
Sparse Gaussian Mixture Detection:
Low Complexity, High Performance Tests

via Quantization

Jonathan G. Ligo
ECE and CSL

U. Illinois at Urbana-Champaign

Urbana, IL 61801, USA

George V. Moustakides
ECE, U. Patras, 26500 Rion, Greece,

& CS, Rutgers U.

New Brunswick, NJ 088854, USA

Venugopal V. Veeravalli
ECE and CSL

U. Illinois at Urbana-Champaign

Urbana, IL 61801, USA

Abstract—We study the problem of testing between a sparse
signal in noise, modeled as a mixture distribution, versus pure
noise, with a Gaussian signal and noise of same variance, but
differing means as the mixture proportion tends to zero. We
construct a simple new adaptive test based on quantizing data
with sample size-dependent quantizers and prove its consistency.
The proposed test has almost linear time complexity and sub-
linear space complexity, which is better than existing tests, and
in particular, the celebrated Higher Criticism test. Moreover, our
numerical results show that the proposed test is competitive with
commonly used tests even with a small number of quantizer
levels.

Index Terms—Detection theory, sparse detection, quantization,
sparse mixture, gaussian mixture model

I. INTRODUCTION

We consider the problem of detecting an unknown sparse

signal in noise, modeled as a mixture, where the unknown

sparsity level decreases as the number of samples collected

increases. The noise is modeled as a standard Gaussian distri-

bution, while the signal is modeled as a Gaussian distribution

with positive mean and unit variance. This problem is primar-

ily of interest when the signal strength is small, relative to the

noise power.

The results in the literature are concerned with two ques-

tions:

1) Under what conditions is it possible (or impossible) to

detect a signal with vanishing error probability? [1]–[3].

2) Is it possible to design a test which is unaware of the signal

strength and sparsity to detect signals, based on only knowing

the noise statistics? [2]–[5].

The first question is that of consistent while the second

is that of adaptive test design. Applications include covert

communications [2], [6]–[8]; computational biology [9], [10];

astrophysics [11] and machine learning [12].

In this paper, we focus on designing adaptive tests by

quantizing the received signals to M levels. This is a natu-

ral constraint in many data processing systems for reducing

storage or transmission requirements. The data processing is

then performed by reconstructing the quantizer levels and

applying an algorithm designed for un-quantized data. This can

be suboptimal in both statistical performance (due to model

mismatch) and computational requirements. Such applications

occur in sensor fusion in sensor networks, where transmitting

quantized data can be preferable to transmitting samples or in

applications where storage is limited and lossy compression is

applied [13].

Our contribution in this paper is the design of a simple

consistent test for detecting a sparse mixture of Gaussian

distributions based on an appropriately designed quantizer,

described in Sec. III. By controlling the number of quantizer

levels, one can approximate the fundamental limit of detection

of un-quantized data arbitrarily well, without knowledge of

the sparsity or signal strength. In contrast to most literature

on adaptive tests [2], [3], [5], our quantizer approach does

not require computing the order statistics of the data, but only

relies on a histogram of the data, which can be preferable

from a communication and computation perspective to the

original data. Moreover, the adaptivity of our test can be easily

analyzed without appealing to empirical process theory. We

discuss related work in more detail in Sec. III-A.

II. PROBLEM FORMULATION

We begin with the following i.i.d. sequence of composite

hypothesis testing problems with sample size n:

H0,n : X1, . . . , Xn ∼ N (0, 1)

H1,n : X1, . . . , Xn ∼ (1− εn)N (0, 1) + εnN (μn, 1)
(1)

where {H0,n} is the sequence of null and {H1,n} the sequence

of alternative hypotheses, {μn} is a sequence of positive

means and {εn} is a sequence of positive numbers (called

the sparsity level) such that εn → 0. We will also assume

nεn → ∞ so that a typical realization of the alternative is

distinguishable from the null. For the purposes of presentation,

we will assume the parameterization εn = n−β for some

0 < β < 1 and μn =
√
2r log n for some r > 0, as this is

the most interesting case of the problem. The null hypothesis

corresponds to pure noise, and the alternative has a sparse

signal with on average nεn components of signal at strength

μn and the remaining components as noise. We term the

problem in (1) a (sparse) Gaussian mixture detection problem.
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Let P0,n,P1,n denote the probability measure under H0,n,

