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Analysis of Discrete-Time Server Queues
with Bursty Markovian Inputs

Panagiotis Mavridis George V. Moustakides

Abstract

We study a discrete-time deterministic server queue with infinite buffer and with packet arrivals that depend
on a multidimensional Markov process. Using the generating functions approach we give a means for obtaining
the boundary conditions vector for the case where the value zero is a multiple eigenvalue of the problem. We
also derive recursive form expressions for the direct determination of the moments of the queue length. These
expressions do not require the knowledge of the steady state probabilities of the combined source-queue process.
Finally our method is applied to two queueing problems related to data transmission through an ATM switch
with a queue of infinite length. Closed form expressions for the first two moments of the corresponding queue
lengths are obtained.

I. INTRODUCTION.

During the last years, special interest is deployed on B-ISDNs, due to their ability to simultaneously transfer
data, voice and image. B-ISDNs are mainly implemented through Asynchronous Trasfer Mode (ATM) whose
basic characteristics are the use of fixed-cize packets called “cells” as transfer units, and the identification of
each communication unit by a cell header label [1], [2]. Cells may come from many different sources, such
as computers, disc units, telephone devices, image transmission units etc. Each cell, in the way to its final
destination, is transferred from an ATM switch to another located to a different place. Cells are stored in the
ATM switches, waiting for their next transmission. The internal speed of an ATM switch is fast enough, so that
we can focus our attention only to its output queue [3].

The output queue of an ATM switch can be considered as a discrete time deterministic server queue, with
its time slot equal to the transmission time of a cell. It is clear that the behavior of such a queue depends on
its cell arrival process.

The study of the queue length of a discrete -time deterministic server queue, where packet arrivals depend
on Markov processes, is of special interest. In [4] an infinite buffer queue is studied with voice packet arrivals
characterized by a Markov chain and low priority data message arrivals, characterized by a Poisson process.
In [5] the problem for sources that are two or three state Markov chains is considered. Cell arrivals to an
output queue of an ATM switch from a Gl-stream and from a M-stream are studied in [6]. These streams
are considered as Markov-chain driven arrival probabilities. In [7] it is considered cell arrivals coming from a
combination of a Gl-stream, an M-stream and a B-stream (which is the sum of one-step Markov chains). In [8]
the queue behavior is studied under the assumption that in each of thput trucks, one cell arrives every
T deterministic time slots. In [9] the same problem is studied under the extension that each input truck can
be active or inactive. In [10] every input truck has a possible different deterministic rate thus fisthtlirput
truck a cell arrives every; time slots.

In this papers we consider two different source models. In the first model sources can decide wether to
send a number of cells or not. Once a source decides to serells, wherek any nonnegative integer, it
will be sending cells for the next time slots. During this time no other decision is possible. When the task
is completed the source is again allowed to make decisions. Every cell that is send by the source is directly
entering the queue. This model applies, for example, to the problem oftransferring files of different lengths
through an ATM switch. A similar model was used in [17] but with a basic difference, namely, when the source
decided to send cells the transfer was performed in a single time slot.

The second model we are going to consider is the case where the source decides whether or not to send a
given number oft packets. Once the decision to send is made the source will be sending packets for the next
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k time instants. The packets do not enter directly into the queue but rather into an auxiliary buffer devoted to
the specific source. Once &l packets have entered the buffer, its content is directly transferred to the main
gueue. This model applies, for example, to the structure of a normal queue at the physical layer. Normal cells
are comprised of a fixed number of bytes (or bits). A cell does not enter the queue unless all bytes of the
cell are received at the queue. We give the possibility to each source to have a different length for its cell (in
number of bytes).

In order to solve the two problems we just described we focus our attention to the size of the queue length.
Using generating functions we obtain a general formula for the stationary probabilities of the combined source-
gueue process. For the determination of the boundary conditions we follow an approach similar to [13] and
extend it to cover our case. A different approach to the boundary conditions problem can be found in [11]
where an algorithm, based on the matrix analytic approach of [12], is presented. The second result of this papers
consists in the derivation of a general method for recursively obtaining the moments of the queue length. The
technique used to derive the recursive expressions is similar to the technique presented in [14]. The method is
then applied to the two problems described above and closed form expressions for the mean and variance of
the corresponding queue lengths are obtained.

