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Abstract

This paper presents a recently developed Image Acquisition-
Geometric Modelling system for the construction of geometric
models of natural objects. This construction is achieved in a
two-step procedure. First, the object of interest is digitised, i.e.
points on the surface of the object are computed. Then, based
on the digitised 3-D points, an approximating surface, a
geometric model of the object of interest, is computed.
Coupled with a mesh generation package, the system presented

allows for further processing and analysis of the resulting

model instead of the real object itself.

1 Introduction

Recent developments in the fields of Computer Aided
Design (CAD) and Finite Element (FE) technology and the
emergence of modern, more powerful computers, have made
possible the substitution of real models of products with
computer models. This evolution has many advantages in
cutting down the cost and the time for a complete design-
analysis-creation cycle of a variety of products in a wide
range of fields and applications.

Highly sophisticated finite element packages have been
commercially available, for analysis purposes. The
construction of finite element models is fairly automated once
a description of the geometry of the object of interest, i.e. a
geometric model, is available. In some cases such models do
exist. Mechanical components, for example, are often
designed in front of a computer, using advanced drawing
packages which have the ability to translate the drawing into
a meaningful geometric model, which can be imported to a
finite element analysis software package. However,
constructing such models for biological objects (e.g. fruits,
human body parts etc.), is a more complicated task, since
they are not the product of a design process. Thus, the
description of the geometry of natural objects often requires
an advanced weaponry of mathematical tools and techniques.

From this point of view the major bottleneck in the
complete modelling-analysis cycle is the definition of the
geometry of the object under consideration (i.e. modelling
part of the cycle). However, emerging technology in image
processing techniques allows for the reconstruction of
scanned objects (in the form of three-dimensional points on

the surface of the object) from image data (photographs,
video recordings, CT, NMR etc.). These points could be
automatically processed and fitted so that a geometric model
of the scanned object is produced. This model could then be
supplied to a finite element analysis system for furiher
processing and analysis or be otherwise utilised.

The aim of this paper is to present an integrated computer
image-acquisition/modelling system which allows for the
automatic creation of accurate geometric models from
scanned images of natural objects. This system is capable of
obtaining 3D information from scanned images taken with a
single camera, in 3D-point form. These points are then fitted
in order to produce a geometric model (an equation) which
describes the surface of the object of interest. Such a system
coupled with a finite element mesh generator and analysis
package can be used in applications in many fields of science
and humanities such as agricultural, civil and structural
engineering, archaeology, and bioengineering'.

The advantages in terms of cost efficiency and reduction
of the duration of the design/analysis cycle of products are
enormous. This is especially true in cases where the objects
do exist but any attempt of modelling them accurately by
conventional means would be inefficient or even impossible
(e.g. monuments for which plans do not exist, fruits,
biological objects etc.).

An image acquisition system has been developed for the
creation of three-dimensional geometric data. The
corresponding “3-D object reconstruction problem” has been
met with the development of a technique for the generation of
normal images. The principal idea is to replace the images in
two planes by images in one plane, by using the fact that any
perspective projection is a projective projection. Then, as the
key to a stereo system is a method for determining which
point in one image corresponds to a given point in the other
image, the problem of image matching had to be solved.
Using the image-matching model, the parameters of the
mapping functions of the model had to be determined. The
differential matching method was used assuming that
approximate values of the parameters are known and
replacing the non-linear problem by a linear one. Then, the
values of the desired parameters result from the minimisation
of energy of the observation noises with respect to the
parameters of the problem.

The output of the image acquisition stage is a cloud of 3D
points on the surface of the object of interest. These points
are then converted to a mathematically expressed geometric
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‘model (i.e. an equation) of the object suitable for further
processing and analysis. The underlying mathematical
representation of curves and surfaces implemented by the
geometric modelling software is the well-known Non-
Uniform Rational B-Splines (NURBS) representation
NURBS curves and surfaces theory and applications have
been thoroughly investigated and reported in the literature
[6][7][8][9]- They have become a de facto industry standard
mainly because they can represent both free-form shapes and
commonly used analytical shapes such as conic curves.

The technique used in the system organizes the data
points into cross-sectional data, which are then interpolated
or approximated within a given tolerance (thus creating cross-
section curves). The cross-section curves are then “skinned”
so as to produce a surface model.

