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Abstract—This paper presents a novel zero-sum wa-
termarking game between a detection algorithm and a
data hiding adversary. Contrary to previous research,
the detection algorithm and the adversary we consider
are both nonparametric in a continuous signal space,
and thus they have no externally imposed limitations
on their allowed strategies except for some distortion
constraints. We show that in this framework no determin-
istic detection algorithm is optimal. We then find optimal
randomized detection algorithms for different distortion
levels and introduce a new performance tradeoff between
completenessand accuracy when a detection algorithm
does not have enough evidence to make an accurate
decision.

I. I NTRODUCTION

To formally characterize the behavior of data hiding
algorithms there has recently been a growing interest
in trying to prove analytical properties of data hiding
codes. In this general framework one usually assumes
a performance metricΨ(DH,Af ) (such as the prob-
ability of error) and describe it in terms of the data
hiding algorithmDH (which include the embedding
and detection algorithms) and a fixed attackAf (e.g.,
a Gaussian noisy channel with known parameters). An
ideal data hiding code in this framework optimizes the
given performance metric, e.g.,

DH∗ = arg min
DH

Ψ(DH,Af ).

An example of this type of approach can be found in
[1], where the adversary model is fixed as an average
collusion attack with additive Gaussian noise, and sev-
eral parameters of the data hiding code are optimized
in order to find good performance guarantees.

Fixing the adversary model to follow any given
parametric model is a good approach for particu-
lar data hiding applications that are not subject to
a significant threat, since several parametric models
represent accurately the end results of standardnon-
adversarialsignal processing algorithms applied to a
signal. However in several other fields such as mul-
timedia fingerprinting for traitor tracing, the objective
of the attacker is directly opposite to the one of the
data hiding code. Any limitation on the capabilities

of the adversary might therefore be unrealistic. Any
data hiding algorithm designed under the assumption
of a limited adversary will provide very weak security
guarantees.

In order to limit the number of assumptions that
might be violated easily by an adversary, there is a
growing interest in trying to understand the notion of
an intelligent opponent against data hiding algorithms.
A basic objective in this framework is to find prov-
able performance guarantees for a fixed data hiding
algorithmDHf . The problem is therefore to find the
performance of the algorithm against the worst-type
attacks:

Ψ∗ = max
A

Ψ(DHf ,A).

A solution to this formulation shows that there is
no other attack that will makeDHf perform worse,
i.e., ∀A, Ψ(DHf ,A) ≤ Ψ∗. A recent example of
this kind of approach can be found in [2], where the
detection algorithm is a fixed correlation detector, but
where the adversary’s strategy is optimized in order to
find the attack probability density function (pdf) that
maximizes the probability of error.

The question however remains on how to design
optimal detection algorithms to achieve the smallest
possibleΨ∗. For this end we need to find an optimal
hiding strategyDH∗ and a least favorable attack
strategyA∗ to the following problem:

(DH∗,A∗) = arg min
DH

max
A

Ψ(DH,A). (1)

A solution to this formulation tells us that there is
no otherDH that will have better worst performance:
∀DH, maxAΨ(DH∗,A) ≤ maxAΨ(DH,A).

Solving the min-max problem is usually very dif-
ficult, and for that reason most of the research has
restricted the adversary or the detection algorithm to
follow parametric models. This simplifies the problem
of finding the most damaging attacks and optimal
detection algorithms, to one of finding the most dam-
aging parametersof a specific kind of attack and
the optimalparametersof a specific data hiding al-
gorithm. Examples include optimizing the parameters
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of Spread Spectrum or QIM watermarking algorithms
with their corresponding detection structures (e.g.,
correlation detectors) [3], [4] or parametric versions
of the adversary distributions such as Gaussian at-
tacks [5]. Very little work has been directed into
finding optimal nonparametric detection algorithms
against least-favorable nonparametric attack distribu-
tions. Furthermore notice that by solving Eq. (1) there
is no guarantee that we cannot do better, or thatDH∗
is optimal againstA∗. More specifically we cannot
guarantee that∀DH, Ψ(DH∗,A∗) ≤ Ψ(DH,A∗).
Note that this optimality property can be achieved for
example, by formulating the max-min problem, which
does not always yield the same solution as the min-
max formulation.

