
ON OPTIMAL WATERMARKING SCHEMES IN UNCERTAIN GAUSSIAN
CHANNELS

Alvaro A. Cárdenas∗, George V. Moustakides† and John S. Baras‡

ABSTRACT

This paper describes the analytical derivation of a new
watermarking algorithm satisfying optimality proper-
ties when the distortion of the watermarked signal is
caused by a Gaussian process. We also extend previ-
ous work under the same assumptions and obtain more
general solutions.

Index Terms— Watermarking, Gaussian Attacks,
minimax optimization

I. INTRODUCTION

One of the biggest challenges the designer of a water-
marking algorithm faces, is the fact that the degrada-
tions a watermarked signal is going to suffer, before
reaching the detection algorithm, are highly uncertain.
These degradations can be caused by several reasons,
such as noisy channels, benign filtering, compression,
or even, adversarial attacks.

In order to understand and characterize the perfor-
mance guarantees of watermarking algorithms facing
uncertain degradation channels, recent research has tried
to model the problem with a robust detection approach.
The main idea is to parameterize the channel with a
given set of uncertain parameters A, and then find the
optimal embedding parameters E∗ against the least fa-
vorable uncertain channel model A∗. A recent survey
of the subject is presented in [2].

Although this research aims to design watermark-
ing algorithms with provable performance guarantees
against an uncertain channel A, its major drawback
is that to find the optimal E∗ and the least favorable
A∗, one has to solve a min-max optimization problem
that is often intractable. Therefore, the vast majority
of the literature has focused in understanding the pa-
rameters of well known watermarking algorithms, such
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as, spread spectrum watermarking, or quantized index
modulation. Very little work has been done in develop-
ing new watermarking algorithms that are efficient and
have also analytically derived performance guarantees.
In this paper we introduce a new robust watermarking
algorithm, and prove how our algorithm outperforms
spread spectrum watermarking against least favorable
Gaussian channels.

II. PROBLEM DESCRIPTION

In the watermark verification problem, the watermark
embedder E receives as inputs a signal s and a bit m.
The objective of the embedder is to produce a signal
x with no major loss of information (or perceptual dif-
ferences) from s, and carrying information about m.
The general formulation of this property is to force
the embedder to satisfy an average distortion constraint
E[d(S, X)] ≤ DW , where d is a distortion function,
and Dw is an upper bound on the amount of distortion
allowed for embedding.

The signal x is then transmitted through an uncer-
tain channel A. The output from A is another signal y
satisfying the constraint E[d(S, Y )] ≤ Da.

When the detection algorithm D receives the sig-
nal y, it has to determine if y was originally embedded
with m = 1 or not.

To find a solution to this problem we need to make
some assumptions about the signal source, the distor-
tion functions, the metric of performance, and the de-
grading channel. In this paper we follow a model origi-
nally proposed by [1]. Contrary to the results in [1], we
relax two assumptions. First, we relax the assumption
of spread spectrum watermarking and instead search
for the optimal watermarking algorithm in this model
formulation. Second, we relax the assumption of diag-
onal processors (an assumption made because the em-
bedding algorithm used spread spectrum watermark-
ing) and therefore, obtain results for a more general
case. In the following subsection we describe the model
of the problem and obtain our results. Then in section
III we discuss our results and compare them to [1].

A. Mathematical Model

Given s ∈ R
N and m ∈ {0, 1}, we assume an ad-
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ditive embedder E that outputs x = Φ(s + pm), where
Φ is an N × N matrix and where p ∈ R

N is a pat-
tern sampled from a distribution with probability den-
sity function (pdf) h(p).

The channel A is modeled by y = Γx + e, where
Γ is an N × N matrix and e is a zero-mean (because
any non-zero mean random vector is suboptimal [1])
Gaussian random vector with correlation matrix Re.

The detection algorithm has to perform the follow-
ing hypothesis test:

H0 : y = ΓΦs + e

H1 : y = ΓΦs + e + ΓΦp.

We use the probability of error as objective function
Ψ(E ,A). We know that for this objective function,
an optimal detection algorithm is the likelihood ratio
test. Assuming s is a Gaussian random vector with
zero mean (zero mean is assumed without loss of gen-
erality) and correlation matrix Rs, and that the priors
for m are equally likely, the likelihood ratio test is:

ptΥtR−1
y y − 1

2
ptΥtR−1

y Υp
H1
≷
H0

0,

where Ry = ΓΦRsΦtΓt + Re, and Υ = ΓΦ.