In section 2 of this paper the image acquisition technique
is described. In section 3 the NURBS fitting techniques are
described. Illustrative examples are presented in section 4.

2 Image Acquisition

The stereoscopic approach is characterised by the following
two steps:

Step 1. Image acquisition.

Step 2. Stereo matching.

These two steps play an important role in the design of a
stereo system, but the success of the approach greatly
depends on its ability to solve the stereo matching or
correspondence problem. Most of the existing stereoscopic
systems consist of either one optical sensor, which can be
moved so that its relative positions at different times are
known, or two optical sensors always maintaining the same
known position with respect to each other.

A top view of the image acquisition system that we are

centre of the camera S.

and turned at various angles to obtain different sideviews. For
each sideview two snapshots differing by a small angle ¢ are
taken. Each pair is used to compute the 3-D coordinates of
the corresponding sideview.

Notice that the acquisition system shown in Figure 1 is
equivalent to a stereo model composed by two optical
sensors, denoted by S; and Sk in Figure 1, whose baseline
(distance between the optical centres of sensors) is b.

2.1 Generating Normal Images
It is well known that the stereo matching (also known as

- correspondence problem) heavily depends on the stereo

camera modelling and it can be significantly simplified if we
use the lateral model [1] which is one of the simplest imaging
models. The stereo camera arrangement of such a model is
presented in Figure 2. Notice that the optical centres C; and
Cp of the two cameras are separated only by a translation b in
the x-direction and that their optical axes are parallel. A
consequence of this last property is that epipolar lines are
parallel to the baseline and therefore any scene point is
projected onto the two image planes at points having the
same y-coordinate.

Let us denote the image planes of C; and Ci by <i; > and
<ig > respectively and by I, I the centres of the two images.
Let us also assume that J; is the origin of the (x, y, z) world
coordinate system. Then, if P;(x;, y.) and Pg(xg, yg) are the
projections of the scene point P(x,, y, z,) onto the image
planes <i; > and <ig > respectively, by using simple geometry
we can easily relate the world coordinates to the image
coordinates as follows:

2d sin(p /'2)xL

Xg=—— 4]
*L7*R

2dsin(ep / 2)yL

proposing is illustrated in Figure 1. As we can see the system Yo = Y —x
is based on a single camera combined with a turning disk L "R
whose centre R, is placed at a distance d from the optical 2dsin(p / 2)f
Z2yg=—
In a typical experiment the object is placed on the disk Xrp—Xp
> X

Figure 1. Top view of the existing, single camera (S), acquisition system and the equivalent
model composed by the two cameras (S, Sg).




P(xoaybyzo)

Figure 2. The lateral stereo camera model.

Figure 3. Geometry for the computation of the normal image.
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- where d and f can be obtained through a camera calibration
process.

The most difficult task in applying Equations (1-3) is in
fact the determination of points in the two images that
correspond to the same scene point (matching or
correspondence problem). As it was also stated above, this
problem can be significantly simplified if the two images are
normal corresponding to parailel optical axes. Consequently
next we are going present the necessary equations that can
transform the two images taken by the proposed system to
two normal images. In other words we will assume that we
have a pair of images (left and right) taken by rotating the
disk by a small angle ¢ and we are going to see how this pair
can be transformed into a normal pair. As the common
projection plane for the two normal images we are going to
consider the plane that passes through the optical centres of
the left and right sensors.

Let us consider the transformation of the left image and
similarly we can find the corresponding transformation for

Stereo systems can be broadly classified into two
categories [2]. The first includes techniques that match sparse

- and irregularly distributed features, as edges and contours,

the right. Let xO;z and x’O,’ z' be the coordinate systems of

the original and the normal image. Also let O.4 and O, 4’ be
the x-coordinates of the projections of the scene point P onto
these two image planes as shown in Figure 3. Then, from the
orthogonal triangles O,C;4 and O, ‘C;4’ by using simple
geometry we obtain the following relation for the x;,’
coordinate for the left normal image:

' Xy cos(g/2)— f sin(g/2)
LT feos(¢/ 2)+ x; sin(¢/2)

where we recall that fis the focal length of the camera and (x,,
, ¥ ) are the coordinates (in pixels) of the projection of the
scene point P,