In this paper: (i) we introduce a nonparametric
adversary model in order to claim stronger secu-
rity properties for our detection algorithm (i.e., the
performance of our algorithm does not depend on
assuming a limited adversary). (ii) We introduce a
nonparametric data-hiding detection algorithm in order
to obtain lower bounds forΨ than could not have
been achieved if we had been using a parametric data
hiding algorithm. (iii) We find algorithms that satisfy
the following saddle-point equilibrium:

Ψ(DH∗,A) ≤ Ψ(DH∗,A∗) ≤ Ψ(DH,A∗) (2)

and thus we are guaranteed that our solution satisfies
not only the min-max formulation but also the max-
min formulation of the problem.

Since we considercontinuoussignal spaces, finding
a saddle point solution requires a double optimization
over infinite dimensional spaces. In this paper we focus
therefore on the scalar case and emphasize the insights
on how to obtain saddle point solutions with the aim of
generalizing the results to multi-dimensional spaces.

II. T HE NON-BLIND WATERMARK VERIFICATION
PROBLEM

In the watermark verification problem the data hid-
ing codeDH consists of two main algorithms, an
embedding algorithmE and a detection algorithmD,
where

• The embedderE receives as inputs ahost signal
s and a bitm. The objective of the embedder is
to produce amarked signalx with no perceptual
loss of information or major differences froms,
but that carries the information aboutm. The
general formulation of this required property is
to force the embedder to satisfy a distortion
constraint, sincex should be perceptually similar
to s. In order to facilitate the detection process,
the embedder and the detector usually share a
random secret keyk (e.g., the seed for a pseu-
dorandom number generator that is used to create
an embedding pattern). This key can be initialized
in the devices or exchanged via a secure out of
band channel.

• The adversaryA can intercept the marked signal
x produced byE , and can send in its place, a
degraded signaly to the detector. This degraded
signal should satisfy a distortion constraint, since
y should be perceptually similar tos (andx).

• The detection algorithmD receives the degraded
signaly and has to determine ify was embedded
with m = 1 or m = 0. In non-blind watermarking
the detector is also assumed to have access to the
original signals.

III. N ONPARAMETRIC DETECTION AND
ADVERSARY MODELS

In order to better understand the problem while
keeping the computation tractable we work with a
simplified formulation which we believe can give
insights into how to solve more general formulations.
However, although we restrict the complexity of the
embedding algorithm and of the signal space, we still
allow for a very general adversary model and detection
algorithm. In particular we assume:

• The host signals, the marked signalx and the
degraded signaly are inR.

• The embedding algorithmE(m, s) is fixed and
parameterized by a publicly known distanced
between different embeddings: that is, for alls;
|E(1, s)− E(0, s)| = d.

• The adversaryA, on input x, creates the attack
y = x+e, wheree is sampled from a distribution
h chosen by the adversary from the set of pdfs
that satisfy the distortion constraint

FD = {h : E[D(y − x)] = E[D(e)] ≤ D} ,

whereE denotes the expected value overh. We
also assume the adversary knowsd, but does not
know the value ofm.

• The detection algorithmρ outputs an estimate of
m (m̂ = 0 or m̂ = 1) on inputy.

The problem can be represented as:

E A D
x−−−−−−−−−→

y = x + e
y−−−−−−−−−→

ρ(y)

Our objective is to find a pair(ρ∗, h∗) such that for
all possible detection algorithmsρ and for allh ∈ FD

Ψ(ρ∗, h) ≤ Ψ(ρ∗, h∗) ≤ Ψ(ρ, h∗) (3)

where Ψ(ρ, h) is the probability of error:
Pr[ρ(x + e) 6= m].

A. Conditions for Optimal Detection Rules
Let xi = E(i, s). Recall that in order to satisfy
Ψ(ρ∗, h∗) ≤ Ψ(ρ, h∗), ρ∗ should be alikelihood test.
In particular,ρ∗ should select the largest between the
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likelihood of y givenx1: h(y−x1), and the likelihood
of y given x0: h(y − x0), and should randomly flip
a coin to decide if both likelihoods are equal. This
decision rule is calledBayes optimal.

Note also that this optimal decision function as-
sumes equal priors, i.e.,Pr[m = 0] = Pr[m = 1].
However this can be easily generalized in the
case where the priors are different by comparing
Pr[m = 1]h(y − x1) with Pr[m = 0]h(y−x0). In the
remaining of this paper we assume for simplicity of
exposition that we have equal priors.

