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ABSTRACT

In this paper, we study the rate of decay of the probability of error
for distinguishing between a sparse signal with noise, modeled as
a sparse mixture, from pure noise. This problem has many appli-
cations in signal processing, evolutionary biology, bioinformatics,
astrophysics and feature selection for machine learning. We let the
mixture probability tend to zero as the number of observations tends
to infinity and derive oracle rates at which the error probability can
be driven to zero for a general class of signal and noise distribu-
tions. In contrast to the problem of detection of non-sparse signals,
we see the log-probability of error decays sublinearly rather than lin-
early and is characterized through the χ2-divergence rather than the
Kullback-Leibler divergence. This work provides the first character-
ization of the rate of decay of the error probability for this problem.

Index Terms— Detection theory, large deviations, error expo-
nents, sparse detection, likelihood ratio test

1. INTRODUCTION

We consider the problem of detecting an unknown sparse signal in
noise, modeled as a mixture, where the unknown sparsity level de-
creases as the number of samples collected increases. Of particular
interest is the case where the signal strength relative to the noise
power is very small. This problem has many natural applications. In
signal processing, it can be applied to detecting a signal in a multi-
channel system or detecting covert communications [1, 2]. In evolu-
tionary biology, the problem manifests in the reconstruction of phy-
logenetic trees in the multi-species coalescent model [3]. In bioinfor-
matics, the problem arises in the context of determining gene expres-
sion from gene ontology datasets [4]. In astrophysics, detection of
sparse mixtures is used to compare models of the cosmic microwave
background to observed data [5]. Also, statistics developed from the
study of this problem have been applied to high-dimensional feature
selection when useful features are rare and weak [6].

Prior work on detecting a sparse signal in noise has been pri-
marily focused on Gaussian signal and noise models, with the goal
of determining the trade-off in signal strength with sparsity required
for detection with vanishing probability of error. In contrast, this
work considers a fairly general class of signal and noise models.
Moreover, in this general class of sparse signal and noise models,
we provide the first analysis of the rate at which the error probabili-
ties vanish with sample size via the oracle likelihood ratio test which
knows the signal strength and sparsity level.

In the problem of testing between n i.i.d. samples from two
known distributions, it is well known that the rate at which the error
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probability decays is e−cn for some constant c > 0 bounded by the
Kullback-Leibler divergences between the two distributions [7, 8].
In this work, we show for the problem of detecting a sparse signal
in noise that the error probability for an oracle detector decays at a
slower rate determined by the sparsity level and the χ2-divergence
between the signal and noise distributions. In addition to deter-
mining the optimal trade-off between signal strength and sparsity
for consistent detection, an important contribution in prior work has
been the construction of adaptive (and, to some extent, distribution-
free) tests that achieve the optimal trade-off without knowing the
model parameters [2,9–14]. Our work provides a crucial benchmark
for the error performance in comparing adaptive tests, which oper-
ate without knowing the sparsity level or signal strength, as different
tests can have vastly different powers [14]. We discuss prior work in
more detail in Sec. 2.1.

2. PROBLEM SETUP

Let {f0,n}, {f1,n} be sequences of probability density functions
(PDFs) for real valued random-variables.

We consider the following sequence of composite hypothesis
testing problems with sample size n, called the (sparse) mixture de-
tection problem:

H0,n : X1, . . . , Xn ∼ f0,n i.i.d. (null) (1)

H1,n : X1, . . . , Xn ∼ (1−εn)f0,n+εnf1,n i.i.d. (alternative) (2)

where {f0,n} is known and {f1,n} is from some known family of
sequences of PDFs F and {εn} is a sequence of positive numbers
such that εn → 0. We will also assume nεn → ∞ so that a typical
realization of the alternative is distinguishable from the null.

Let P0,n,P1,n denote the probability measure under H0,n,H1,n

respectively, and let E0,n,E1,n be the corresponding expectations
with respect to some known and fixed {f0,n}, {f1,n} and {εn}.
When convenient, we will drop the subscript n. Let Ln , f1,n

f0,n
.