The rest of this paper is organized as follows, in Section Il we present the general background and we
concentrate our study in determining the boundary conditions for the case of multiple zero eigenvalues. In
Section Il recursive formulas for the determination of the queue length moments are derived. In Section IV
the theory is applied to the two queueing problems. Finally Section V contains the conclusion.

Il. GENERAL BACKGROUND.

The queueing model we use is a typical discrete - time, deterministic - server queue with infinite buffer.
Time is slotted, and if the queue is not empty, one packet departs from the queue at the beginning of each
time slot. In the remaining of the time slot, new packets arrive at the queuerfrondependent input trucks.

Each input truck is driven from a Markov process. Each Markov process enters in a new state at the beginning
of each time slot and the probability to sehgackets depends on this new state. We consider each Markov
process to be independent of the others. The combination of these Markov processes forms a multidimensional
Markov process which we will call th&ource Processr simply “the source”. We will also assume that the
probability distribution of packet arrivals depends every time on the state of the source process.

Let ¢[r] denote the state of the source process at the end of-thé¢ime slot, then let us denote by; the
state transition probabilities, that is

pij = Prlglr + 1] = zi/q[r] = ;] @
wherezg, x1,...,r) are the possible states of the source process. The state - transition table then takes the
form
Poo Por -.-- DPOK
Pio P11 ... P1K
P = . . . (2)
PKo PkK1 --- PKK

The combination of the source and the queue forms a large (actually infinite state) Markov process the
stationary probabilities of which we denote Ry, (n), that is, g,,(n) = Pr[at the end of the time slot, the
source process is in statg, and there arex packets in the quejieCombining all probabilities that refer to
the same queue length in a vectdn) we have

g9(n) = [go(n) g1(n) g2(n) ... gr(n)]’ @)

The corresponding vector of generating functigng) is defined as
t

G(Z) = ZQO(”)ZTL, 291(71)2”, ey ZgK(n)z” 4)
n=0 n=0 n=0

Note thatG(1) is the stationary source probability vector and thus it is the right normalized eigenved®r of
corresponding to the unit eigenvalue.
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At the beginning of the time slot, the source enters at a new statnd decides to sentlpackets with
probability 7 ({). Let h;(1) = Pr[ [ packets arrive in the queue / the state of the souraglisDenote byh(()
the following diagonal matrix

h(l) = diagho(l), hi(l), ..., hx(l)] (5)

and with H(z) that matrix of the corresponding generating functions

= diag Z ho(1) Z ha(l ., ZZ hi (1) (6)
=0

Notice that forz = 1 we obtainH (1) = I, the unity matrix.

After the above definitions we can easily see that the steady state probaility satisfies

g'rn( Z g] n+ 1 p"Lj m + Z 93 pmg m ) + -
a K @)
+ D9 (Wpmshn(n) + Y 95 (0)pmhm(n)
7=0 7=0

From Egs. (3,5, 7) we conclude that
g9(n) = h(0)Pg(n +1) + h(1)Pg(n) + - -- + h(n)Pg(1) + h(n)Pg(0) ®)

or using generating function
(2] — H(2)P|G(z) = (z — 1)H(2)PG(0) 9)

Notice that the only unknown quantity in (9) is the vect®(0) of the boundary conditions. Several methods
have been proposed for the determination of this vector [11], [13]. In the remaining part of this section we
will attempt to give sufficient conditions for determinirig(0) for the case wheré and H(z) are kronecker
products andt = 0 is a multiple eigenvalue of the matrix — H(z)P. Our method will follow the same ideas

of [13] but will extend them to the multiple eigenvalue case.

Determination ofG(0).
A first equation that is necessary for determini@g0) can be obtained by taking the derivative of (9) with
respect toz and then multiplying from the left with the vectt1 - - - 1] [13]. This results in

1-[11...1]H'(1)G(1) = [11...1]G(0) (10)

Since[11...1]G(0) > 0 this sets a constraint on the possilBigl) that can be combined wittP. If the
length of G(0) is (K + 1), then we need anothek equations for determiningz(0). In [13] a method is
described which basically consists in obtainifigvectors that are orthogonal @(0). These vectors are the
fi(zi),i=1,..., K, wheref;(z) is an eigenvector of the matrii{ (z) P corresponding to the eigenvalug(z).