H1,n respectively, and E0,n,E1,n the corresponding expecta-

tions for a particular pair (εn, μn). When convenient, we will

drop the subscript n. A hypothesis test δn between H0,n and

H1,n is a function δn : (X1, . . . , Xn) → {0, 1}. We define

the probability of false alarm and the probability of missed
detection as

PFA(n) � P0,n

(
δn = 1

)
and PMD(n) � P1,n

(
δn = 0

)
.

A sequence of hypothesis tests {δn} is consistent if PFA(n),
PMD(n)→ 0 as n→∞.

The following statistic will play a major role in the devel-

opment of our test

Sc
n =

n∑
k=1

(
{Xk>

√
2c logn} −Q(

√
2c log n)

)
, (2)

where A denotes the indicator function of A, Q(x) =
1√
2π

∫∞
x

e−y2

dy the tail probability of a standard Gaussian

random variable, and c ≥ 0 a constant. The value of c specifies

a sample-size dependent quantizer level for the test statistic at√
2c log n. Associated with Sc

n, we define the test

δcn �
{
1 if Sc

n ≥ τ cn
0 otherwise,

(3)

where τ cn is a threshold which also depends on n.

Consider Mn quantizer levels c1,n < c2,n < · · · < cMn,n

where, as we can see, the number and the levels of the

quantizer can change with n. For each level ci,n we form

a test of the form δ
ci,n
n introduced in (3). These Mn tests are

combined into a single one as follows

δn �
{
1 ∃ i ∈ {1, . . . ,Mn} : δ

ci,n
n = 1

0 otherwise.
(4)

In other words we decide in favor of the alternative when at

least one of the Mn tests decides in favor of this hypothesis

while we select the null when all tests decide in favor of the

null. In our analysis we will consider the case where Mn is

slowly growing with n and gives rise to an adaptive procedure.

Before presenting our main results we summarize some

necessary notation. For two sequences {an}, {bn} we say

an = o(bn) if limn→∞ an

bn
= 0. We also write an = Θ(bn)

when C1|bn| ≤ |an| ≤ C2|bn| for sufficiently large n where

0 < C1 < C2 < ∞ are constants. We indicate an arbitrary

sequence which grows to infinity sub-polynomially by Gn, i.e.

Gn = o(nρ) for any ρ > 0. An example of Gn is any positive

power of log n or log logn. All logarithms are natural.

III. MAIN RESULTS

We first recall a well established result on the testing

problem of (1). We focus on the case where β > 1
2 , as it

is the most interesting one [2]. The following theorem defines

explicitly the consistency region for this detection problem.

Theorem 1. ([1]–[3]) Let μn =
√
2r log n and εn = n−β .

Then the boundary rcrit(β) of r for the detectable region, as
a function of β, is given by:

β

r

Fig. 1: Detectable region for r as a function of β. Blue

are values of r that can be detected, red values that are

undetectable.

1) If 1
2 < β < 3

4 , then rcrit(β) = β − 1
2 (Moderately Sparse).

2) If 3
4 ≤ β < 1, then rcrit(β) = (1−√1− β)2 (Very Sparse).

If r > rcrit(β), then there exist consistent tests satisfying
PFA(n) + PMD(n) → 0. Otherwise, any sequence of tests
satisfies PFA(n) + PMD(n)→ 1.