B. On the Necessity of Randomized Decisions
Since the likelihood test depends on the unknown
distribution h, the challenge we face is to design the
decision boundaries forρ so that the optimal pdfh∗
makesρ a Bayes optimal decision.

The most intuitive decision functions are usually
non-randomized decisions (except for sets of measure
zero), where the decision spaceR is divided into
two open sets:R and its complementRc. If y ∈ R
then ρ(y) = 1, otherwiseρ(y) = 0 (randomization
is only used wheny falls in the boundary of the
two sets). However as we show next, it is impossible
to obtain saddle point equilibria with deterministic
decision functions.

Before we proceed let us definea = y − x1 and
assume without loss of generality thatd = x0−x1 > 0.
Since there is no loss of information forρ by taking
as input a instead of y, in the remaining of this
paper we assumeρ receives as inputa for notational
simplicity. Note that in this case the likelihood of
a being generated under the hypothesism = 1 is
h(a), and the likelihood ofa being generated under
hypothesism = 0 is h(a − d). Therefore the Bayes
optimal decision function is:

ρ∗(a) =

{ 1 if h(a) > h(a− d)
0 if h(a) < h(a− d)
γ if h(a) = h(a− d)

(4)

whereγ represents an arbitrary decision (e.g., a ran-
dom decision) if the two likelihoods are equal. This
can be allowed because the objective function is not
affected for the case when the likelihoods are the
same. This is in contrast to other optimality criteria,
such as the Neyman-Pearson formulation, where the
randomizationγ must be selected with care.

Theorem 1: Let the distortion functionD() be
continuous, symmetric and monotone increasing for
a > 0. Also assume thatρ is a deterministic decision
function function (except for a set of measure zero).
Then there is noρ that satisfies a saddle point solution
for any distortion functionD, distortion boundD and
embedding distanced.

Proof: The probability of error, assuming equal
prior probabilities form = 0 or m = 1, can be

R − d R
c

φ(λ, h)
1

2
− λD(a)

−λD(a)

0

x1 x0

d

y

a

Fig. 1. Sincea = y − x1 we can see how the shape ofφ(λ, a)
determines where the adversary tries to distribute the densityh
such thatL(λ, h) is maximized while satisfying the constraints (i.e.,
while minimizing L(λ, h) over λ.)

expressed as:

Ψ(ρ, h) =
1
2

(Pr[ρ = 1|m = 0] + Pr[ρ = 0|m = 1])

=
1
2

(∫

R

h(y − x0)dy +
∫

Rc

h(y − x1)dy

)

=
1
2

(∫

R

h(a− d)da +
∫

Rc

h(a)da

)

=
1
2

(∫

R−d

h(a)da +
∫

Rc

h(a)da

)

=
1
2

∫

R
(1R−d(a) + 1Rc(a)) h(a)da

where1R is the indicator function for the setR (i.e.,
1R(a) = 1 if a ∈ R and 1R(a) = 0 otherwise) and
whereR− d is defined as the set{a− d : a ∈ R}.

The objective function is therefore:

min
RjR

max
h∈FD

1
2

∫
(1R−d(a) + 1Rc(a)) h(a)da

Let us first fixR and proceed with the optimization of
h. Since the maximization is a constrained optimiza-
tion problem we form the Lagrangian forh:

L(λ, h) =
∫

φ(λ, a)h(a)da + λD (5)

whereλ is a Lagrange multiplier and where

φ(λ, a) =
1
2

(1R−d(a) + 1Rc(a))− λD(a).

The problem we need to solve now is

(λ∗, h∗) = arg min
λ≥0

max
h∈FD

L(λ, h). (6)

Note thatL(λ∗, h∗) = Ψ(ρ, h∗) for fixed R.

By looking at the form ofφ(λ, a) in Fig. 1 (for λ >
0, i.e., when the distortion constrains onh are active)
it is clear that a necessary condition for optimality
is R − d

⋂
Rc = ∅, since otherwise, the adversary

will put all the mass ofh in this interval, achieving
a probability of error of one. Under this condition we
assume the very intuitive decision function specified
by R − d = [−∞, −d

2 ] (the same results are obtained
for non-connected setsR).
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ρ1(a) ρ0(a)

d0

0

1

a

Fig. 2. Piecewise linear decision function, whereρ(0.5d) =
ρ0(0.5d) = ρ1(0.5d) = 1

2

AssumingD < D(d
2 ), the optimal adversarial strat-

egy is1

h∗(a) = pδ

(−d

2
− ε

)
+ (1− 2p)δ(0) + pδ

(
d

2
+ ε

)

where the adversary choosesε to be arbitrarily small
(and take care of the discontinuity of the decision func-
tion), and then selectsp = D

2D( d
2 +ε) , which turns out

to be also the probability of error; i.e.,Ψ(ρ, h∗) = p.