We assume that the distortion constraint that (both)
E and A need to satisfy is the squared error distortion.
The feasible design space is therefore composed of the
set {E : E||X − S||2 ≤ NDw

}
(where E = (Φ, Rp, h)) and the set{A : E||Y − S||2 ≤ NDa

}
(where A = (Γ, Re)).

B. Optimal Embedding Distribution

Under the assumptions stated in the previous sec-
tion, we find that the probability of error is

Ep

[
Q

(√
ptΩp

)]
=

∫
Q

(√
ptΩp

)
h(p)dp,

where Q(x) is the tail probability of the normal distri-
bution N (0, 1),

Ω =
1
2
ΦtΓt(ΓΦRsΦtΓt + Re)−1ΓΦ

and p is the random embedded pattern with pdf h(p).
Fixing Ω, we would like to determine the form of h(p)
that will minimize the error probability.

To solve this problem we rely on the following prop-
erty of the Q(·) function,

Lemma 1: The function Q(
√

x) is a convex func-
tion of x. This lemma can be verified by direct differ-
entiation.

Using lemma 1 and applying Jensen’s inequality
we obtain:

Ex[Q(
√

x)] ≥ Q
(√

Ex[x]
)

we have equality iff x is a constant with probability 1
(wp1). Applying this Lemma to our problem we ob-
tain:

Ep

[
Q

(√
ptΩp

)]
≥

Q
(√

Ep [ptΩp]
)

= Q
(√

tr{ΩRp}
)

. (1)

Eq. (1) provides a lower bound on the error proba-
bility for any pdf satisfying the covariance constraint
E[ppt] = Rp. We have equality in Eq. (1) iff wp1

ptΩp = tr{ΩRp}. (2)

In other words every realization of p must satisfy this
equality. Notice that if we find a pdf for p satisfying
Eq. (2) under the constraint E[ppt] = Rp, then we
attain the lower bound in Eq. (1).

To find a random vector p to achieves these prop-
erties, we must do the following. Consider the SVD of
the matrix

R1/2
p ΩR1/2

p = UΣU t (3)

where U is orthonormal and Σ = diag{σ1, . . . , σK} is
diagonal with nonnegative elements. The nonnegativ-
ity of σi is assured because the matrix is nonnegative
definite. Let A be a random vector with i.i.d. elements
that take the values ±1 with probability 0.5. For every
vector A we can then define an embedding vector p as

p = R1/2
p UA. (4)

We now show that this definition satisfies our re-
quirements. First, consider the covariance matrix (which
must be equal to Rp). Indeed we have

E[ppt] = R1/2
p UE[AAt]U tR1/2

p =

R1/2
p UIU tR1/2

p = R1/2
p IR1/2

p = Rp (5)

where we used the independence of the elements of
the vector A and the orthonormality of U (I denotes
the identity matrix). Therefore, our random vector has
the correct covariance structure. We now show it also
satisfies the constraint ptΩp = tr{ΩRp} wp1. Indeed
for every realization of the random vector A:

ptΩp = AtU tR1/2
p ΩR1/2

p UA = AtΣA

= A2
1σ1 + A2

2σ2 + · · · + A2
KσK

= σ1 + σ2 + · · · + σK ,

where we use the fact that the elements Ai of A are
equal to ±1. Notice also that

tr{ΩRp} = tr{R1/2
p ΩR1/2

p } = tr{UΣU t}
= tr{ΣU tU} = tr{Σ} = σ1 + · · · + σK .
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This proves the desired equality. We conclude that, al-
though p is a random vector, all its realizations satisfy
the equality

ptΩp = tr{ΩRp}.
We have thus found the embedding distribution h∗ that
attains the lower bound in Eq. (1). It is a random mix-

ture of the columns of the matrix R
1/2
p U of the form

R
1/2
p UA, where A is a vector with elements ±1, Rp is

the covariance matrix (which we find in the next sec-
tion), and U containes the singular vectors of the SVD

of R
1/2
p ΩR

1/2
p . This of course suggests that we can

have 2N different patterns.