Also z; is the solution of the equation= \;(z) that lies inside or on the unit circle (except= 1). This theory

is valid only for the case where thg is simple. In the problems we are going to consider the assumption of
simple eigenvalues does not hold. Specifically we will see that the eigenvatué is multiple and thus the
method of [13] is not directly applicable. With the next theorem and the corollaries that follow we will show
that, under certain conditions, the result of [13] still applies if the eigenvectors are replaced by the generalized
eigenvectors defined in the Jordan Representation Form (JRF). This actually mea@s0thist orthogonal to

the whole left eigenspace defined by the eigenvaluae0.

Before stating the theorem let us first introduce some necessary notations and some elements from Linear
Algebra regarding the JRF [15, pp. 364-369]. Ugtx A5 denote the kronecker product of the matrichs A,
and® A, =4 A, ®---® A,,. If a matrix A has an eigenvalug with multiplicity » then any vectorf,
that satisfies
foA=AD) =0 (11)

is a left eigenvector ofd associated with\. Let fo1, foo,. .., fos b€ @ maximal set of linearly independent left
eigenvectors associated with Then it is known thats < r (geometric dimension no larger than algebraic).
When the inequality is strict we need to define generalized eigenvectors in order to obtain the necessary linearly
independent vectors that will lead us to the JRF. Notice that we can always select the left eigenvectors in such
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a way that they either belong to the rangeAf AI or to its orthogonal complement. This is true because
a linear combination of eigenvectors is still an eigenvector (when they refer to the same eigenvalue). Thus let

fo1, -, fop be the eigenvectors that belong to the rangedof A\I. Each of these eigenvectors initiates a
process that generates generalized eigenvectors in the following way
ff(A=X) = 0 (eigenvector) (12)
filLA=X) = fj,, j>1 (generalized eigenvector)

The process is stopped when the first linearly dependent vector is obtained. Thej iisdise “order” of the
generalized eigenvector. The combination of left eigenvectors and generalized eigenvectors of an eigenvalue
A spans the whole left eigenspace that is associated witlotice that a very useful property which is true

for the regular eigenvectors is also satisfied by the generalized eigenvectors. Specifically, all (generalized) left
eigenvectors of an eigenvalueare orthogonal to all (generalized) right eigenvectors of any other eigenvalue.
This means that left and right eigenspaces associated with different eigenvalues are orthogonal to each other.
We are now ready to state our theorem and two corollaries that will yield the necessary generalization to the
method of [13].

Theoreml. Consider the boundary conditions problem defined by Equ. (9).HE&t)P be of the form
H(2)P = U(z) ® A(z) ® V(z), where A(z) can be written asi(z) = A(0) + z¢B(z), andU(z), V(z) are
square matrix polynomials. If1(0) has a multiple eigenvalue at = 0 then the boundary conditions vector
G(0) is orthogonal to any vectap; that has the form

b =u® f;®@v (13)

wherewu, v are arbitrary vectors and, is any (generalized) left eigenvector of order updte- 1 associated
with the eigenvalue zero.

Proof. The proof is given in the Appendix. We can now prove the following two corollaries.

Corollary1. Let H(z)P = ®™, H;(z)P; with H;(2)P; = H;(0)P; + 2% B;(z) and H;(0) P; having a multiple
eigenvalue at zero. The@(0) is orthogonal to any vectow of the formw = @, w; wherew,; are arbitrary
vectors with the only restriction that at least one of theis a (generalized) eigenvector &f;(0)P; of order
up tod; — 1 associated with the eigenvalue zero.

Proof. Apply Theorem 1 fol/(z) = ®!_}(H;(2)P;), V(2) = @, (H;(2)F;), A(z) = Hi(2)P;, u =

i1, om _
Qo1 Wjy V= &= Wj -

Corollary 2. If H(z)P can be written as in Corollary 1 and also a) evéfy(0)P, has a single nonzero
eigenvalue)\; with multiplicity one, b) every sequence of generalized left eigenvectors of the zero eigenvalue
has at mostd, — 1) elements, then the boundary conditions veci@f) can be written in a kronecker product
form G(0) = ao ®2, s;, Wheres; is the right eigenvector off;(0)P; that is associated with its nonzero
eigenvalue.