Following similar steps, we can prove that the y,’
coordinate of the left normal image as well as (xg’, yg’) co-
ordinates, of the right normal image will be given by the
following relations:

4)

' ny
v = : ®)
S cos(g/2)+ Xy sin(¢ /2)
' fsin(¢/2)+chos(¢/2)
xp = : ©
fcos(¢/2)—stm(¢/2)
' ypf
R ¥

YR ™ coste 12)- xpsin($ /2)

Notice that in general the coordinates of the original images
are taken from a uniform sampling. Unfortunately the
corresponding x’, y’ coordinates of the normal images do not
enjoy this property. Therefore some type of interpolation is
needed in order to compensate for this drawback.

2.2 The Image Matching Problem

The image matching problem, between a pair of images, is
characterised by the following steps:
Step 1. A feature of interest is selected in one image.
Step 2. The same feature is identified (usually through
processing) in the second image.
Step 3. The disparity between the two image features is
recorded and can be used for the computation of
3-D information.
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whereas the second includes matching of dense features, such
as grey levels. As far as the second category is concemed,
which is the one that is of interest to us, correspondence is
typically established using a cross-correlation like measure.
The most well known technique in this category, is the
Differential Matching Technique (DMT) [3].

With the DMT we attempt to compensate intensity
differences, appearing in the image pair, using combinations
of geometric and radiometric transformations. More precisely
a geometric transformation is used to describe the geometric
relation between corresponding points in the two images,
whereas intensity changes, due to the different viewing
directions, are compensated with a radiometric
transformation. Although both transformations are linear their
combination produces a non-linear transformation. This in
turn requires the solution of a non-linear optimisation
problem for the estimation of the necessary transformation
parameters. If the variation of the radiometric parameters is
small and we have an a priori knowledge of their nominai
values then the non-linear problem can be easily reduced to a
linear one. For such a case the resulting optimisation is well
defined and easily solved through least squares. Under the
above assumptions the performance of the DMT is known to
be satisfactory [4]. However for cases where the variation of
the radiometric parameters is significant or the a priori
knowledge of their nominal values is not available the
method behaves poorly {2].

In our system we have alleviated this drawback by a
proper madification of the classical DMT. Key characteristic
of the proposed implementation is the fact that we were able
the original non-linear optimisation problem to reduce it to a
linear one without the need of any form of linearisation or
any a priory knowledge of the nominal parameters. The
estimates of the desired geometric and radiometric
parameters are, as in the classical method, obtained though
the solution of a well defined least squares minimisation
problem and turn out to be reliable even for large variations
of the radiometric parameters. A detailed description of the
implemented matching algorithm can be found in [5].

The output of the image acquisition and the image
matching algorithm is a cloud of 3D points on the surface of
the object of interest

3  Geometric Model Construction
The 3D points on the surface of the object of interest are
the input to a geometric modelling system. The underlying
mathematical representation for curves and surfaces of this
system is the well-known NURBS form.

The fitting method implemented is a combination of a
curve approximation technique and a cross-sectional design
technique. It is applied in a two-step fashion:

1. 3-D data points are organized in cross-sectional data,
according to their distance from some user specified
planes. The resulting data points (‘‘filtered”” points)
are approximated, thus creating cross-sectional curves,
in NURBS form.

The NURBS cross-sectional curves are *‘skinned”, in -~
order to construct a NURBS surface. :




The modelling procedure is described in the rest of this
section. Subsection 3.1 defines, in summary, the B-Spline
basis functions and the NURBS curve and surfaces resulting
from this definition. The curve fitting algorithm is described
in subsection 3.2, while the cross-sectional design technique
in subsection 3.3.