Notice also that forD ≥ D(d
2 ), λ∗ = 0, and there-

fore there will always be anh∗ such thatΨ(ρ, h∗) = 1
2 .

The interpretation for this case is that the distortion
constraints are not strict enough, and the adversary
can create error rates up to0.5 by choosing

h∗(a) =
1
2
δ

(−d

2
− ε

)
+

1
2
δ

(
d

2
+ ε

)

where0 < ε ≤ D−1(D)− d
2 .

Therefore for any fixed decision regionsR, and any
D, the adversary is able to findh∗ maximizing the
probability of error and at the same time making the
decision region suboptimal, since anyρ will not be
Bayes optimal, and if it is Bayes optimal thenh∗ is
not a maximizing distribution.

C. Saddle Point Equilibria forD =
(

d
2

)2

Having shown that there are no saddle point equi-
librium solutions for deterministic decision functions,
we now show three saddle point equilibria that can
be achieved with randomized decision functions and
by assuming the very common quadratic distortion
constraintE[D(a)] = E[a2] ≤ D. First we show
a saddle point solution forD =

(
d
2

)2
, which has

probability of error of14 . We then show how to obtain

a saddle point solution for0 ≤ D ≤ (
d
2

)2
with

probability of error of D
d2 ≤ 1

4 and finally a saddle

point solution for
(

d
2

)2
< D ≤ 3

(
d
2

)2
, using an

expected cost function as a generalization from the
probability of error.

Let ρ(a) = 0 with probability ρ0(a) and ρ(a) = 1
with probabilityρ1(a). In order to have a well defined
decision function we requireρ0 = 1 − ρ1. Consider
now the decision function given in Fig. 2. For this case,

1For notational simplicity we denote throughout this paper the
Dirac delta functionδ(a−a0) asδ(a0). The fact that it is a function
of a will remain implicit.

1

2
− λa

2

−λa
2

φ(λ, h) a

2d
− λa

2

0 d
a

Fig. 3. The discontinuity problem in the Lagrangian is solved by
using piecewise linearcontinuousdecision functions. It is now easy
to shape the Lagrangian such that the maxima created form a saddle
point equilibrium.

the Lagrangian has again the same form as in Eq. (5),
but this time

φ(λ, a) =
1
2

(ρ1(a + d) + ρ0(a))− λa2. (7)

In order to have active distortion constraints, the
maxima of L(λ, h) (with respect toh) should be in
the intervala ∈ [−d, d]. Looking at Fig. 3 we see that
φ(λ, a) achieves its maximum value as a function of
a for a = ± 1

4λd (assumingλ is fixed). Therefore

h∗(a) =
1
2

(
δ

(
− 1

4λd

)
+ δ

(
1

4λd

))
.

Notice however that underh∗, ρ will only be Bayes
optimal if and only if 1

4λd = d
2 , or equivalently, if and

only if

λ =
1

2d2
, (8)

since ata = d
2 , h∗(a) = h∗(a − d) and therefore the

optimal decision can be randomized.

Notice thatλ∗ = 1
4d
√

D
minimizes the Lagrangian,

therefore from this constraint and Eq. (8) we can solve
for D to obtain the condition where the saddle point
equilibrium holds:D =

(
d
2

)2
.

As a summary, forD =
(

d
2

)2
, (ρ∗, h∗) is a saddle

point equilibrium whenρ∗ is defined as in Fig. 2 and

h∗(a) =
1
2

(
δ

(
−d

2

)
+ δ

(
d

2

))
.

Furthermore the probability of error isΨ(ρ∗, h∗) =
L(λ∗, h∗) = 1

16λd2 + λD = 1
8 + D

2d2 = 1
4 .

D. Saddle Point Equilibria for0 ≤ D ≤ (
d
2

)2

For 0 ≤ D ≤ d2

4 we can obtain a saddle point by
considering the decision function shown in Fig. 4. Fol-
lowing the same procedure as in the previous section
we form the Lagrangian, which again is the same as
in Eq. (5) withφ(λ, a) as in Eq. (7) but withρ defined
in Fig. 4.