The detectable region for r as a function of β is depicted

in Fig. 1 and is marked in blue. It is clear that it is desirable

for an adaptive test to be able to cover this region without

requiring prior knowledge of the parameter β and the signal

strength μn. Before explicitly specifying the test in (4) that

will be able to accomplish this goal we need to analyze its

components, namely the tests of the form of (3) that are used

to make the final decision. The following lemma summarizes

useful properties for these procedures.

Lemma 1. Fix β0 ∈ ( 12 ,
3
4 ], then the test specified by (3) with

c = 4(β0− 1
2 ) and τ cn =

√
nGnQ(

√
2c log n) is consistent for

εn = n−β , μn =
√
2r log n, provided that β and r satisfy

2β0 − 1
2 > β > 1

2 , r > r̃c(β) =
(√

c−
√

c
2 − (β − 1

2 )
)2

.

Proof: The proof can be found in the Appendix.

Lemma 1 proposes the following version of the test in

(3): First, apply 1-bit quantization of the data at the level√
2c log n. This induces a binomial distribution of the quan-

tized samples. Then compare the binomial count to a suitably

defined threshold (which depends on n, c). This is a likelihood

ratio test on the quantized data, with a threshold set to respond

to signals with sparsity levels n−β with β ∈ ( 12 , 2β0 − 1
2 )

and strength
√
2r log n with r greater than r̃c(β). Note that

this lower bound approaches rcrit(β) of Theorem 1 as β0
approaches β. When β0 = 3

4 , we obtain c = 1, and the

entire “Very Sparse” region in Theorem 1 is detectable with

a threshold which can be constant or grow sub-polynomially.

If in this case the threshold is strictly between 0 and 1, we

recover the well-known Max test [2].

We are now ready for our main contribution which consists

in properly designing the number of levels Mn, the actual

quantization levels ci,n and the corresponding thresholds τ
ci,n
n

so that the test in (4) is adaptive and covers, completely, the

detectable region of Theorem 1. The following theorem states

our main result.
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Theorem 2. Consider Mn = o(Gn)→∞, and let {βi,n}Mn
i=0

with 1
2 = β0,n < β1,n < · · · < βMn,n = 3

4 be a
partition of the interval ( 12 ,

3
4 ]. As n increases, assume that

max1≤i≤Mn [βi,n−βi−1,n]→ 0. Then, the test specified by (4)

with ci,n = 4(βi,n − 1
2 ) and τ

ci,n
n =

√
nGnQ(

√
2ci,n log n)

is consistent for the interior of the detectable region of
Theorem 1.

Proof: The proof can be found in the Appendix.

It is clear from Theorem 2 that the uniform partition βi,n =
1
2 +

i
4Mn

yields a legitimate choice of quantizers. In practice,

one often has a fixed number of levels of quantization, inde-

pendent of n, due to system design constraints. The following

theorem provides a characterization of signals which can be

detected in this case. The proof is similar to Thm. 2 and is

omitted due to space constraints.

Theorem 3. Let M < ∞ and define the partition 1
2 < β1 <

· · · < βM = 3
4 . Then, the test specified by (4) with ci =

4(βi − 1
2 ) and τ cin =

√
nGnQ(

√
2ci log n) is consistent for

εn = nβ , μn =
√
2r log n, when

r > r̃crit(β) = min
i: 12<β<2βi− 1

2

r̃ci(β)

The consistency region is the union of all subregions generated

by each of the M tests δcin which contribute to δn.

We illustrate the new detectable region in Fig. 2 for M =
1, 2, 4, 8 and uniform partition. We focus only on the interval

β ∈ ( 12 ,
3
4 ] since for β ≥ 3

4 , our test covers completely

the optimal region given in Theorem 1. In our figures, blue

indicates detectable values, while light blue undetectable by

our test and the specific number of levels M , but detectable

by other tests. Finally red are values that are undetectable by

any test. As we can see with M = 8 we practically cover the

entire detectable region of Theorem 1. This also suggests that

β

r

(a) Detectable region for M = 1.

β

r

(b) Detectable region for M = 2.