3.1 NURBS Curve/Surface Definition

A NURBS curve C(s) of degree p is a parametric piecewise
polynomial curve of degree p, defined by a set of control
points P=[x;, yi, zi]T, =1,n, a set of weights w; i=1,...,n, a
non-decreasing sequence of real numbers u; =0,...,ntp
which is called knot vector (and is in effect a partition of the
parameter domain) and a set of B-Spline basis functions

N/ () defined recursively by:

S—u; -1 ui+p+1 -S -1
NP (s)=———NF" )+ NP ()
“ivp T ¥ Yitp+1l T Hixd
0 1, ifu.<s<u,
NY(s)= i i+l 8
z (s) {0, otherwise ®)

The curve itself is defined by the following formula:

n
P
z wiPiNi (s)

=()
Cls) =" > ©)
iZ-:O wiNi (s)
Similarly, a NURBS surface is defined by
k n
r q
iz—:OjEO wi B NT (N (0)
S(s, 1) = — (10)
> w. NP N ()
i:ojzowif i J

over a grid of control points, weights and a knot vector for each
parametric direction.

3.2 Curve Fitting for 3D Points

The first step in the modelling procedure is to organize the data
points in cross-sections. This is achieved according to their
distance from a number of parallel user-specified planes (in a
fixed distance between them), which cut through the computed
data points of the object. All points, which are within some
given distance from a specified plane, are retained, while the
rest are ignored. Thus, the originally computed data points
have now been ““filtered”’, leaving only cross-sectional data to
be taken into account for further processing. In this way, the
number of points is significantly reduced, which speeds up the
modelling procedure. Furthermore, there is no significant
geometric information loss, because the number of cross-
sections can be increased, according to the desired accuracy.
The next step is to construct NURBS curves,
approximating the ‘‘fiitered’’ cross-sectional data points. The
curve fitting problem to be solved here can be stated as
follows: Given a set of data points Q,, ~=1,2,...,m, find a
NURBS curve that fits the data according to some specified
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criterion. In general, computing the desired curve amounts to
computing: .

the degree p of the basis functions, the number of
control points and weights #,

the location parameter values s; corresponding to data
pOiﬂtS Q,‘, =1 gaenslM,

the knot vector U,

¢ The control points P;, and weights w;, i=1,...,n.

Solving for all the above-mentioned unknowns at once is a
highly complicated problem. In practice the degree of the basis
functions and the number of control points and weights are
fixed beforehand. The location parameters and the knot vector
are also determined beforehand according to the distribution of
the data points (this procedure is called data parameterization
and it is described in section 3.2.2). Therefore, the fitting
procedure results to the minimization of a distance criterion,
based on the /, norm, with respect to the unknown weights and
control points:

n P 2

m 2 m,iEOWiPiNi (s)

> lesp-e) = 2 1= —q,| ay
i=0 !

where s, i=1,...,m are location parameters of the data points.

3.2.1 Fitting Algorithm

A typical outline of the curve-fitting algorithm adopted is
(described in [10]):

Input: 2-D or 3-D data points.

Assign initial parameter values to the data points.
Assume an initial knots distribution.

Go through an approximation procedure to obtain the
weights and control points of the NURBS curve, i.e.
obtain the fitting curve.

Optimise the parameter distribution if necessary to
obtain a better fit [13]. Go through steps 3 to 5 until a
satisfactory accuracy has been achieved.

6. Output: NURBS curve.

The first three steps of the algorithm are described in
section 3.2.2. Parameter optimisation schemes are not
implemented in the current system. This is because in most of
the modelling applications the model constructed by the
fitting technique described in this paper is sufficiently
accurate. Therefore, it is not necessary to further load the
modelling procedure with time consuming processes without
significant gain. In the rest of this section the minimisation of
Equation (11) with respect to the unknown control points and
weights is briefly described.

The minimisation of the distance problem defined by
equation (11) for curve fitting is equivalent to solving, in a
least square sense, the linear systems

El

Nopxr " Px = Qx Ny -w=0
Nppser *Py = Qy Ny -W=0 (12)
=0

mer Py -Qq 'mer "W



where r=n+1, N= lNi (sj )J for =1,...,r, j=1,....,m, w is the

vector of the unknown weights, P,, Py, P, are vectors
containing the unknown coordinates of the control points

multiplied by their respective weight, i.e.

