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Abstract—The Secretary problem is a classical sequential
decision-making question that can be succinctly described as
follows: a set of rank-ordered applicants are interviewed sequen-
tially for a single position. Once an applicant is interviewed, an
immediate and irrevocable decision is made if the person is to
be offered the job or not and only applicants observed so far
can be used in the decision process. The problem of interest is
to identify the stopping rule that maximizes the probability of
hiring the highest-ranked applicant. A multiple-choice version of
the Secretary problem, known as the Dowry problem, assumes
that one is given a fixed integer budget for the total number of
selections allowed to choose the best applicant. It has been solved
using tools from dynamic programming and optimal stopping
theory. We provide the first combinatorial proof for a related new
query-based model for which we are allowed to solicit the response
of an expert to determine if an applicant is optimal. Since the
selection criteria differ from those of the Dowry problem, we
obtain nonidentical expected stopping times.

I. INTRODUCTION

The classical Secretary problem, also known as the game of
googol and the picky bride problem, can be stated as follows:
N applicants apply for a single available Secretary position
and the set of N applicants can be ranked from the best
to worst without ties according to their qualifications for the
job. The applicants are presented sequentially and uniformly
at random. Once an applicant is interviewed, an immediate
decision is made on whether the person is accepted or rejected
for the position and the decision cannot be revoked at a later
time. Furthermore, only applicants observed so far can be
used in the decision process. The problem of interest is to
identify the best stopping rule, i.e., the rule that maximizes
the probability of hiring the highest ranked applicant.

The Secretary problem was formally introduced by Gard-
ner [7], [8] and is considered a typical example in sequen-
tial analysis, optimization, and decision theory. Lindley [13]
established the best strategy using algebraic methods while
Dynkin [3] independently solved the problem by viewing the
selection process as a Markov chain. For N large enough, the
solution to the problem turns out to be surprisingly simple:
the employer needs to reject the first N/e applicants, where
e is the base of the natural logarithm, and then accept the
next applicant whose qualification is better than that of all
previously observed applicants. The probability of identifying
the best applicant tends to 1/e as N tends to infinity.

The classical Secretary problem has been generalized in
many directions [5], [6], [9], [11], [12], [14], [15], [18], [19],

including the Prophet inequality model. One such generaliza-
tion, the Dowry problem (with multiple choices), introduced
by Gilbert and Mosteller [9], assumes that one is given a
total of s opportunities to select the best applicant, where
s ≥ 1. Using Dynkin’s approach, Sakaguchi [20] rigorously
determined the optimal selection times for the Dowry setting.

Motivated by recent works on learning with queries [1],
[2], [17], we introduce the problem of query-based sequential
selection. In our new model, we assume that the decision
making entity has a fixed number of s − 1 opportunities to
query an infallible expert. When an applicant is identified as
the potentially highest ranked applicant after an exploration
process, the expert provides an answer of the form “the
best” or “not the best”. If the answer is “the best”, then the
sequential examination process terminates. However, if the
expert responds “not the best”, a new exploration-exploitation
stage begins as long as the query budget allows it. After
the budget is exhausted, one is still allowed to make a final
selection without consulting the expert. Therefore, with a
budget of s − 1 queries we can make at most s selections.
The goal is to find the strategy that maximizes the probability
of selecting the best applicant.

Our new query-based model with the budget of s − 1
queries is related to but different from the Dowry problem
with s selections. For both models, our results indicate that an
optimal strategy is a (as, as−1, . . . , a1)-strategy, i.e., for the
ith selection, where 1 ≤ i ≤ s and 1 ≤ j = s + 1 − i ≤ s,
we reject the first aj applicants, wait until the decision for the
(i−1)th selection (if i ≥ 2), and then accept the next applicant
whose qualification is better than that of all previously seen
applicants. Furthermore, the optimal strategies for the two
models with s1 and s2 selections in total (w.l.o.g., s1 < s2)
share the same sequence a1, a2, . . . , as1 when viewed from the
right. When N → ∞, our result agrees with the thresholds
obtained by Gilbert and Mosteller [9]. On the other hand,
the two models are very different from the perspective of the
expected termination time, especially when the total number
of selections is large.

A combinatorial method for studying the Secretary problem
was developed in the works of Fowlkes and Jones [4], and
Jones [10], [11]. For the analysis of our query-based model,
we adapt the definitions and some ideas from Jones [11],
but also introduce a number of new proof techniques needed
to solve our more challenging query-based problem. Since



the query-based model allows for multiple choices and the
optimal strategies differ substantially from the classical ones,
our proofs are adapted to accommodate multiple query times.

The paper is organized as follows. Section II introduces
the relevant concepts, terminology and models used in the
paper. The same section presents technical lemmas needed to
establish our main results. Section III describes the optimal
selection strategy, while Section IV describes the exact thresh-
olds for the optimal strategy and the maximum probability of
identifying the best applicant.

