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ABSTRACT

Generative models can be used, as an alternative to conven-
tional probability densities, to capture the statistical behav-
ior of complicated datasets. Unlike probability densities with
which the generation of realizations may become a challeng-
ing task, generative models have an inherent ability to easily
produce realizations, which, in the case of natural images can
be extremely realistic. In many image restoration problems,
such as deblurring, colorization, inpainting, super-resolution,
etc., probability densities are used as priors, one may there-
fore wonder whether we can, instead, adopt generative mod-
els. Indeed such methods have appeared in the literature, but
they require exact knowledge of the transformations respon-
sible for the data distortion and involve regularizer terms with
weights that require adjustment. Our approach, by combining
maximum a-posteriori probability with maximum likelihood
estimation, can successfully restore images in both blind and
non-blind modes without the need to fine-tune any regular-
ization parameters. Simulations on deblurring, colorization,
and image separation problems with exact knowledge of the
transformation demonstrate improved image quality, reduced
computational cost compared to existing methods. Compara-
ble results are also enjoyed when the distortion models con-
tain unknown parameters.

Index Terms— Image restoration, Image separation,
Blind image restoration/separation, Bayes procedures, Gen-
erative modeling

1. INTRODUCTION

A standard mathematical model for the image restoration
problem is given by

Y = T (X,α) +W, (1)

where X is a hidden vector, representing the original image;
T (X,α) is a deterministic transformation with known func-
tional form that can possibly contain unknown parameters
α ∈ A, with A a known set; W is a random vector inde-
pendent from X that expresses additive noise and/or model-
ing error. For W we assume that it is distributed according to
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the density g(W,β) which has a known functional form and
possibly unknown parameters β ∈ B, with B a known set.

The image restoration problem is known for its ill-
posedness. Therefore, for its solution, prior knowledge for
the original data must be incorporated. Traditional examples
of image priors use Student’s t-distribution for noise model-
ing [1], or spatially varying priors [2] or total-variation [3]
for more difficult problems as inpainting. Although these
approaches perform well in restoration problems such as de-
noising and deblurring, they tend to fail to reconstruct image
details in applications such as super-resolution, inpainting, or
colorization, suggesting the need for more descriptive priors.

Generative models can be successfully trained to generate
realizations from an unknown distribution for which we have
available training data. Classical example constitute the Gen-
erative Adversarial Networks (GANs) [4], which are known
to create incredibly realistic natural images [5]. Because of
this fact, several approaches attempted to solve inverse prob-
lems using generative priors for the original data. Early ef-
forts were using the generative model partially (only the gen-
erator function) [6, 7, 8, 9]. Only recently [10, 11] we see
techniques that employ the complete model (generator and
input density) improving the performance of the correspond-
ing methods. However, a drawback of these methods is the
existence of unknown weighting parameters. As a result, they
require data pairs of original and transformed data used in
additional simulations to find the appropriate values for their
parameters. Our methodology, which relies on statistical es-
timation theory, can identify all parameters entering the for-
mulation, mitigating the need to calibrate unknown quanti-
ties. Moreover, the method we will develop will treat cases
where the transformation responsible for the image distor-
tion is not precisely known as required by all existing tech-
niques. Finally, we must point out that our approach can ad-
dress restoration problems in dynamic environments where
the unknown image degradation mechanism may change with
every single realization (image) of X .

2. RESTORATION WITH GENERATIVE MODELING

A generative model for a random vectorX consists of a trans-
formation G(Z), known as the generator function, and an in-
put density h(Z). We can then generate realizations of X by
generating realizations of Z that follow h(Z) and then trans-
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forming them X = G(Z) through the generator. In image
restoration we are interested in the recovery of X from the
observation Y when X and Y are related through (1). To
obtain such an estimate, we intend to exploit the generative
model in the following way: Instead of finding the estimate
X̂ directly as in [10, 11], we propose to obtain Ẑ of the in-
put to the generator and then estimate X as X̂ = G(Ẑ). We
note that with this approach we can accommodate generator
functions that are not necessarily invertible, suggesting that
X may even lie on a lower dimensional manifold.

Let us first produce the joint density of Y,Z given α, β.
We have

f(Y,Z|α, β) = g
(
Y − T (G(Z), α)|β

)
h(Z). (2)

To estimate Z we intend to apply the MAP estimator. Of
course there is the problem of the unknown parameters α, β.
In Statistical estimation theory, unknown parameters (quan-
tities for which we have no prior density) can be estimated
using the maximum likelihood estimator. Consequently, we
propose the simultaneous estimation of Z,α, β which gives
rise to the following optimization problem

Ẑ = argmax
Z

(
max

α∈A,β∈B
g
(
Y − T (G(Z), α)|β

))
h(Z). (3)

Detailed mathematical derivation of this equation based on
classical parameter estimation theory can be found in [12].