Yo*o Yoo "o%0
[Px Py Pz]: UL C Y a3
WnXn Wn¥n WniZn
and
Qx =diag(X; ... Xp),
Qy = diag(¥) Ym)s (14)
Q = diag(Z, Zm)

are diagonal matrices which contain the coordinates of the data
points. Equation (12) can be rearranged in matrix form

P, 0
N 0 0 QN[
0 N 0 -Qy-N| PY = (15)
0 0 -Q, N z
N -Q, w 0

In solving the homogeneous linear system (15) in a least
square sense, special care is needed for the computation of
weights because they need to be positive. In [10] Ma shows
how to compute the weights and control points in a two step
linear fashion by separating the weights and control points in a
linear system of the form

-w=0 (16)

me(n+l)
where M is a symmetric nonnegative matrix of dimension
m-(n+1). The unknown weights can be found by minimizing
the Rayleigh quotient of matrix M under suitable constraints
for the weights. Interpolating solutions are found if
rank(M)<(r+1) [10].
it was shown in {10] that the same method can be easily
extended for surface fitting of 3D data points.

3.2.2 Data Parameterization

In the fitting algorithm it is required that the degree of the
curve, the number of control points and weights, the data
points location parameters and the knot vector are specified
or are algorithmically inferred from the data points

. beforehand. The procedure of computing these parameters is
usually called data parametrization and it is usually a three-
step procedure:

1. The degree p of the basis functions in the s direction
and the number of control points and weights n are
determined. These are usually user specified. The user
is allowed to specify any degree of the basis functions
and number of control points as long as the number of
knots is made compatible afterwards. Ideally, there is
an optimum degree for a specified number of control
points or an optimum number of control points for a
specified degree.-However, what one means optimum
in this case is not easy to define and most of the time
depends on the particular application. For example, if
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speed is more important than accuracy choosing low
degree basis functions with a low number of weights
and control points is more appropriate. Furthermore,
there is always a wrade off between the degree and
number of control points and computational cost: the
higher the degree or the number of control points the
more costly the method. However, keeping the balance
between speed and accuracy by choosing the degree of
the basis functions and the number of control points is
a rather intuitive process. In most of the applications
run on the current system a good balance between
accuracy and speed is achieved by using cubic basis
functions.

The location parameters s;, i=1,...,m comresponding to

data points are computed.

. A suitable knot vector U, in parametric direction s, is
determined, usually taking into account the parameter
distribution.

Computation of location parameters: There are several

methods available, in order to compute location parameters

from the data points:

Uniform: This method assigns equidistant parameter
values to the data points, hence it is used only in ideal
situations where the data points are nearly equally
distributed in space

i-1

S, i=1...,m an

|

for curve fitting of m data points.

Cumulative Chord Length: This method assigns a
parameter value to a data point according to the length
of all the line segments formed between successive
points, starting from the first and ending to the current
point:

1 o -2,.4]
— m
# “Qj ~Q "

Centripetal: This method observes the changing
curvature of the underlying curve

S. =85,

;=S i=2,....ms =0.(18)

1
. “Qi - Qi-1"2

i=2,...,m,.s'l =0. (19)

I~ i1 1’
& 2
j§2 ‘ Qj Jj-1
Base curve parametrization: This method is due to
Ma [10]. Each data point is associated with a point on
a simple known underlying curve (for example by
minimising the distance of the data point to the curve
with respect to the parameter values). The parameter
values of the associated point on the underlying curve
(base curve) are the location parameter values for the
data point. This method can be applied recursively
starting with a simple curve, improving its shape and
repeating the parameter computation until a
satisfactory result is obtained. For more on the curve

parameterization method see [10].

All of the above methods are available in the current
system and, theoretically, they could all be used (with
different results in terms of accuracy). However, in all of the
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above methods except the base curve parameterization
method the data points are assumed to be chain or grid
distributed.

In the last method however this is not required and
therefore it can be used to order the data points in case they
are randomly distributed which is often the case for measured
points obtained by a scanning device. Therefore, at this point,
the problems encountered in the location parameter
computation stage of the algorithm should be mentioned. Due
to the fact that the data points come from multiple views of
the object, there are very often cases where there is an
overlap between points coming from different views.
Therefore, there is no ordering in the data points. Ordering
the data points is essential for computing the knot vectors and
affects the shape of the resulting curve. This problem is
overcome by adopting and using the base curve
parameterization method described above. The data points
can be ordered by ordering the s location parameters of their
respective associated points.