II. PRELIMINARIES

The sample space is the set of all permutations of N
elements, i.e. the symmetric group SN , with the underlying
σ-algebra equal to the power set of SN . The best applicant
is indexed by N , the second-best applicant by N − 1, . . . ,
and the worst applicant by 1. In our model, there is a budget
of s − 1 queries (s selections where s ≥ 1). A permutation
π ∈ SN is sampled from SN uniformly at random before the
interview process. During the interview process, entries of π
are presented one-by-one from the left. The relative ordering
of the presented positions of π is the only information that
can be used to decide whether to accept the current applicant.

The notion of a prefix is introduced to represent the current
relative ordering of applicants. Given a π ∈ SN , the kth prefix
of π, denoted by π|k, is a permutation in Sk that represents
the relabelling of the first k elements of π according to their
relative order (e.g., if π = [635124], then π|4 = [4231]).

Definitions. Let σ ∈
N⋃
i=1

Si and satisfies |σ| = k (length k).

- A permutation π ∈ SN is said to be σ-prefixed if π|k = σ.
For example, π = [165243] ∈ S6 is σ = [1432]-prefixed.
- A σ-prefixed π is σ-winnable if accepting the |σ|th ap-
plicant when the prefix σ is presented produces the best
applicant for the interview order π. More precisely, for σ =
[σ(1)σ(2) · · ·σ(k)], we have that π is σ-winnable if π is σ-
prefixed and π(k) = N .
- In a permutation π ∈ SN , a left-to-right maximum is a
position whose value is larger than all values to the left of
the position. For example, if π = [423516] ∈ S6, then the
first, fourth, and sixth position are left-to-right maximum.

- A permutation σ ∈
N⋃
i=1

Si is said to be eligible if it ends in a

left-to-right maximum or has length N (e.g., let N = 6; then
both [1324] and [165243] are eligible).

Every strategy can be represented as a set of permutations
(of possibly different lengths) that lead to an acceptance
decision for the last applicant observed; such a set is called
a strike set. More precisely, the selection process proceeds as
follows: if the prefix we have seen so far is in the strike set,
then we accept the current applicant and continue (provided
a selection remains); if it does not belong to the strike set,
we reject the current applicant and continue. For example,
let N = 4 and s = 1. Then, the boxed set of permutations
A = {[12], [213], [3124], [3214]} in Fig. 1 is a strike set.
The corresponding interview strategy may be summarized as
follows: if the relative order of the applicants interviewed so

far is in the set A, then accept the current applicant; otherwise,
reject the current applicant. This turns out to be an optimal
strategy with probability of successfully selecting the best
applicant equal to 11/24. Obviously, the strike set representing
an optimal strategy only contains eligible permutations, since
an optimal strategy only selects applicants that are left-to-right
maximum. We also make use of s-strike sets defined below.

Definition. A set X ⊆
N⋃
j=1

Sj is called an s-minimal set if it

is impossible to have s + 1 elements α1, α2, . . . , αs+1 ∈ X
such that αi+1 is a prefix of αi, for all i ∈ {1, 2, . . . , s}.

Definition. A set of permutations A ⊆
N⋃
j=1

Sj is called an s-

strike set if it satisfies the following three conditions:
- It comprises prefixes that are eligible.
- The set A is s-minimal. Note that the set A may contain
elements α1, α2, . . . , αs such that αi+1 is a prefix of αi, for
all i ∈ {1, 2, . . . , s− 1}. In other words, based on an s-strike
set one can make at most s selections.
- Every permutation in SN contains some element of A as
its prefix (i.e., given an s-strike set one can always make a
selection based on its elements).

From the previous definition and the fact that we are allowed
to make at most s selections it follows that any optimal
strategy for our problem can be represented by an s-strike set.
For example, the set {[1], [12], [213], [3124], [3214]} in Fig. 1
is a 2-strike set, which also represents an optimal strategy for
the case N = 4 and s = 2. See also Example 1. Furthermore,
for a permutation σ of length k, where 1 ≤ k ≤ N , and
i ∈ {1, 2, . . . , s}, we make use of the following probabilities:

Qi(σ): The probability of identifying the best applicant with
the strategy accepting the kth position and using the best strat-
egy thereafter conditioned on the pre-selected interviewing
order π being σ-prefixed and i selections still being available
when interviewing the applicant at position k.

Qo
i (σ): The probability of identifying the best applicant with

the best strategy after making a decision for the kth position
conditioned on the pre-selected interviewing order π being
σ-prefixed and i selections still being available right after the
interview of the kth applicant.
Q̄i(σ): Q̄i(σ) = max{Qi(σ), Q

o
i (σ)}.

Intuitively, Q represents the probability of winning by
accepting the current applicant while Qo is the probability of
winning based on future selections in the interview process.
In order to ensure the maximum probability of winning,
an optimal strategy will examine two available choices, i.e.
“accept the current applicant” or “reject the current applicant
and implement the best strategy in the future” at each stage
of the interview and select the one with a better chance of
identifying the best applicant.