2.1. Gaussian Noise and Gaussian Input
Let us now specify in more detail our mathematical model.
For the additive noise vector W appearing in (1), we assume
that it has Gaussian elements independent and identically dis-
tributed with mean zero and variance β2 (we adopt the Gaus-
sian model only for simplicity), namely g(W |β) isN (0, β2I)
where I is identity matrix. We then conclude that

max
β≥0

g(W |β) = C

‖W‖N
, (4)

whereC constant andN is the size of the vectorW . If we also
select the input density h(Z) to be GaussianN (0, I) then, for
a transformation T (X) without unknown parameters, we can
write for (3) that the estimates are equivalent to

Ẑ = argmin
Z

{
‖Z‖2 +N log ‖Y − T

(
G(Z)

)
‖2
}
. (5)

We can now compare our optimization problem in (5) with
the most efficient existing techniques that are estimating Z by
solving the problem

Ẑ = argmin
Z

{
‖Y − T

(
G(Z)

)
‖2 + λ‖Z‖ν

}
(6)

where ν = 1 in [11], ν = 2 in [7, 10]. As we can see in
our approach there is no weighting parameter λ therefore, no
prior fine-tuning is necessary. A notable difference is also
how the error distance ‖Y − T

(
G(Z)

)
‖2 is combined with

the input power ‖Z‖2. In our method we use the logarithm

of the distance while in [7, 10, 11] it is the distance itself
combined with ‖Z‖ or ‖Z‖2.

2.2. Parametric Transformations
Let us focus on the more challenging problem of a transfor-
mation T (X,α) containing unknown parameters α. Follow-
ing our general theory developed for the case of noise and
generator input being Gaussian, the MAP estimator with max-
imum likelihood estimation of the parameters takes the form

Ẑ = argmin
Z

{
N log

(
min
α
‖Y − T (G(Z), α)‖2

)
+ ‖Z‖2

}
.

(7)
This general version of the problem is equivalent to

{Ẑ, α̂} = argmin
Z,α

{
N log ‖Y −T (G(Z), α)‖2+‖Z‖2

}
(8)

and the joint minimization can be carried out, for example,
with a simple steepest descent algorithm.

To further advance our analysis consider linear transfor-
mations of the form T (X,α) = T (α)X , where T (α) is a
matrix. In fact these are the most common transformations in
image restoration problems. Furthermore, assume that T (α)
can be decomposed as:

T (α) = α1T1 + ...+ αMTM (9)

where T1, ..., TM are known matrices and α = [α1, ..., αM ]ᵀ

is the unknown parameter vector. For this case it is possible
to obtain a more convenient expression for the optimization
problem. Define T = [T1G(Z), ..., TMG(Z)] and concen-
trate on the minimization over α in (7). Using (9) we can
perform it analytically. Indeed by focusing on the distance
inside the logarithm we observe that

min
α
‖Y − T (α)G(Z)‖2 = min

α
‖Y − T α‖

= ‖Y ‖2 − Y ᵀT (T ᵀT )−1T ᵀY (10)

with the last outcome following from the Orthogonality Prin-
ciple, see [13], pp.79-83, and expressing the projection error
of Y onto the linear subspace spanned by the columns of T .
This result, when substituted in (7), yields

Ẑ = argmin
Z

{
‖Z‖2 +N log(‖Y ‖2−Y ᵀT (T ᵀT )−1T ᵀY )

}
(11)

where the only minimization is with respect to Z and where,
as we recall from its definition, T is a matrix that depends on
Z as well.

2.3. The data separation problem
In [14, 15, 16, 17], existing single data vector methods extend
to mixtures of multiple random vectors where a separate gen-
erative model describes each participating vector. These ex-
tensions experience the same drawbacks as their original sin-
gle vector counterparts: (1) They contain multiple regularizer
terms with unknown weights that need to be tuned appropri-
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ately; (2) The corresponding methods cannot accommodate
mixtures involving unknown parameters. And in the case of
[17], they are also restricted to likelihood-based generative
models.