Proof. Lety;, s; denote the left and right eigenvectors i8f(0) P; associated with the nonzero eigenvalye

and f;;, j=0,1,...,k; the (generalized) left eigenvectors of the same matrix associated with the multiple
zero eigenvalue. The vectey is orthogonal to all vectorg;; since it is associated with a different eigenvalue.
According to Corollary 1(7(0) is orthogonal to all vectors of the formw = ®*,w; where at least one); is

one of the vectorg);. Selecting noww; to be eithery; or any f;; with the only constraint that at least one of
the w; to be different than); we conclude, because of Corollary 2, tlda{0) is orthogonal to all these vectors.
The number of the vectors we just definedfs+1)(k2+1) - - - (k, +1) —1 (all possible combinations except

the one where altv; equal;). G(0) being of size(k; + 1)(k2 + 1) --- (kn + 1) is thus uniquely defined
(modulo a multiplicative constant). Consequently if we set

we can easily see that this vector satisfies all orthogonality constraints and thus is the vector we are looking
for. In order to facilitate certain derivations later in the paper, without loss of generality, we assume for each
s; that it satisfies

[11---1]s;=1 (15)
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and thus from (10) we determing as

ap=1—-[11--- 1]H' (1)G(1) (16)

I11. M OMENT ANALYSIS.

In this section we will present a general method for obtaining directly the moments of the queue length
without the need of finding the stationary probabilities first. Specifically we will obtain the quantities

Uy = [11---1]G™ (2)]=1 17)

whereG (™) denotes then-th derivative ofG(z) with G(z) defined in (9). Notice that in order to obtadi(z)

we need to compute the inverse of — H(z)P. This is not always possible since the matrix depends.on

If instead we are only interested in the momenys defined in (17) then it is possible, most of the time, to
compute these moments by solving small linear systems with constant coefficients. Let us consider this problem
for a slightly more general case. Let us assuft{e) to satisfy the following equation

Q)F(:) = (: = DR()F (18)

whereQ(z), R(z) are square matrices. From (18) we conclude thét)F(1) = 0 which means thaf)(1) is
singular andF'(1) is its right eigenvector associated with the zero eigenvalue. Letmdue the left eigenvector
i.e. z6Q(1) = 0, then we select; and F'(1) to satisfyz} F(1) = 1. Notice that Equ. (9) is a special case of
(18) with F(z) = G(z), Q(z) = 2I — H(z)P, R(z) = H(z)P, F = G(0) andzo = [11---1]*. We are now
interested in obtaining

Um = zéF(m) (Z)|z=1 (19)

The following theorem describes a recursive method for the computatief .0Analogous recursive expressions
for the computation of the moments of traffic processes associated to a markovian queueing system have been
presented in [14].

Theorem2. Let u,, be defined as in Equ. (19) then it can be computed via the following recursion

- i i m + (m—k:) . 1 m m + 1
Uy, = o {Z (k)ka (1H)F e P AU —k (20)
k=0 k=1
where the scalars,, and the vectors:,,, are recursively defined by
“ m + 1 m —K
o=y ( v )mzcz( R )F() (21)
k=0
m—1 m
4Q) = anoaah = 3 (7 )ak@ ) 22
k=0

Proof. The proof is given in the Appendix.

Notice that the linear system in (22) that defines the vegtgrhas an infinity of solutions (because the
matrix Q(1) is singular). This property is particularly useful since by selecting a specific solution it is possible
to simplify certain expressions as we will shortly see.

If we apply the results of Theorem 2 t@(z) of (9) and use the fact that for this cagiz) = =1 —
H(z)P, R(z) = H(z)P then Equ. (22) yields
> (Z) 2, HH (1) PG(0) = a1, G(0) + mah, 1 G(0) = ay—124G(0) (23)
k=0
Since the vectors;, are not uniquely definedcf + pxo also satisfies (22)) we impose as constraintz@rto
be orthogonal ta7(0), that is
r1G0) =0, k=1,2,... (24)
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This, using Egs. (16, 20), finally yields

1 " m+1
Um__aml_wmao;(k—‘y-l)akvmk’ vo =1 (25)
where
i 1
G = (ot D2l - (’” ! )x; HOW-R) (1)G(1) (26)
k=0
m—1 m
gt [[—P] = amzh—mat, |+ (k)x;H“"kk1ﬂz zt, G(0) =0 (27)
k=0

In the rest of the section we will apply these results to obtain expressions for the mean and variance of a queue
whose source process consists of kronecker products of smaller processes.