For this new decision function we find that forz ∈
(3,∞), the local maxima ofφ(λ, a) as a function of
a, occur ata = 0, anda = ± z

4d(z−2)λ .
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ρ1(a) ρ0(a)

z − 1

z
d

d

z

z

(z − 2)d
a −

1

z − 2

d0

0

1

a

Fig. 4. Bayes optimal decision function for0 ≤ D ≤
�

d
2

�2
when

z = 4

1

2
− λa

2

φ(λ, h)

1

2

(

z

(z − 2)d
a −

1

z − 2

)

− λa
2

−λa
2

0

d
a

Fig. 5. With ρ defined in Figure 4 the Lagrangian is able to
exhibit three local maxima, one of them at the pointa = 0, which
implies that the adversary will use this point whenever the distortion
constraints are too severe

In order to force the optimal attack distributionh
to place its mass in regions whereρ is optimal, we
need to find the value ofλ∗ that makes all the local
maxima ofφ the same. That is, we need to findλ∗ as
the solution to:

φ

(
λ∗,± z

4d(z − 2)λ∗

)
= φ(λ∗, 0) = 0

or more specifically, the solution to:

z2 − 8d2(x− 2)λ∗

16d2(z − 2)2λ∗
= 0

which is λ∗ = z2

8d2(z−2) . Any other λ would have
implied inactive constraints (D too large orD = 0).
See Fig. 5.

Replacing this optimal value ofλ∗ for the optimal
values ofa∗, we conclude thata∗ = ± 2d

z . The optimal
adversary has therefore the form:

h∗(a) = p0δ

(
−2d

z

)
+ (1− 2p0)δ(0) + p0δ

(
2d

z

)

With this optimal attack distributionρ can only form
a saddle point (i.e., be Bayes optimal) ifz = 4, since at
a = ±d

2 , h∗(a) = h∗(a− d) and the optimal decision
can be randomized.

We observe thath∗ is an optimal strategy for the
adversary as long as

E[a2] = 2p0

(
d

2

)2

= D,

that is, p0 = 2D
d2 . Since the maximum value that

p0 should attain is1
2 , this implies that this is the

optimal strategy for the adversary for anyD ≤ d2

4 . The
probability of error for this saddle point equilibrium is

Ψ(ρ∗, h∗) = L(λ∗, h∗) = λ∗D =
D

d2
≤ 1

4

Note also that we have now two saddle point so-
lutions for the caseD = d2

4 , with decision functions
defined in Fig. 2 and Fig. 4. In fact we can show that
we have an infinite set of optimal solutions for this
case, since a saddle point is satisfied for anyz ≥ 4.
The casez →∞ corresponds to Fig. 2.

E. Saddle Point Solutions forD ≥ d2

4

As the distortion bound is relaxed for the adversary,
the performance of the data hiding algorithm degrades
severely in the classD > d2

4 . For example forD =
2
3d2 the optimum decision functionρ0 is linear from
−0.5d until 1.5d and the least favorableh∗(a) puts
masses of13 at 0, d, and−d. However, the probability
of error for this case is13 , which might be too large
for some applications.

A very interesting formulation to increase the confi-
dence of the decisions made by a classifier is the idea
of using a “no decision” output to help the decision
function in regions where deciding between the two
hypothesis is prone to errors. In this framework we
allow ρ(y) to output¬ when not enough information
is given in y in order to decide betweenm = 0 or
m = 1.

To characterize the performance of the detection
algorithm we need to analyze the tradeoff between the
completenessand theaccuracyof ρ. The accuracyof
ρ is defined as the probability of correct classification
Pr[ρ = m], while thecompletenessof ρ is defined to
be the probability of making a classificationPr[ρ 6= ¬]
(that is, the probability of classifying as either0 or 1).

We quantify this tradeoff formally using the Bayes
risk and using a tradeoff parameterα. Let C(i, j)
represent the cost of deciding fori when the true
hypothesis ism = j. By using as an evaluation metric
the probability of error, we have been so far mini-
mizing the expected costE[C(ρ,m)] whenC(0, 0) =
C(1, 1) = 0 and C(1, 0) = C(0, 1) = 1. We now
extend this evaluation metric by incorporating the cost
of not making a decision:C(¬, 0) = C(¬, 1) = α.