C. Least Favorable Channel Parameters

With h∗, the game the embedder and the channel
play is:

max
Rp,Φ

min
Re,Γ

tr{(ΓΦRsΦtΓt + Re)−1ΓΦRpΦtΓt} (6)

Subject to the distortion constraints:

tr{(Φ − I)Rs(Φ − I)t + ΦRpΦt} ≤ NDw

tr{(ΓΦ−I)Rs(ΓΦ−I)t+ΓΦRpΦtΓt+Re} ≤ NDa

Assuming Υ = ΓΦ is fixed, we start by minimizing
Eq. (6) with respect to Re. This minimization problem
is addressed with the use of variational techniques. We
obtain R∗

e = 1√
μ (ΥRpΥt)1/2 −ΥRsΥ, where μ is the

solution to:

1√
μ

=
2tr{ΥRs} − tr{Rs} − tr{ΥRpΥt} + NDa

tr{(ΥRpΥt)1/2} .

For the next step, we need to minimize

(tr{(ΥRpΥt)1/2})2
2tr{ΥRs} − tr{Rs} − tr{ΥRpΥt} + NDa

over Υ. Proceeding similarly to the previous case we
obtain Υ∗ = ΣRp−1/2, where Σ is the solution to the
following nonlinear equation:

(A − Σt)Σ(A − Σt) − c2Σt = 0

where A = R
−1/2
p Rs and c is a constant determined

by the variation.

D. Optimal Embedding Parameters

The objective of the embedding algorithm is:

max
Φ,Rp

(
tr

{
(ΦRpΦt)1/2

})2

2tr {ΦRs} − tr {Rs} − tr {ΦRpΦt} + NDa

Subject to:

tr
{
(Φ − I)Rs(Φ − I)t + ΦRpΦt

} ≤ NDw. (7)

For any Φ and any Rp we have by Schwarz in-
equality that the optimal value is achieved if and only
if R∗

p = κ(ΦtΦ)−1, where κ is

κ =
NDw − tr{(Φ − I)Rs(Φ − I)t}

N
.

Replacing the values of κ and Rp into the original ob-
jective function and letting λ be the maximum value
the objective function can achieve (as a function of Φ),
we conclude (after some algebraic manipulations) that
Φ∗ = (λ + 1)−1I , where λ is the solution to:

λ

λ + 1
tr{Rs} + λ(Da − Dw) = NDw.

III. DISCUSSION

So far we have solved

min
Φ,Rp

max
Γ,Re

min
h

Ψ(E ,A) (8)

where the embedding parameters are E = (h, Rp, Φ)
and the uncertain parameters are A = (Γ, Re). Our
solution implies that given the optimal Φ∗ and R∗

p, we
can find the least favorable parameters Γ∗ and R∗

e , and
given these, we can find the embedding distribution h∗
minimizing the probability of error.

The problem with this solution is that we have not
shown that Γ∗ and R∗

e are the least favorable parame-
ters for h∗. Without loss of generality assume Φ and
Rp are fixed, so we can replace E with h for the fol-
lowing arguments. Furthermore let h(A) denote the
embedding distribution as a function of the parameters
A = (Γ, Re) (recall that h depends on A by the selec-
tion of U in Eq. (4)). The problem we have solved is
thus:

∀h ∀A Ψ(h∗(A),A) ≤ Ψ(h(A),A)

This is true in particular for A∗, the solution to the
full optimization problem from Eq. (8). Moreover, the
above is also true for the distribution used in the pre-
vious work [1], which assumed a Gaussian embedding
distribution hG:

∀A Ψ(h∗(A),A) ≤ Ψ(hG,A)

Notice also that in [1], the solution obtained was

AG = arg max
A

Ψ(hG,A) (9)

Due to some approximations done in [1], Ψ(hG,A)
turns out to be the same objective function given in
Eq. (6). Furthermore in [1] there were further approx-
imations in order to obtain linear processors (diagonal
matrices). In this work we relaxed this assumption in
order to obtain the full solution to Eq. (6). Therefore
the general solution (without extra assumptions such as
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diagonal matrices) in both cases is the same; i.e., if we
denote our solution by:

A∗ = arg max
A

{
min

h
Ψ(h,A)

}

then A∗ = AG. Furthermore,

max
A

Ψ(h∗(A),A) < max
A

Ψ(hG,A)

However, one of the problems with these solutions
is that there might exist A′ such that

Ψ(h∗(A∗),A∗) < Ψ(h∗(A∗),A′).