Computation of the Mean and Variance for Kronecker Products.
We refer again to Equ. (9). For the mean and the variance, applying Egs. (25, 26, 27), we obtain

ai
vT = —ao— Tuo
SR S S ) (8)
402 "0 T 34
whereag, a1, as are defined by
ap = 1—zbH (1)G(1)
ap = 22'G(1) —xfH"(1)G(1) — 224 H'(1)G(1) (29)
as = 3zbG(1) —z{H"(1)G(1) — 321 H"(1)G(1) — 325 H'(1)G(1)
andxq, xo by
W1 =P = agrh—zh+2pH' ()P, 2{G(0) =0 (30)
25l — P] = ayxl — 22t +xfH'(1)P + 22t H'(1)P, 24G(0) =0

From a computational point of view it is the equations in (30) that are the heaviest because they require the
solution of linear systems. Unfortunately, in most practical situations these two linear system are very large.
This is particularly the case when the matridd$z) and P are kronecker products of smaller matrices. We

will now present a method for computing andz, by solving a number of problems of the form of (30) but

that are of the size of the matrices that constititeand P.

Let us assume the following kronecker form for the matrices of interest
P =L P, H(z)=@/L Hi(z), =&,

31
70 = @M w0, G(1) = 21, Gi(1) (1)
We also need the first two derivatives of the matfXz) at = = 1. They satisfy the expressions
H'(1) = Y (®°11) e 1) (e, 1)
i=1
H'(1) = > (&5 L)@ /(1) (8], 1;) (32)
=1
+ 2> Y (e L) e H)e (e ) e Hy()® (e, I;)
1=1 n=14+1
We can then show by direct application that the vectarsxz, can take the form
zo= ) (®Z120) ® 21 © (Vo))
i=1
T2 = (®§;11370j) ® T2 @ (®Jm:7;+1x0j> (33)
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where the vectors;, xo; satisfy

‘LI]{Z[Il - R} = aOisz sz =+ mOZHZ/( )P (34)
ahilli = Pi] = ayxh; — 2(a0 — agi + 1)y, + o, H' (1) P; 4 227, H{(1) P;
with
api = 1—axh;H(1)G(1)
ari = 2(ap — agi + 1)a};Gi(1) — b, H'(1)Gi(1) — 225, H](1)G4(1)
azi = 3(ao — agi + 1), Gi(1) — xf; H" (1)Gy(1) — 3I11H{’(1)G( ) — 3$21H{( )Gi(1) (35)
— 3(ap — api)ay; + 3(2(1 —agi)[z},Gi(1) — ap;] + ah) (lej —zt.G; (1))

Again the linear systems in (34) have an infinite number of solutions. For the case @itierées a kronecker
product (as is the case of Corollary 2) aGd0) can take the form of Equ. (14) we can require for every

xiisi = xébsz =0 (36)

This will be sufficient for the validity of Equ. (24) fok = 1,2 and consequently for the validity of the
expressions for the mean and variance in (28).

Let us now relatery anda, to their small problem counterparts. Using the formwgf x; from Equ. (33)
we conclude after some algebra that

m

ap = 1-— Z(l _aOi)

i=1
m m

a; = Zah—i-z 1—ag)? — (1 —ap)? 37)
as = Zam*QZl*aoz +31—a0 i].*aol 17@0)3
=1

In the next sections, where we present the applications, we will only definez,;, as; which combined with
(28, 37) can lead to the computation of the mean and variance.

IV. APPLICATIONS.

In this section we are going to apply the results of Sections Il and Il to the two queueing problems introduced
in Section 1.

Application 1.

We are now going to study in cell level, a deterministic server, discrete time queue where cell arrivals are
generated fromm independent markovian processes that play the role of cell sources, with the following
characteristics: Sourcg at the beginning of the each time slot, with a certain probahilitydecides if it will

send a burst of: cells, or if it will suspend the decision whether to send or not, for the following time slot.
Once a source decides to send a burst of lergtit will be sending cells for the next time slots, one cell

per time slot. Cells immediately enter into the queue, without being accumulated in an auxiliary buffer. The
theoretical model of each source, describes for example a the transmission of files consisting of any number of
cells, through an ATM network.