The base curve technique can be also generalised for
surface fitting of 3D data points {10]

Knot vector computation: A suitable knot vector U in
parametric direction s, is usually computed by taking into
account the parameter distribution. Commonly used methods
for knot values allocation are:

Simple Knots sefting

0
i-p-1
n—-p+11
1
Averaging methods: In averaging methods the knot
distribution is varying according to the distribution of
the data points by taking into account the distribution
of the parameter values in the parameter domain.
Hence, good parameterization of the data points is

essential. For more on averaging methods see [10].

i=0,...
i=p+1i,...

u, ,n (20)

i
i=n+ln+p

In the system presented here averaging methods are used
because, although they are more expensive computationally
they lead to more accurate models. The resulting curve or
surface is more accurate because more basis functions (and
therefore more control points) are assigned to areas were the
distribution of the data points is denser.

3.3 Cross-sectional Design

The fitting technique employed in the current system is based
on a cross-sectional design technique, which fits a NURBS
surface to a sequence of cross-sectional NURBS curves. For
more on cross-sectional design see [15][16]. A NURBS
surface is fitted to the cross-section curves that have been
computed with the method described in section 3.2. The same
method can be also applied, in the case where the cross-
sections are given or are otherwise computed. However,
before the “skinning” of the curves, certain parameters have
to be computed before hand (data parameterization). The data
parameterization procedure is described in the section 3.3.2.

3.3.1 Fitting Algorithm
The fitting algorithm adopted in the system presented here is:
1. Input: Crossectional NURBS curves.
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2. Make all curves compatible (if they are not already).

3. Go through a skinning technique.

4. Output: NURBS surface.

The skinning algorithm used in the geometric modeller is
presented in the following.

The fitting problem can be mathematically stated as
follows: A collection of NURBS curves

k

C' ()=
zw
i=0

=1,..n (21)

1

i

NF ()

is given. Then, a NURBS surface (defined by Equation (10))
that interpolates the curves has to be constructed. Therefore,
the surface under construction needs to interpolate the given
curves at certain parameter values, i.e. it should have the
following interpolation property

S(s,1,)= cls) 22)

=1,.,n

It should be emphasised that the crossection curves
defined by equation (21) are compatible. This means that they
have the same degree, the same number of weights and
control points and are defined over the same knot vector. If
they are not, degree raising and knot insertion algorithms like
the Boehm or the Oslo algorithm {12] can be employed to
force compatibility (step 2 of the algorithm).

It is known that a NURBS surface S(s,f) of degrees p, g ata
fixed parameter value =z and s ranging in [0,1], is a NURBS
curve of degree p with weights [12]

w.= 3 w.N(a) (23)
oj=0 Y J
and control points
P -3 e, (24)
I =0 w. y

i
The cross-section curve defined by equation (21) should be
identical to the curve defined by the control points and
weights defined by equations (23-24) at parameter value =,.
Therefore,

w,=w, and P, =P ,i=0,..,k (25)

This leads to the following system of linear equations with
respect to the unknown weights w;; and control points P;; of
the desired surface

n q 1

ngNj (Il)wij =w;, i=0,...,k1=0,...,n 26)
n q 1,0 .
j§0wiij (tl)Pij=wiPi, i=0,...,k,1=0,...,n (27)

Solving equations (26-27) guarantees interpolation of the
section curves by the NURBS surface. The solution is
computed in a two step fashion; first solving Equation (26)
for the unknown weights and then solving Equation (27) for
the unknown control points.

Assume that the control points of the cross-section curves
form a matrix (in fact three matrices of x, y, z coordinates), in
which each row of control points consists of the control



points of a specific cross-section curve. Intuitively, the

skinning procedure amounts to interpolating each column of
this matrix by a NURBS curve. The control points of the
resulting interpolating curves are the control points of the
computed NURBS surface.

3.3.2 Data Parameterization

In the case of cross-sectional design the following have to be
determined before the “skinning” procedure:

1. Degrees of the cross-sectional and longitudinal curves
as well as the number of weights and control points in
each parametric direction, i.e.

» Degree p of the cross-sectional curves (say in the s-
direction).
e Degree g of the longitudinal curves.

e Number of weights and control points for each
cross-sectional curve.

e Number of weights and control points for each
longitudinal curve.