When f0,n(x) = f0(x) and f1,n(x) = f0(x − µn), we say that
the model is a location model. When f0,n is a standard normal PDF,
we call the location model a Gaussian location model. The distribu-
tions of the alternative in a location model are described by the set
of sequences {(εn, µn)}.

The location model can be considered as one where the null cor-
responds to pure noise (f0,n), while the alternative corresponds to
a sparse signal (controlled by εn) with signal strength µn contam-
inated by additive noise. The relationship between εn and µn de-
termines the signal-to-noise ratio (SNR), and characterizes when the
hypotheses can be distinguished with vanishing probability of error.
In the general case, f1,n can be thought of as the signal distribution.

A hypothesis test δn between H0,n and H1,n is a function δn :
(x1, . . . , xn)→ {0, 1}. We define the probability of false alarm for



a hypothesis test δn between H0,n and H1,n as

PFA(n) , P0,n(δn = 1) (3)

and the probability of missed detection as

PMD(n) , P1,n(δn = 0). (4)

A sequence of hypothesis tests {δn} is consistent if PFA(n),
PMD(n) → 0 as n → ∞. We say we have a rate characterization
for a sequence of consistent hypothesis tests {δn} if we can write

lim
n→∞

logPFA(n)

g0(n)
= −c, lim

n→∞

logPMD(n)

g1(n)
= −d (5)

where g0(n), g1(n) → ∞ as n → ∞ and 0 < c, d < ∞. The
rate characterization describes decay of the error probabilities for
large sample sizes. All logarithms are natural. For the problem of
testing between i.i.d. samples from two fixed distributions, the rate
characterization has g0(n) = g1(n) = n and c, d are called the error
exponents [7]. In the mixture detection problem, g0 and g1 will be
sublinear functions of n.

The log-likelihood ratio between H1,n and H0,n is

LLR(n) =
n∑
i=1

log(1− εn + εnLn(Xi)). (6)

In order to perform an oracle rate characterization for the mixture
detection problem, we consider the sequence of oracle likelihood
ratio tests (LRTs) between H0,n and H1,n (i.e. with εn, f0,n, f1,n
known):

δn(X1, . . . , Xn) ,

{
1 LLR(n) ≥ 0

0 o.w.
. (7)

It is well known that (7) is optimal in the sense of minimizing
PFA(n)+PMD(n)

2
for testing between H0,n and H1,n, which is the av-

erage probability of error when the null and alternative are assumed
to be equally likely [15, 16]. It is valuable to analyze PFA and PMD

separately since many applications incur different penalties for false
alarms and missed detections.

Location Model: The detectable region for a location model is
the set of sequences {(εn, µn)} such that a sequence of consistent
oracle tests {δn} exist.

For convenience of analysis, we introduce the parameterization

εn = n−β (8)

where β ∈ (0, 1) as necessary. Following the terminology of [11],
when β ∈ (0, 1/2) ,the mixture is said to be a “dense mixture”. If
β ∈ (1/2, 1), the mixture is said to be a “sparse mixture”.

2.1. Related Work

Prior work on mixture detection has been focused primarily on the
Gaussian location model. The main goals in these works have been
to determine the detectable region and construct optimally adaptive
tests (i.e. those which are consistent independent of knowledge of
{(εn, µn)}, whenever possible). The study of detection of mixtures
where the mixture probability tends to zero was initiated by Ingster
for the Gaussian location model [13]. Ingster characterized the de-
tectable region, and showed that outside the detectable region the
sum of the probabilities of false alarm and missed detection tends
to one for any test. Since the generalized likelihood statistic tends
to infinity under the null, Ingster developed an increasing sequence