β

r

(c) Detectable region for M = 4

β

r

(d) Detectable region for M = 8

Fig. 2: Detectable region of Sparse Gaussian Mixtures for

uniform partition and M = 1, 2, 4, 8.

when M > 1 the test in Theorem 2 strictly dominates the Max

test and the 1-bit quantized test from Theorem 5.3 in [14], in

the sense of enjoying a larger detectable region.

A. Comparison to Related Work

To our knowledge, the first work which studied the trade-off

between quantization and detection in sparse mixture models

was [14], where two 1-bit quantizers were proposed, and a

variant of Hoeffding’s test [15] was shown to be consistent

for all possible {(μn, εn)} such that β < 1
2 and a strict subset

of {(μn, εn)} for β > 1
2 . In contrast to [14], we construct and

combine multiple 1-bit quantizers (or equivalently, a multi-

level quantizer) to design tests which have strictly larger

detectable regions than those in [14].

The first test known to be adaptive for this problem was

proposed in [4]. Ingster’s approach [4] and our work follow

similar motivating principles: Given a partitioning of the

sparsity level β, construct tests whose test statistics depend

on a particular interval of sparsity. Ingster’s test relies on

partitioning the sparsity parameter β into a growing number

of levels with sample size, and computing an appropriately

constructed likelihood ratio test for each level of β on the

un-quantized data.

In contrast, we operate on quantized levels. Our work has

the property that our test statistics Sc
n are always binomial

distributions under both hypotheses in each interval of β. This

means that the Sc
n are easier to implement in practice than

Ingster’s statistics, by simply computing a histogram of the

data with Mn bins and comparing the counts to thresholds.

The partitioning based on sparsity also has some engineering

advantages, such as allocating proper false alarm levels to

different sparsity levels based on application requirements,

such as approximate knowledge of β, while maintaining

consistency. The quantization makes our algorithm easily im-

plementable in situations where handling un-quantized values

or sorting samples is costly, such as in sensor networks. Our

approach requires Θ(n logMn) computational complexity to

quantize the data and compute the test statistics and Θ(Mn)
storage. By choosing Mn to grow sufficiently slow we can

achieve near-linear computational complexity and sub-linear

space in sample size. For example if Mn = (log n)ρ, ρ > 0
then logMn = Θ(log log n). In contrast, order statistics based

methods (discussed next) require Θ(n log n) computational

complexity and Θ(n) storage.

As a followup to Ingster’s work, other tests such as the

Higher Criticism test [2], Berk-Jones test [2], [16], [17], Aver-

age Likelihood Ratio test [5] and several tests by Arias-Castro

and Wang [3] were proposed. These techniques combine the

order statistics of a sample in a way such that the resulting

test statistic grows slowly under the null and faster under the

alternative by virtue of samples being relatively larger under

the alternative. By setting a threshold based on the growth

rate of the test statistic under the null, the hypotheses can be

asymptotically separated. However, it has been shown [5] that

these tests may require very large sample sizes to justify the

asymptotic theory.
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IV. NUMERICAL EXPERIMENTS

In this section, we compare the performance of the proposed

test to the oracle likelihood ratio test (LRT) as well as several

adaptive tests in the literature. The LRT has knowledge of

parameters under H1,n and serves as the optimal bound on the

performance of any test since no test can have lower PMD(n)
for a given upper bound on PFA(n) [18]. The LRT is not an

adaptive test, and therefore cannot be used in most practical

situations. The adaptive tests considered for comparison are

the Max test [2], the Higher Criticism (HC) test variant given

by Equation (7) in [19], the test of Arias-Castro and Wang

(ACW) from Section 1.3 in [3], and the Berk-Jones (BJ) test

implemented as Equation (1.9) in [2].