We can overcome the previous limitations by generalizing
our technique to cover combinations of multiple vectors. For
simplicity we only treat the two vector case with the exten-
sion to any number of vectors being straightforward. Sup-
pose that we have two random vectors X1, X2 each satis-
fying a generative model Xi = G(Zi) with input density
Zi ∼ hi(Zi), i = 1, 2. If the mixture data model satisfies

Y = α1X1 + α2X2 +W (12)

where the additive noise/modeling error W has density
g(W |β) with parameters β then we can combine all parts
and produce the joint probability density

f(Y,Z1, Z2|α1, α2, β) =

g(Y − α1G1(Z1)− α2G2(Z2)|β)h1(Z1)h2(Z2). (13)

In (13) we silently made the assumption that Z1, Z2 (and
therefore X1, X2) are statistically independent which pro-
duces the product of the two input densities. Following our
general methodology we need to perform the following opti-
mization

max
Z1,Z2

max
α1,α2,β

f(Y, Z1, Z2|α1, α2, β). (14)

If, as before, g(W |β) is Gaussian with mean 0 and covariance
β2I and both input vectors are independent Gaussian with
mean 0 and unit covariance matrix then the previous maxi-
mization after first maximizing over β is equivalent to

{Ẑ1, Ẑ2} = arg min
Z1,Z2

{
‖Z1‖2 + ‖Z2‖2+

N log
(
min
α1,α2

‖Y − α1G(Z1)− α2G(Z2)‖2
)}
. (15)

We can either apply gradient descent on the combination
{Z1, Z2, α1, α2} or solve analytically for {α1, α2}, substi-
tute, and then minimize over {Z1, Z2}. Regarding the latter,
thanks to the Orthogonality Principle we can write

min
α1,α2

‖Y − α1G1(Z1)− α2G2(Z2)‖2 =

‖Y ‖2 − Y ᵀG(GᵀG)−1GᵀY, (16)

where G = [G1(Z1), G2(Z2)]. Substituting in (15) yields

{Ẑ1, Ẑ2}=arg min
Z1,Z2

{
‖Z1‖2 + ‖Z2‖2+

N log
(
‖Y ‖2 − Y TG(GTG)−1GTY

)}
, (17)

where we recall that G is a matrix that depends on {Z1, Z2}
as well.

Similarly, it is possible to accommodate the more general
case of a nonlinear mixing function T (X1, X2, α) with pos-
sibly unknown parameters α, which combines the two vec-
tors and generates the single observation vector Y through
Y = T (X1, X2, α)+W . Under the Gaussian assumption for
the two inputs and the additive noise term, we can obtain the
estimates Ẑ1, Ẑ2 by solving the optimization problem

{Ẑ1, Ẑ2, α̂} = arg min
Z1,Z2,α

{
‖Z1‖2 + ‖Z2‖2+

N log
(
‖Y − T

(
G1(Z1), G2(Z2), α

)
‖2
)}
. (18)

Of course with general nonlinear mixers we can no longer
solve for α and substitute, as in the linear case. Consequently
the minimization must be carried out simultaneously for the
triplet {Z1, Z2, α}. Finally, as in the single vector case,
restorations are defined as X̂i = Gi(Ẑi), i = 1, 2.

3. EXPERIMENTS

For our experiments, we use the CelebA [18] and the Caltech-
UCSD Birds [19] datasets. The first dataset contains 202,599
RGB images cropped and resized to 64x64x3 and then sepa-
rated into two sets of 202,499 for training and 100 for testing.
For the Birds dataset, we train two models, one with the orig-
inal images and the second with segmented images, with a
removed background using the included segmentation masks.
In both cases, the images are resized to 64 × 64 × 3 while
we kept 10,609 images for training and 1179 for testing. We
trained a progressive, growing GAN for each of cases using
the training sets, as described in [5] for 64 × 64 images. Fi-
nally, we applied the momentum gradient descent [20] with
normalized gradients in all competing methods, with the mo-
mentum hyperparameter set to 0.999 and the learning rate to
0.001. We compare the different methods in terms of the
PSNR and structural similarity index measure (SSIM) [21].

In our first experiment, we investigate the image deblur-
ring problem. We blur the original images from CelebA with
the standard 3×3 Gaussian kernel. For our second set of sim-
ulations, we recover an RGB image from one of its chromatic
components. As such, we select the green channel. For the
two problems, we compare the methods of Yeh et. al. [6] and
Bora et. al, Whang et. al., Asim et. al. [7, 10, 11] (the two ap-
proaches coincide for gaussian noise) with our method. The
techniques in [6, 7, 10, 11] require exact knowledge of the
kernel coefficients. They also need fine-tuning of their reg-
ularization parameter weights, which is achieved by solving
multiple instances of their optimization problem with various
weight values and selecting the one delivering the smallest av-
erage reconstruction error. For [6] the best calibrated weight
value was 0.6 (for Gaussian deblurring) and 0.1 (for coloriza-
tion), while for [7, 10, 11] 0.6 for Gaussian deblurring and 0.5
for colorization.