of simple hypothesis tests that are optimally adaptive. Donoho and
Jin introduced the celebrated Higher Criticism test which is opti-
mally adaptive and is computationally efficient, and also discussed
some extensions to Subbotin distributions and χ2-distributions [2].
Cai et al. extended these results to the case where f0,n is standard
normal and f1,n is a normal distribution with positive variance, de-
rived limiting expressions for the distribution of LLR(n) under both
hypotheses, and showed that the Higher Criticism test is optimally
adaptive in this case [9]. Jager and Wellner proposed a family of
tests based on φ-divergences and showed that they attain the full de-
tectable region in the Gaussian location model [12]. Arias-Castro
and Wang studied a location model where f0,n is some fixed but un-
known symmetric distribution, and constructed an optimally adap-
tive test which relies only on the symmetry of the distribution when
µn > 0 [11]. Cai and Wu gave an information-theoretic character-
ization of the detectable region via an analysis of the sharp asymp-
totics of the Hellinger distance for a wide variety of distributions,
and established a strong converse result showing that reliable detec-
tion is impossible outside the detectable region in many cases [10].
Our work complements [10] by providing precise bounds on the er-
ror decay once the detectable region has been established. As shown
in the next section, the error decay depends on the χ2-divergence be-
tween f0,n and f1,n rather than the Hellinger distance used in [10].
Since the χ2-divergence is not bounded above and below by the
Hellinger distance in general [17], our results cannot be derived from
their methods. Walther numerically showed that while the popular
Higher Criticism statistic is consistent, there exist optimally adaptive
tests with significantly higher power for a given sample size at dif-
ferent sparsity levels [14]. Our work complements [14] by providing
a benchmark to meaningfully compare the sample size and sparsity
tradeoffs of different tests with an oracle test. It should be noted that
all work except [9,11] has focused on the case where β > 1

2
, and no

prior work has provided an analysis of the rate at which PFA,PMD

can be driven to zero with sample size.

3. MAIN RESULTS FOR RATE ANALYSIS

3.1. General Case

Our main result is a characterization of the oracle rate via the test
given in (7). The sufficient conditions required for the rate charac-
terization are applicable to a broad range of parameters in the Gaus-
sian location model (Sec. 3.2). Due to space constraints, we defer
detailed proofs to [18].

Theorem 3.1 ( [18]) Assume that for all 0 < γ < γ0 for some
γ0 ∈ (0, 1), the following conditions are satisfied:

lim
n→∞

E0

[
(Ln − 1)2

D2
n

1{Ln≥1+γ/εn}

]
= 0 (9)

εnDn → 0 (10)
√
nεnDn →∞ (11)

where
D2
n = E0[(Ln − 1)2] <∞. (12)

Then for the test specified by (7),

lim
n→∞

logPFA(n)

nε2nD2
n

= −1

8
. (13)

Moreover, (13) holds replacing PFA with PMD.



The quantity D2
n is known as the χ2-divergence between f0,n and

f1,n. In contrast to the problem of testing between i.i.d. samples
from two fixed distributions, the rate is not characterized by the
Kullback-Leibler divergence for the mixture detection problem.

Proof (sketch) An upper bound on the rate for PFA is via the Cher-
noff bound with parameter 1/2. The lower bound is established simi-
larly to Cramer’s theorem (Thm I.4, [19]), which shows the Chernoff
bound is tight for averages of i.i.d. random variables by a change of
measure to a tilted distribution and the central limit theorem. We
modify this proof by using a n-dependent tilting distribution and
using the Lindeberg-Feller central limit theorem (Thm 2.4.5, [20]).
The proof under the alternative is established by change of measure
to the null.

When the conditions of Thm 3.1 do not hold, we have the following
upper bound:

Theorem 3.2 ( [18]) If for all M sufficiently large,

E0

[
Ln1{Ln>1+M

εn
}

]
→ 1 (14)

then for the test specified by (7),

lim sup
n→∞

logPFA(n)

nεn
≤ −1. (15)

lim
n→∞

logPMD(n)

nεn
= −1. (16)

Moreover, (15) holds with PFA replaced with PMD.

Proof (sketch) The upper bounds on the rate are established via op-
timizing a Chernoff bound, where the optimal parameter tends to 0
or 1. The lower bound for the missed detection rate is by looking at
the event where all mixture components under H1,n are drawn from
f0,n and using consistency under H0,n.

Interestingly, so long as the condition of Thm 3.2 holds, no non-
trivial sequence of tests (i.e. lim supn→∞ PFA,PMD < 1) can
achieve a better rate than (7) under H1,n. This is different from the
case of testing i.i.d. observations from two fixed distributions, where
allowing for large PFA can improve the rate under the alternative. It
is reasonable to believe Thm 3.2 is tight for PFA as well, since nεn
is the average number of signals under the alternative. However, we
do not have a proof of this statement yet.