The degree and number of control points for the cross-
section curves are given when the input are the curves
themselves. If the input is data points they are user
specified along with the degree and number of control
points and weights of the longitudinal curves.

2. Location parameters of the longitudinal curves. These
can be computed by parameterizing (by any of the
methods for curve fitting) the control points of the
given curves in the longitudinal direction.

3. Knot vector for longitudinal curves. These can be
computed by any of the methods described for curve
fitting once the parameter values have been
determined.

Note that the longitudinal curves must be compatible, in
the same way the cross-sections curves are compatible.

4  Illustrative Examples

In this section illustrative examples are presented in order to
demonstrate the techniques employed in the image
acquisition-geometric modelling system. For this purpose a
peach and a pear were scanned and modelled. The peach
example, illustrates modelling of an open surface, while the
pear is modelled by a closed surface. Points on the surface of
the peach and the pear were computed by using the image
acquisition method described in section 2. The cloud of 3D
points for the peach and the pear are shown in Figures 4 and
8 respectively. The data points were fitted by using the
techniques described in sections 3.2 and 3.3 of this paper:

1. Normally, the raw 3D data points are filtered
according to their distance from user specified planes.
All points within some tolerance from a particular
plane are classified as belonging to the same cross-
section curve. However, in the peach example, there
was no need for "filtering", because the data points
were organised -in cross-sections beforehand (during
the image acquisition phase). In the pear example the
original 3D data points had to be "filtered". The cross-
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sectional cata points of the peach and the pear are
shown in Figures 5 and 9 respectively. Notice that the
cross-sectional data of the peach do not determine
cross-sections in the classical semse of the term.
However, the fitting method works well.

2. The points defining each curve were parameterized by
a base curve parameterization method and the knot
vectors were computed and made compatible.

3. The cross-sectional data were subsequently fitted with
cubic NURBS curves, with 20 control points each,
using the curve fitting technique described in section

3.2. This means that the weights w,.[ and control points

Pil of Equation (21) were computed. The resulting

curves are shown in Figure 6 and 10 for the peach and
the pear respectively.

4. Then, the weights and control points of the resulting
NURBS sarface were computed using Equations (26)
and (27). The peach surface is a bicubic, while the
pear surfece is of degree 3 in the cross-sectional
direction zad of degree 2 in the longitudinal direction.

Although the peach model is smooth and can be
automatically imported into a finite element package for
further processinz, any analysis result is of little importance
since the model is incomplete, i.e. a fruit is a closed surface
and not open as iz the surface of Figure 7.

The pear mocel, however, was constructed in such a way
that it is closed in both parametric directions, in order to
illustrate that the method works well for closed surfaces. The
modelling procecare was the same as in the case of the peach,
but the cross-sections curves of the pear are smoothly closed.
In order to achizve that special care is meeded in order to
satisfy smoothness conditions by the knots and control points
of each cross-secion curve [10].

5 Conclusion

An image acquisition-geometric modelling system for the
construction of geometric models of natural objects was
presented. The svstem is able of scanning the desired object,
obtain 3D inforrration in the form of 3D data points and fit a
surface to them, thus creating a mathematical description of
the object.

In the image acquisition stage, a modified Differential
Matching method is used in order to compute coordinates of
points on the suriace of the object.

Then, the computed 3D points are used in the geometric
modelling part cf the system. They are organised in cross-
sectional data azd a NURBS curve is fitted to each cross-
section. The cross-section NURBS curves are then "skinned",
producing a NURBS surface approximating the object of
interest. '

The system presented is able to model both open and
closed surfaces, with NURBS surfaces of arbitrary degree. In
principle, objects with holes, slits etc. cam be modelled, but
somehow this iaformation has to be obtained beforehand,
probably in th: image acquisition stage. In this case,

additional topological information must be added in the input

to the geometic modelling system, i.e. some sort of
neighbourhood connectivity information of the data points.




Figure 5. Cross sectional data on the surface of the peach. Figure 9. Cross-sectional data on the surface of the pear.

Figure 6. Cross-sectional NURBS curves for the data points Figure 10. NURBS cross-section curves for the data points of
of Figure 5. Figure 9.

Figure 7. NURBS surface for the peach of Figure 4. Figure 11. NURBS surface for the pear of Figure 8.
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