It can be shown that ifα ≥ 1
2 , then the no-decision

region can be ignored (the test is complete) if we want
to minimizeE[C(ρ,m)]. Therefore we only need to
concentrate on the caseα < 1

2 . It is easy to show
that a detection algorithm that minimizesΨ(ρ, h) =
E[C(ρ,m)] has the following form:

ρ∗(a) =





1 if h(a) > 1−α
α h(a− d)

¬ if 1−α
α h(a− d) > h(a) > α

1−αh(a− d)
0 if h(a) < α

1−αh(a− d)

and wheneverh(a) equals either α
1−αh(a − d) or

1−α
α h(a − d) the decision is randomized between1
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ρ1(a) ρ0(a)

β

ρ
¬
(a)

a0

1

0 dd

2

Fig. 6. ρ¬ represents a decision stating that we do not possess
enough information in order to make a reliable selection between
the two hypotheses.

and¬ and between¬ and0 (respectively).

Under our non-blind watermarking model the ex-
pected cost is:

Ψ(ρ, h) =
1
2

∫
[ρ1(x + d) + αρ¬(x + d)] h(x)dx +

1
2

∫
[ρ0(x) + αρ¬(x)] h(x)dx

whereρi is the probability of deciding fori and where
ρ0(x) + ρ¬(x) + ρ1(x) = 1 for all x.

Given ρ, the Lagrangian for the optimization prob-
lem of the adversary is:

L(λ, h) =
1
2

∫
φ(λ, a)h(a)da + λD,

where in this case

φ(λ, a) =
ρ1(a + d) + αρ¬(a + d) + ρ0(a) + αρ¬(a)− λa2.

Consider now the decision function given in Fig. 6.
Following the same reasoning as in the previous chap-
ter, it is easy to show that forβ = 3

2d, the maximum
values forL(λ, h) occur fora = 0 anda = ±d. The
optimal distributionh has the following form:

h∗(a) =
p

2
δ(−d) + (1− p)δ(0) +

p

2
δ(d).

The decision functionρ is Bayes optimal for this attack
distribution only if the likelihood ratio fora = 0 is
equal to1−α

α , (i.e., if 1−p
p/2 = 1−α

α ) and if the likelihood

ratio for a = ±d is equal to α
1−α (i.e., p/2

1−p = α
1−α ).

This optimality requirement places a constraint on
the completeness of the testα = 2p− 1. Furthermore,
the distortion constraint implies the adversary will
selectE[a2] = pd2 = D. Since we needα < 1

2 in
order to make use of the no-decision region, the above
formulation is thus satisfied forD ≤ 3

4d2.

IV. CONCLUSIONS ANDFUTURE WORK

In this paper we have presented some initial re-
sults for the optimal design of detection algorithms
against nonparametric adversary models. The natural
extension of this work is to consider multi-dimensional
signal spaces with embeddings separated by a vector

d. Our early results in this area are very similar to the
results in this paper with one key insight; the optimal
attack distribution has memory. In particular we cannot
condition on any event but rather must consider the full
vector distributionh∗(e1, e2, . . . , en).

Another important extension for this work should be
in considering more general andsecuredata embed-
ding algorithms, where the embedding of the signal is
randomized with the secret keyk, and not a publicly
known distance between the different fingerprints.

We believe the idea of a tradeoff between the
accuracy and the completeness of a classifier is also
of particular importance. It can be shown for example
that for the caseD = 2

3d2 we are able to reduce the
probability of error of a complete classifier from13
to 1

6 by using a classifier with2
3 -completeness (by

following the results of subsection E). Future work in
understanding this tradeoff and its practical relevance
to several applications appears to be very promising.

Finally, another major point to mention is the sensi-
tivity of the optimal solution to the specific distortion
function D, and whereas the constraints are aver-
age distortion constraintsE[D(a)] or hard constraints
D(a). The assumption of a specific distortion function
seems to be prevalent in the data hiding literature.
However this restricts the usability of any data hiding
model, since in practice the adversary will again not be
confined to follow a specific distortion constraint. We
have explored saddle point solutions for other distor-
tion functions and the solutions change dramatically
for each different distortion function considered. In
future work we also plan to explore the question of
designing saddle point solutions that are optimal for a
very large class of distortion constraints.
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