3.2. Gaussian Location Model

In this section, we apply Thm 3.1 and 3.2 to the Gaussian location
model. The rate characterization proved is summarized in Fig. 1.
Detailed proofs are given in [18]. We first recall some results from
the literature for the detectable region for this model.

Theorem 3.3 ( [2, 9, 11]) The boundary of the detectable region (in
{(εn, µn)} space) is given by (with εn = n−β):

1. If 0 < β ≤ 1/2, then µcrit,n = nβ−1/2. (Dense)

2. If 1/2 < β < 3/4, then µcrit,n =
√

2(β − 1
2
) logn. (Mod-

erately Sparse)

3. If 3/4 ≤ β < 1, then µcrit,n =
√

2(1−
√
1− β)2 logn.

(Very Sparse)
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(a) Detectable region where µn =√
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Fig. 1: Detectable regions for the Gaussian location model. Un-
shaded regions have PMD + PFA → 1 for any test (i.e. reliable
detection is impossible). Green regions are where Cor. 3.4 and 3.5
provide an exact rate characterization for PMD,PFA. The blue re-
gion is where Cor. 3.6 holds, and provides an upper bound on the
rate for PFA and an exact rate characterization for PMD. An up-
per bound for the rate in the red region is presented in [18], and is
omitted for space constraints.

If in the dense case µn = nr , then the LRT (7) is consistent if r >
β − 1/2. Moreover, if r < β − 1/2, then PFA(n) + PMD(n) → 1
for any sequence of tests as n → ∞. If in the sparse cases, µn =√
2r logn, then the LRT is consistent if r > µcrit,n√

2 logn
. Moreover, if

r <
µcrit,n√
2 logn

, then PFA(n)+PMD(n)→ 1 for any sequence of tests
as n→∞.

We call the set of {(εn, µn)} sequences where (7) is consis-
tent the interior of the detectable region. We now begin proving a
rate characterization for the Gaussian location model by specializing
Thm 3.1. Note that Ln(x) = eµnx−µ

2
n/2 and D2

n = eµ
2
n − 1.

Corollary 3.4 (Dense case, [18]) If εn = n−β for β ∈ (0, 1/2) and
µn = h(n)

n1/2−β where h(n) → ∞ and lim supn→∞
µn√

2β
3

logn
< 1,

then

lim
n→∞

logPFA(n)

nε2n(e
µ2
n − 1)

= −1

8
. (17)

This result also holds replacing PFA with PMD.

The implication of this corollary is that our rate characterization
of the probabilities of error holds for a large portion detectable re-
gion up to the detection boundary, as h(n) can be taken such that
h(n)/nξ → 0 for any ξ > 0, making it negligible with respect to
µcrit,n in Thm 3.3.



Corollary 3.5 (Moderately sparse case, [18]) If εn = n−β for β ∈
(1/2, 3/4) and µn =

√
2(β − 1/2 + ξ) logn for any 0 < ξ <

3−4β
6

then

lim
n→∞

logPFA(n)

nε2n(e
µ2
n − 1)

= −1

8
(18)

and the same result holds replacing PFA with PMD.

Note that ξ can be replaced with an appropriately chosen sequence
tending to 0.

For µn >
√

2β
3
logn, the first condition of Thm 3.1 does not

hold. However, Thm 3.2 provides a partial rate characterization
when µn >

√
2β logn:

Corollary 3.6 ( [18]) If εn = n−β for β ∈ (0, 1) and
lim infn→∞

µn√
2β logn

> 1, then

lim sup
n→∞

logPFA

nεn
≤ −1 and lim

n→∞

logPMD

nεn
= −1. (19)

Theorems 3.1 and 3.2 do not hold when εn = n−β and µn =√
2r logn where r ∈ (β/3, β) for β ∈ (0, 3/4) or r ∈ ((1 −√
1− β)2, β) for β ∈ (3/4, 1). An upper bound on the rate specific

to the Gaussian location model is derived in [18] for this case.

