scheme
significantly improves the convergence speed of the
REA.

Filter Specs | kixist. | Prop. | Saving
IN +1 f W fter. 1ter. %
101 0.1 9 4 55.6
0.2 8 4 50.0
0.3 14 4 71.4
0.4 10 6 40.0
0.5 9 5 44.5
121 0.1 12 5 58.3
0.2 10 4 60.0
0.3 8 4 50.0
0.4 9 4 55.6
0.5 9 4 55.5
141 0.1 12 3 58.3
0.2 10 4 60.0
0.3 10 5 50.0
0.4 10 6 40.0
0.5 10 5 50.0
161 0.1 13 5 61.5
0.2 10 4 60.0
0.3 10 4 60.0
0.4 11 4 63.6
0.5 12 4 66.7
181 0.1 13 4 69.2
0.2 11 4 63.6
0.3 11 5 54.5
0.4 10 6 40.0
0.5 11 5 54.5
201 0.1 16 5 68.8
0.2 13 5 61.5
0.3 14 4 71.4
0.4 13 4 69.2
0.5 11 4 63.6

Table I. Number of iterations required by the REA
to converge under the proposed and the existing ini-
tialization scheme for different lowpass filter specifi-
cations.

5 Conclusion

We have shown that the “don’t care” optimum solu-
tion guarantees the existence of the necessary num-

ber of, alternating in sign, extrema required by the
Alternation Theorem, thus satisfying one of the two
basic conditions of this theorem for the determina-
tion of the L., optimum solution while at the same
time it approximates sufficiently close the second
condition. Because of these properties the “don’t
care” least squares optimum solution, if used as an
initialization scheme for the Remez exchange algo-
rithm, results in a significant increase of its conver-
gence speed as it was demonstrated by a number of
filter design examples.

Filter Specs Exist. | Prop. | Saving
N +1 [ wy | we | Tter. [ Tter. %
101 01103 11 6 45.5
02104 14 7 50.0
03105 26 6 76.9
041086 14 5 64.3
121 0103 15 4 73.3
02|04 14 5 64.3
03105 17 6 64.7
0.4 0.6 16 5 68.8
141 0.1]03 21 9 57.1
02104 21 10 52.4
03105 22 9 59.1
04106 20 7 65.0
161 0.1 103 20 5 75.0
0204 21 6 714
03105 23 5 78.3
0.4] 6 23 5 78.3
181 01103 17 ! 76.5
02104 16 7 56.3
03105 19 8 57.9
04100 22 6 727
201 01103 20 5 75.0
02104 20 5 75.0
03105 18 6 66.7
04106 24 0 75.0

Table II. Number of iterations required by the RIEA
to converge under the proposed and the existing ini-
tialization scheme for different bandpass filter speci-
fications.
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