Since our method has no unknown weights, no tuning
phase is necessary. We distinguish two versions of our ap-
proach. In the first, we assume that we know the kernel (blur-
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Table 1. PSNR and SSIM scores
Deblurring Colorization

PSNR SSIM PSNR SSIM
[6] 27.28 0.914 21.83 0.789
[7, 10, 11] 28.28 0.925 21.35 0.779
Proposed 28.20 0.922 21.85 0.790
ProposedB 26.95 0.901 21.31 0.805

Table 2. PSNR and SSIM scores
α1 = α2 = 0.5 α1 = α2 = 0.5

Faces Birds Seg. Faces Birds
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

[16] 25.23 0.821 22.74 0.831 18.62 0.678 18.57 0.738
Proposed 27.21 0.840 25.47 0.906 19.23 0.718 19.03 0.800
ProposedB 27.00 0.846 24.50 0.902 18.49 0.702 18.33 0.753

a b c d e f a b c d e f a b c d e f g h i a b c d e f g h i

Fig. 1. For the first two sets of images: Column a) Original; b) Transformed; c) [6], known parameters; d) [7, 10, 11], known
parameters; e) Proposed, known parameters; f) Proposed, unknown parameters. In the first set, deblurring of a Gaussian kernel.
In the second set, colorization of a monochromatic image. For the second two sets of images: Columns a), b) Originals;
c) Mixture; d), e) [16], known coefficients; f), g) Proposed, known coefficients; h), i) Proposed, unknown coefficients. In both
sets, image separation. More experiments and comparisons can be found in [12, 22].

ring) coefficients and also the selected channel to make fair
comparisons with [6], [7, 10, 11]. In the second version, we
assume that the blurring coefficients and the selected channel
are unknown, implying that we simultaneously estimate them
and restore the original image. For the deblurring, we solve
(8) under the constraint that the filter coefficients sum to one.
For the colorization, we notice that the channel decomposi-
tion is a linear transformation implemented with three matri-
ces TR, TG, TB as in (10). The fact that the unknown param-
eter is now discrete does not pose any special difficulty in the
optimization in (8), which must be modified as follows

Ẑ = argmin
Z

{
‖Z‖2 +N log

(
min

i=R,G,B
‖Y − TiG(Z)‖2

)}
.

The first two sets of images in Fig. 1 show four examples
of image deblurring and colorization from left to right. We
also see in Table 1 the corresponding PSNRs and SSIMs.
We realize that the proposed methodology enjoys comparable
restoration quality as the existing methods for both deblurring
and colorization when the transformations are known. How-
ever, in our case, this is achieved without the computational
overhead of weight fine-tuning and the need for original-
transformed pairs of images. Furthermore, in both scenarios,
it delivers similar quality if the parameters of the transfor-
mation are considered unknown and need to be estimated in
parallel with the original image.

In our last set of experiments, we create linear mixtures
of CelebA and Caltech-UCSD Birds. We begin by separating
faces from the segmented Caltech-UCSD birds with mixture
coefficients α1 = α2 = 0.5. Next, we switch to the full
Caltech-UCSD dataset with α1 = α2 = 0.5. We mention that
for all three techniques, the evaluated methods are identical.
As in single image restoration, we distinguish two versions
of our methodology, namely the solution of (15) with α1, α2

known and the solution of 18 when the two parameters are

considered unknown. We compare our two versions against
the results obtained by solving

{Ẑ1, Ẑ2} = arg min
Z1,Z2

{
‖Y − α1G1(Z1)− α2G2(Z2)‖2

+ λ1‖Z1‖2 + λ2‖Z2‖2
}
,

which is the method proposed in Soltani et al. [16] and con-
tains two weighting parameters λ1, λ2 that require tuning, and
exact knowledge of α1, α2. Extending the tuning method of
the single weight to two weights, we obtained the calibrated
values λ1 = λ2 = 0.3, for the mixture with segmented birds,
and λ1 = 0.5, λ2 = 0.4 for the mixtures with the origi-
nal birds. In the third and fourth set of images in Fig. 1,
we present examples of the two mixture types and the corre-
sponding results of the competing separation methods, while
in Table 2 we give the corresponding PSNRs and SSIMs per
dataset. We observe that our method improves the quality of
the separated images without requiring parameter fine-tuning
and knowledge of the mixture parameters.

4. CONCLUSION

We introduced a general restoration methodology based on
a generative model description of the class of original data.
Our approach can successfully restore images through a well-
defined mathematical optimization problem that does not re-
quire any fine-tuning of weights of regularizer terms, which
is standard in existing methods. Our method’s most notable
advantage is its ability to restore data even when the transfor-
mation responsible for their deformation contains unknown
parameters. Experiments using popular image datasets show
that our method can deliver similar restoration quality as the
existing state of the art without exact knowledge of the trans-
formation and the need for weight tuning of regularizer terms.
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