The reason for this attack, is that the embedding distri-
bution h∗ needs to know the channel parameters A. To
prevent these attacks from happening, we can address
two problems. With regards to previous work in [1],
we want to know if:

∀A Ψ(h∗(A∗),A) ≤ Ψ(hG,A∗) (10)

that is, once we have fixed the operating point A∗ (the
least favorable parameters according to Eq. (6)) there
are no other channel parameters that will make h∗ per-
form worse than the previous work.

The second problem is in fact more general; it re-
lates to the original intention of minimizing the worst
possible error: we want to find h and A in the follow-
ing order:

min
h

max
A

Ψ(h,A). (11)

A way to show that (h∗,A∗) satisfies Eq. (11) –and
therefore also satisfies Eq. (10)– is to show that the pair
(h∗,A∗) forms a saddle point equilibrium:

∀(h,A) Ψ(h∗,A) ≤ Ψ(h∗,A∗) ≤ Ψ(h,A∗). (12)

Let E denote again the triple (h, Rp, Φ). We are inter-
ested in showing that

∀(E ,A) Ψ(E∗,A) ≤ Ψ(E∗,A∗) ≤ Ψ(E ,A∗) (13)

where (E∗,A∗) = (h∗, R∗
p, Φ

∗, R∗
e , Γ

∗) is the solution
to Eq. (8).

It is easy to show how the right hand side inequality
of Eq. (13) is satisfied, since Ψ(E ,A∗) equals:

Ep

[
Q

(√
pt

1
2
ΦtΓ∗t(Γ∗ΦRsΦtΓ∗t + R∗

e)−1Γ∗Φp

)]

≥ Q
(√

Rp
1
2
ΦtΓ∗t(Γ∗ΦRsΦtΓ∗t + R∗

e)−1Γ∗Φ

)

≥ Q
(√

R∗
p

1
2
Φ∗tΓ∗t(Γ∗Φ∗RsΦ∗tΓ∗t + R∗

e)−1Γ∗Φ∗
)

= Ψ(E∗,A∗) by the definition of h∗

The left hand side of Eq. (13) is more difficult to
prove. A particular case where it is satisfied is the
scalar case, i.e., when N = 1. In this case we have
the following:

Ψ(E∗,A∗) = Q
⎛
⎝

√
R∗

p(Φ∗Γ∗)2

2((Γ∗Φ∗)2Rs + R∗
e)

⎞
⎠

≥ Q
⎛
⎝

√
R∗

p(Φ∗Γ)2

2((ΓΦ∗)2Rs + Re)

⎞
⎠ by Eq. (6)

= Ep

[
Q

(√
p2(Φ∗Γ)2

2((ΓΦ∗)2Rs + Re)

)]

= Ψ(E∗,A∗)

Where we are able to take the expected value outside
Q because p is independent of A. The independence
of p in the scalar case comes from the fact that Eq. (4)
yields in this case p =

√
Rp with probability 1

2 and

p = −√
Rp with probability 1

2 . With this distribution
Eq. (2) is always satisfied.

This result can be seen as a counterexample against
the optimality of spread spectrum watermarking in Gaus-
sian channels: if the channel has Gaussian noise, then
the embedding distribution should not be a spread spec-
trum watermarking, or conversely, if the embedding
distribution is spread spectrum, then the least favorable
distribution is not Gaussian.

IV. CONCLUSIONS AND FUTURE WORK

We have introduced a new watermarking scheme with
provable performance guarantees. Our work improves
on previous research done under the same assumptions
and gives a counterexample regarding the optimality of
spread spectrum for Gaussian channels.

In future work we plan to investigate the practi-
cal and theoretical extensions to our work. We plan
to investigate the resiliency and efficiency of the algo-
rithm empirically. We also want to investigate under
which more general conditions is the left inequality in
Eq. (13) satisfied, and also, whether Eq. (10) is true in
general. We also plan to extend our work to other eval-
uation metrics (such as the case when one of the errors
is more important than the other).

V. REFERENCES

[1] Pierre Moulin and Aleksandar Ivanović, “The
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