Let us denote byy; the probability that sourcédecides to send a burst bfcells and bypg; the probability
to suspend the decision for the next time slot. Notice that if we like to put this process under a Markov model
we need to define auxiliary states that denote the intermediate states of the source when it is sending cells.
Thus the state transition table will contain states that correspond the source being in the middle of a sending
process and to states where a task of an earlier decision is completed. Notice that the source can make a new
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decision only when it has completed an earlier task. Thus the transition table takes the form

poi poi 0 poi O 0 po
pi pi 0 pii 0 0 py
P2 P2i 0 p2; 0 0 poy
0 o 1 0 0 0 O
Pi=1|ps psi 0 psi 0 0 py (38)
0 0O 0 0 1 0 O
0 0O 0 0 0 1 0

Let us explain the meaning of each state. State 1: delay new decision, State 2: previously decided to send 1 cell,
1 cell is send (task completed), State 3: previously decided to send 2 cells, 1 cell is send, State 4: previously
decided to send 2 cells, 2 cells are send (task completed), State 5: previously decided to send 3 cells, 1 cell is
send, etc. The unities in the columns indicate that if the source is in an intermediate state it can only go to the
next intermediate state (i.e. continue sending) until a previously decided task is completed.

Since the source always sends a cell to the queue, except when it is in the first state, we conclude that

H;(z) =diaglzz --] (39)
The vectorG;(1) is
Gi(1) = #—[Pom P1is P2i» D2i> P3is P3is D3is -] (40)
poi + K1
wherek;; denotes -
k=Y n(n—1)--(n—1+1)pu (41)
n=lI
To find G(0) we apply Corollary 2. Notice that we can write
H;(2)P; = Hi(0)P + zB; (42)

The matrix H;(0) is of rank one thus the same will hold f@f;(0)P;. This means that{;(0)P; has a single
nonzero eigenvalue which is simple. Also, since for any vector of lehgkiere exist: — 1 linearly independent
vectors that are orthogonal to it, we conclude that the mai#j¥0)P; has only regular eigenvectors for the
eigenvalue zero. Consequently we can apply Corollary 2 and we can easily see that

s;=[100--] (43)

Actually for this problem it is very easy to fin@(0) since the only case where it is possible to have no cells
in the queue is when all sources are in state “0”. The vectersx,; have the form

x1; = apl0,0,1,0,2,1,0,3,2, 1,0, ]t
To; = au[O, 0,1,0,2,1,0,3,2,1, 0, ]t (44)
aoi(ao — api +1)[0,0,2-1,0,3-2,2-1,0,4-3,3-2,2-1,0, .. ]
+ a[0,0,0,0,2-1,0,0,3-2,2-1,0,0,4-3,3-2,2-1,0,0,...]
also _
2!, Gy(1) = — POk (45)
‘ 2(poi + k1:)?
and
ag; = LZ—
Poi + k1i
a1, = L(ao — i)k
(Poi + k14)?
az; = o d0i (3a1i[7€2i — 2(po; + k1i)] + 2a0iks; — 2a0; (a0 — ao; + 1) (ks; + 3];?21‘)) (46)
2(poi + k14)

+ 3(2(1 — ap;)(2,Gi(1) — api) + ali) (Zm:x’ijj(l) - 95%@(”)
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Application 2.

In this application we examine a deterministic-server, discrete-time queue that receives packets originating
from m independent Markov processes that play the role of packet sources. Each source has the following
characteristics: at the beginning of each time slot it decides with some probability whether to send a burst of
k; packets to the queue or to suspend the decision for the next time slot. Once it decides to send, it will be
sending one packet per time slot, for the néxttime slots. When the source completes the sending stage it
can again make a new decision. This model resembles to the model of the previous application, only now each
source can send a burst of a specific length. Also packets originating from the same source are accumulated
into an auxiliary buffer waiting the arrival of thig-th packet. Upon its arrival, the whole collection of packets
enters into the queue. If more than one bursts of packets are ready to simultaneously enter the queue, they enter
in random order or according to predetermined priorities.

Using this model, we can find the moments of the output queue of an ATM switch in the physical layer.
Packets (bytes or bits) that constitute a cell enter into an auxiliary buffer until the whole cell is received and
then enter into the output queue. Each cell has a fixed size length, so every source sends a fixed nimber of
packets to the queue.