4. NUMERICAL EXPERIMENTS

In this section, we provide numerical simulations to verify the rate
characterization developed for the Gaussian location model. Due to
space constraints, we focus on Cor. 3.4 and 3.5, as they correspond
to the rates for the weakest signals which can be detected.

We first consider the dense case, with εn = n−0.4 and µn = 1.
Simulations were performed for n = 10 to 2× 107 via direct monte
carlo (10000 trials) or importance sampling (15000 trials) via the
hypothesis alternate to the true hypothesis. The dashed lines are the
best fit lines between the log-error probabilities and nε2n(eµ

2
n − 1)

using data for n ≥ 344000. By Cor. 3.4, we expect the slope of the
best fit lines to be approximately −1/8. As shown in Fig. 2a, the
best-fit line corresponding to missed detection has slope −0.1325
with standard error (SE) 0.0038 (−1/8 is within 2 SE) and the line
corresponding to false alarm has slope −0.1240 with standard error
0.0099 (−1/8 is within 1 SE). Thus, we have good agreement with
Cor. 3.4.

The moderately sparse case with εn = n−0.6 and µn =√
2(0.19) logn is shown in Fig. 2b. Simulations were performed

identically to the dense case. The dashed lines are the best fit lines
between the log-error probabilities and nε2n(eµ

2
n − 1) using data for

n ≥ 100000. By Cor. 3.5, we expect the slope of the best fit lines to
be approximately −0.125. Both best fit lines have slope of −0.108
and standard error 0.002. It is important to note that PFA,PMD are
both large, even at n = 2 × 107, and simulation to larger sample
sizes should show better agreement with Cor. 3.5.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an oracle rate characterization for
the error probability decay with sample size in a general mixture
detection problem. In the Gaussian location model, we explicitly
showed that the rate characterization holds for a large portion of the
dense regime and the moderately sparse regime. A partial rate char-
acterization (an upper bound on the rate and universal lower bound

nǫ
2
n
(eµ

2
n
− 1)

5 10 15 20 25 30 35 40 45

lo
g
P
e

-8

-7

-6

-5

-4

-3

-2

P
FA

P
MD

(a) Dense case (Cor. 3.4):µn = 1, εn = n−0.4

nǫ
2
n
(eµ

2
n
− 1)

2 4 6 8 10 12 14 16 18 20

lo
g
P
e

-3.5

-3

-2.5

-2

-1.5

-1

P
FA

P
MD

(b) Moderately sparse case (Cor. 3.5): µn =√
2(0.19) logn, εn = n−0.6

Fig. 2: Simulated error probabilities for the Gaussian location model
in the dense and moderately sparse cases for the test (7). A best fit
line for logPMD is given as a blue dashed line and corresponding
line for logPFA is given as a red dot-dashed line.

on the rate under H1,n) was provided for the remainder of the de-
tectable region. In contrast to usual large deviations results [7,8] for
the decay of error probabilities, our results show the log-probability
of error decays sublinearly with sample size.

There are several possible extensions of this work. One is to
provide corresponding lower bounds for the rate in cases not cov-
ered by Thm 3.1. Another is to provide a general analysis of the
behavior that is not covered by Thm 3.1 and 3.2. As noted in [9], in
some applications it is natural to require PFA(n) ≤ α for some fixed
α > 0, rather than requiring PFA(n) → 0. While Thm 3.3 shows
the detectable region is not enlarged under in the Gaussian location
model (and similarly for some general models [10]), it is conceivable
that the oracle optimal test which fixes PFA (i.e. one which compares
LLR(n) to a non-zero threshold) can achieve a better rate for PMD.
It is expected that the techniques developed in this paper extend to
the case where PFA(n) is constrained to a level α. Finally, it is im-
portant to develop tests that are amenable to a rate analysis and are
computationally simple to implement over 0 < β < 1. Some par-
tial results for constructing such tests in the Gaussian location model
via the Wasserstein distance are presented in [18]. Thresholding the
largest observation is a candidate for rate analysis, though it is not
consistent for a large portion of the detectable region [2].
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