We first show a tradeoff between sparsity and signal strength

as a function of number of quantization levels at a fixed sample

size of n = 106, as in Fig. 1 & 2 in [5]. This sample size is

within a correct order of magnitude for applications [11]. Our

test was applied as in Theorem 3 with βi =
1
2 + i

4M for i =
1, . . . ,M . The false alarm level was fixed to PFA = 0.05 by

controlling the quantity Gn which had the same value across all

tests δcin contributing to δn. Signal strength was set to r(β) =
1.2rcrit(β)+0.1 while in simulations we used 104 realizations

of the null and alternative. The results are shown in Fig. 3. We

see that the power remains relatively high in 1
2 < β < 3

4 and

drops off in β > 3
4 following the performance of the oracle

LRT. A comparison of the adaptive tests shows the proposed

test compares favorably among existing tests in the literature

for the moderately sparse regime, but is outperformed in the

very sparse regime.

We next demonstrate a difficult case for detection, by

examining behavior close to the edge of the moderately

sparse regime detection boundary with β = 0.55, r = 0.1
(rcrit(β) = 0.05), and n = 106. This set of parameters is

not detectable using the Max test [2]. A comparison of the

performance of our proposed tests along with other adaptive

tests and the oracle LRT is shown in Fig. 4 as a receiver

operating characteristic. We see that even using 4 or 8 levels

of quantization, our test competitve with the BJ test (using

lower complexity) and outperforms the other competing adap-

tive tests. Note that the proposed detection scheme exhibits

piecewise constant segments. This is typical when samples

are discrete as in the case of quantized data, and weakens as

the number of levels M increases.

V. CONCLUSIONS

In this work, we have constructed a simple test based on

quantized data for detection in a Gaussian sparse mixture

model. The proposed test is able to approximate the funda-

mental un-quantized detection boundary arbitrarily well with

sufficiently many quantization levels. The proposed method

has definite advantages over existing tests for un-quantized

data in both computational and storage requirements, making

it more suitable for applications such as sensor networks.

Our numerical results suggest that our test is competitive

with existing alternatives that do not use data quantization,

including the celebrated Higher Criticism test [2].
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M=8
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Fig. 3: Plot of PD = 1−PMD versus β for r = 1.2rcrit(β) +
0.1, PFA = 0.05 and n = 106.
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Fig. 4: Plot of PD = 1 − PMD versus PFA for r = 0.1, β =
0.55 and n = 106. Max test is inconsistent.

There are several interesting extensions of this work. First,

although not necessary for consistency, we can examine

whether partitioning the range ( 34 , 1] improves performance in

the “Very Sparse” regime. A second direction is to characterize

the rate at which the log-false alarm and log-miss detection

probabilities can be driven to zero as a function of sample size,

sparsity, signal strength and number of quantization levels.

These can be compared to the oracle un-quantized rates in

[20], to assess the loss in performance due to quantization

and derive a tradeoff between levels of quantization and error

probability. Finally, another extension is to heteroskedastic

Gaussian mixtures and non-Gaussian (e.g. Subbotin) mixtures.

APPENDIX

Proof of Lemma 1: We first study the behavior of the test

under the null. Denote γn =
√
2c log n. By direct computation,

E0[S
c
n] = 0, Var0

(
Sc
n

)
= nQ(γn)

(
1 + o(1)

)
.

By the Chebyshev inequality the false alarm probability of the

test in (3) is upper bounded

P0

(
Sc
n ≥ τ cn

) ≤ Var0
(
Sc
n

)
(τ cn)

2
=

1 + o(1)

Gn → 0. (5)

Now consider the alternative. Then

E1[S
c
n] = nεnQ(γn − μn)

(
1 + o(1)

)
Var1

(
Sc
n

)
= n (Q(γn) + εnQ(γn − μn))

(
1 + o(1)

)
.
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Using the standard approximation Q(x) =
(
1+ o(1)

)
e−

x2

2

x

as x→∞, we see τn = n
3
2
−2β0

(2c logn)1/4

(
1 + o(1)

)
.