The model can also be used for determining the moments of the main buffer in the RARES parallel database
machine [16]. In this machine, there is a R/W head per disc track, with a built-in comparison circuit used to
examine and quickly decide whether a tuple satisfies the searching criteria set by the main processor. Tuples
are stored on the disc in such a way, that various R/W heads can work in parallel. Tuples belonging to the
same (different) relation have the same (generally different) length. A relation can occupy disc space belonging
to several R/W heads, and the main processor is able to set searching criteria for more than one relations. So it
is possible that more than one R/W heads are in searching status. When a tuple satisfies the searching criteria,
the R/W head sends it to the main buffer, where it is stored and from where it is finally transferred to the main
processor.

If we denote byk; the number of packets that sourcean send and by, the probability that source
suspends the decision for the next time slot, then the state transition table for st@o@mes

Di 0O 0 ... 0 Pi
1—p;, 0 0 ... 0 1—p;
P, = 0 1 0 ... 0 0 (47)
0 0O 0 ... 1 0

(kit+1)-(ki+1)
and the generating function of the matrix of packet arrivals for souise

Hi(z) =diag[1 1 ... 12%] o (48)
The m-th derivative ofH;(z) atz =1 is
H™ (1) = ki(ki — 1) - (ki — m + 1)diagi0 0---0 1k, 1).(ki11) (49)
We can easily obtaili7;(1) which has the form
Gi(1) =8ilpi 1—pi) (L—=ps) -+ 1—py)]' (50)
where 1
0; = (51)

(1 —pi)ki +ps
To find G(0) we apply Corollary 2. Notice thal (z) P can be written a$i(z)P = @, H;(z) P;. Furthermore

we have
H;(2)P; = H;y(0)P; 4 2[00 ---01]*[00- - - 010] (52)

The characteristic polynomial df;(0)P; is equal toA*: (A — p;). Also, since all generalized eigenvectors have
order that cannot excedd, all prerequisites of Corollary 2 are satisfied and we concludedéj is given
by (14) where

si=[pi "t (L—p)pi 2. (L= pi)pi, (1—py), O] (53)
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Solving the systems in (34) we have

i = k[0, 1,00, 1 0" + Ki05[0, (ki — 1), (K —2),..., 1, 0] + paizg,
zai = bil0, 1.1 0 +¢[0, (ki — 1), (ki —2),.... 1, 0] (54)
— [0, Ki(ki — 1), (ki = 1)(k;i —2),...,2- 1, O] + pos,
where
bi = ki(ki —1+2p1;)
ci = a1 — 2(ao — ag; + 1)(p1s + ki)
di = (ao — ag; + 1)]61(51
k
o (pFi—1 S ,’fﬁl_E
Hii = kz(pi 1) + k;0; (kzpi s ; 1 ) (55)
_ o 1—p
poi = bi(py Tt —1) +Ci(kip§l t— %)
. ki + l)p]-c’: 1 pk7+1
— di(ki(ks +1 f11+2( 2 i
( ( p 1—p; (1—pz)2>
and
agi = pid;
aig = (ao — aopq + 1)[2(1 — aOi)(ka — 1) + 61(1 — am)kz(kl — 1)]
— (ki — 1)(1 — aoi) + 2aop1i
ag; = 3(a0 — ag; + 1)[£E§lGl(1) — au} — (1 — aol)[(kl — 1)(3/1,12' + k; — 2) + 3,[121-} (56)
+ 3(2(1 — aoZ)[zLGq(l) — aol'] + ali) (Z‘TﬁjGﬂ(l) — $31G1(1)> + 3ai;
j=1
where 1
57

In this paper we have presented a method for obtaining, recursively, moments of an infinite length queue that
accepts cells emanating from a markovian source. The method is then applied to the case where the markovian
source is the kronecker product of smaller markovian processes and formulas for the first two moments are
presented that are based on quantities related to the small markovian models. Additionally, a theorem is presented

V. CONCLUSION.

for the determination of the boundary conditions vector which appears in the problem of defining the stationary

probabilities of the combined source-queue process. This theorem refers to the case where the value zero is
a multiple eigenvalue of the problem and extends existing results that apply to the simple eigenvalues case.
The theoretical results are consequently applied to two application problems. The problems that are examined

refer to data transmission through an ATM switch. In the first problem the transmission of variable length files
(in number of cells) is examined, while in the second, the transmission of cells as collection of smaller units

(bytes or bits) is considered. Closed form expressions for the mean and variance of the corresponding queues

are

(1]

(2]
(3]

(4]
(5]
(6]
(7]

obtained.
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Appendix.

Proof of Theoreml. ConsiderG(z) from Equ. (9). Notice thatG(z), as a power series, must have only
nonnegative powers (causal series). If we wiigz) = G(0) + zG(z) and defineF'(z) = G(z) + G(0) then
we can easily see thd(z) satisfies

[2] — H(z)P|F(z) = (z — 1)G(0) (58)

where againF'(z) corresponds to a causal series. Substituting now in (58) the nfdtrxP with the assumed
form of the theorem, yields

[zz —U(x)® (A(o) + de(z)) ® V(z)} F(2) = (= — 1)G(0) (59)

We would like to show that for arbitrary vectots v and any generalized eigenvectfyrof orderj < d —1 of
the matrix A(0), that G(0) is orthogonal tou ® f; ® v. Notice that since the (generalized) eigenvectors refer
to the zero eigenvalue they satisfy

fEA(0)=0 and fIAQ0)=ff,, j=1.2,... (60)
If we multiply (59) from the left by = u* ® fi @ v* we obtain

z[ut R fixvt — 2471 (utU(z)) ® <f(§B(z)) ® (vtV(z))}F(z) =(z-1) {ut Rfi® vt} G(0) (61)
Notice that the Ihs of Equ. (61) corresponds to a causal series with the constant term equal to zero. This must
also hold for the rhs, thus we conclude tii&{0) must be orthogonal te’ @ f{ @ v. Since we assumed arbitrary
u, v the orthogonality property will also hold for vectors that are parametrized. by
To show now the theorem fof; we multiply (59) from the left byl = zu! ® fi @ vt + (utU(z)) ®fle

(vtV(z)) and this yields

2lut o ffov -2 (W) @ (fBR) © (V)
—22(wU(2) @ (f5B(2)) @ (vV2(2)) | F() = (62)
(2—1) [zu @ fl vt + (utU(z)) ® ft® (UtV(z))]G(O)
Notice again that the lhs is causal but now the first two terms of the corresponding sequence are zero. The
same must hold for the rhs. Sin€&0) is orthogonal to the term that contairfs we conclude that it must
also be orthogonal to the term that contajis Again since this orthogonality holds for arbitrary vectarsv

it will also hold for vectors that are parametrized byThus in general if we multiply with a vectas; that
has the form

oL = zjj A (wur () @ £, @ (V) (63)

n=0
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yields
J
A ut @ floot -3 2A1n (utU”“(z)) ® fl_,B(z) @ (vtV"H(z)ﬂ = (2= 1)giG(0)  (64)
n=0

Every time we increasg by one we show the orthogonality for a new generalized eigenvector. This process can
continue as long as the quantity in the brackets corresponds to a causal sequence. And this jictds-for.
This concludes the proof.

Proof of TheoremR. Let as first compute théth derivative of the Equ. (18) at = 1, this yields
!
1 l . . 3
13 (Do - mor (65)
i=o M
m .
1 l) ZTm+1— and suming ovet, [ =1,...,m + 1, we have

l
() ()@t wri) -
=0

i m+1-—1
m—+1 m
t (l—l) 1 F
; <m+ 1 _l)mezR (1)

3

Multiplying (65) with (
1

m+

(66)

Changing the order of summation, also changing variables tom + 1 — [, Kk = m + 1 — 5 and using the

fact that
1 m\(m+1-n\ 1 m+ 1\ [k (67)
m+1—n\n m+1—k) m+1 k n

after some algebra we obtain

m k
1 m+1 kN ¢ At—n) (m+1—Fk)
— ; (1) Y™ 1
("I (F)aer m
[ o o e m (68)
m + t N(m+1—n) m t p(m—n)
 — HF(1) = HF
g (M ) r = 32 (V)
Notice now that if we require the quantity in the brackets to be equaj.tqz! wherea,_; a scalor, we have
Kk
> <n> 7 Q" M (1) = agsaf (69)
n=0
Solving for x; we obtain
k—1
k —-n
i Q(1) = ap_1xf — Z (n) 2t Q= (1) (70)

n=0
which is Equ. (22). The parametef,_; must be selected in order for this equation to have a solution (recall
that Q(1) is singular). This is assured by multiplying from the right wit{1), thus yielding zero for the Ihs
and definingay_; as in Equ. (21). Finally if we use (69, 70) in (68) and solve dgy we obtain Equ. (20).
This concludes the proof.