If r ≥ c, it is easy to see Q(γn − μn) is bounded strictly

away from 0 and E1[S
c
n],Var1

(
Sc
n

)
= Θ(n1−β).

The standard Q(x) approximation shows for r̃c(β) < r < c,

E1[S
c
n] =

n1−β−(
√
c−√

r)2

(
√
c−√r)√2 logn

(
1 + o(1)

)
.

By the conditions on r, β, β0 of the lemma and comparing

the exponents of τn and E1[S
c
n], we see that if r > r̃c(β),

E1[S
c
n] → ∞ and τ cn = o(E1[S

c
n]). Applying the Chebyshev

inequality and using the previous observation, yields

P1

(
Sc
n < τ cn

) ≤ Var1
(
Sc
n

)
(E1[Sc

n]− τ cn)
2
≤ Var1

(
Sc
n

)
(E1[Sc

n])
2

(
1+o(1)

)
.

If r > c, substitution of the expressions for E1[S
c
n],Var1

(
Sc
n

)
shows P1

(
Sc
n < τ cn

) → 0. If r̃c(β) < r < c, the same

substitution yields

P1

(
Sc
n < τ cn

) ≤ nQ(γn)
(
1 + o(1)

)
(nεnQ(γn − μn))2

+
1 + o(1)

nεnQ(γn − μn)
.

The second term in the last expression tends to zero since

E1[S
c
n] → ∞, so it suffices to show

Q(γn)
n(εnQ(γn−μn))2

→ 0.

Applying the Q(x) approximation yields
Q(γn)

n(εnQ(γn−μn))2
=

n−1−c+2β+2(
√
c−√

r)2
√
2 log n

( (
√
c−√

r)2√
c

+ o(1)
) → 0 since

the exponent is negative by the conditions of the lemma. This

concludes our proof.

Proof of Theorem 2: The test in (4) is a combination of

tests analyzed in Lemma 1. First consider the false alarm

probability. Applying the union bound along with (5)

PFA(n) = P0(δn = 1) = P0

( ∪Mn
i=1 {δci,nn = 1})

≤
Mn∑
i=1

P0

(
δci,nn = 1

) ≤ Mn

Gn → 0.

To analyze the miss detection probability, fix (r, β) in the
interior of the detectable region where β ∈ ( 12 , 1). Then, for

μn =
√
2r log n and εn = n−β the miss detection probability

is easily bounded as for any i = 1, . . . ,Mn, we have

PMD(n) = P1(δn = 0)

= P1

( ∩Mn
i=1 {δci,nn = 0}) ≤ P1

(
δci,nn = 0

)
,

If β ≥ 3
4 , it suffices to take i = Mn. Then, by Lemma 1,

r̃cMn,n(β) = rcrit(β) for β ≥ 3
4 where rcrit(β) is defined in

Theorem 1 and PMD(n) ≤ P1

(
δ
cMn,n
n = 0

)→ 0.

Now let β ∈ ( 12 ,
3
4 ). Then, by inspection of r̃c in Lemma

1, we see there exists β, β̄ such that 1
2 < β < β < β̄ < 3

4
and for all β0 ∈ [β, β̄], the test specified in Lemma 1 for the

given (r, β) pair is consistent. Moreover, an inspection of the

proof of the upper bound on the miss detection probability

of tests specified in Lemma 1 shows that one can construct a

uniform upper bound on the miss detection probability tending

to zero for detecting (r, β) when β0 ∈ [β, β̄]. Indeed this

is achieved by simply maximizing the Chebyshev inequality

upper bounds for sufficiently large n ≥ N = N(β, β̄, r, β)
over β0 ∈ [β, β̄]. By assumption on {βi,n}Mn

i=1, for sufficiently

large n, there always exists an i∗n such that βi∗n,n ∈ [β, β̄].

Then, PMD(n) ≤ P1

(
δ
ci∗n,n

n = 0
)→ 0 by the aforementioned

upper bound on P1

(
δ
ci∗n,n

n = 0
)
.
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