The standard denominator of a permutation σ, denoted by
SD(σ), is the number of σ-prefixed permutations π ∈ SN .
Denote the number of σ-winnable permutations π ∈ SN by
Win(σ). The ⊕ operation for a

b and c
d is defined as a

b ⊕ c
d =

a+c
b+d . It is used to compute the probability of the union of two
disjoint events from two disjoint sample spaces over a new



sample space equal to the union of the sample spaces.
For each σ of length ℓ − 1, where 2 ≤ ℓ ≤ N , we define

fj(σ), 1 ≤ j ≤ ℓ, to be the σ-prefixed permutation of length ℓ
such that its last position has value j after relabelling according
to the first ℓ − 1 positions of σ. For example, for σ = [123],
a permutation of length 3, we have f1(σ) = [2341], f2(σ) =
[1342], f3(σ) = [1243] and f4(σ) = [1234].

Let σ be a permutation of length 1 ≤ k ≤ N with
Qi(σ), Q

o
i (σ), Q̄i(σ) defined as above with 1 ≤ i ≤ s

selections available right before processing the kth applicant
of a σ-prefixed permutation. For each 1 ≤ i ≤ s, if the
kth position of σ is selected, then the number of selections
available decrease by one; if the kth applicant is rejected, then
the number of selections available does not change. When the
number of available selections becomes zero or all applicants
are examined, the process terminates.
Remark 1. Note that we do not simplify the fractions in
the expressions for the probabilities Q,Qo, Q̄ until we solve
the problem (for example, if the numerator and denomi-
nator of Q1(σ) = Win(σ)/SD(σ) have a common divisor
d, we do not cancel d). After making a decision on the
|σ|th applicant, the interviewer examines the next applicant
while the relative order of the interviewed applicants changes
to one of f1(σ), . . . , fk+1(σ). An optimal strategy involves
making a decision with the largest probability of winning when
encountering each of the f1(σ), . . . , fk+1(σ). Thus,

Qo
i (σ) = Q̄i(f1(σ))⊕ · · · ⊕ Q̄i(fk+1(σ)). (1)

By the definition of Qi, Q
o
i , i ∈ {2, . . . , s}, we have

Qi(σ) = Q1(σ) +Qo
i−1(σ). (2)

Eq. (2) holds since there are two (disjoint) events that ensure
winning after examining the current applicant, i.e., (a) the
current applicant is the best and (b) the current applicant is not
the best but we identify the best applicant at a later time with a
best strategy after rejecting the current applicant. In Case (a),
the probability of successfully identifying the best applicant
is Q1(σ); in Case (b), the number of available selections
decreases by 1 and the corresponding probability is Qo

i−1(σ).
Following a methodology suggested by Jones [11], in our

proof we make extensive use of prefix trees which naturally
capture the inclusion-relationship between prefixes of per-
mutations. The concept is best described by an illustrative
example, depicted for the case of S4 in Fig. 1. The correspon-
dence between sub-trees/sub-forests is crucial for the proof
of Lemma 1. For example, let F1 be the sub-forest obtained
by deleting the vertex [12] in the tree induced by [12] and
its children, let F2 be the sub-forest obtained by deleting the
vertex [21] in the tree induced by [21] and its children. Then,
there is a bijection between F1 and F2 which preserves all the
probabilities used in evaluating optimal strategies.

For V equal to the collection of all permutations of length at
most N , we let T = (V,E) be a graph constructed as follows:
if σ, τ ∈ V and σ is a prefix of τ with |σ| = |τ | − 1, then we
have an edge στ ∈ E.

For each i ∈ {1, . . . , s}, a prefix σ is said to be type i-
positive if Qi(σ) ≥ Qo

i (σ) and type i-negative otherwise.

We note that the probabilities Qo
i , Qi, Q̄i for each i ∈

{1, . . . , s} can be pre-computed using backward recursions.
Upon running these recursions, we find the winning proba-
bility in Section IV by solving another recurrence relation.
Given the probabilities Qo

i , Qi, Q̄i for all permutations and
i ∈ {1, . . . , s}, we describe next a procedure for finding an
optimal strategy and its corresponding strike set.
Theorem 1. There exists a strike set A which can be parti-
tioned as As∪· · ·∪A1, where each Ai is a set of type i-positive
1-minimal permutations, for 1 ≤ i ≤ s, so that the maximum
probability of winning equals ⊕σ∈AsQs(σ). Furthermore, the
maximum probability of winning equals∑

σ∈A

Q1(σ) · SD(σ)

/
(N !).

Proof. We only provide a sketch of the proof. The optimal
winning probability is equal to Q̄s([1]), which is the max of
Qs([1]) and Qo

s([1]). We introduce the following algorithm to
describe a general approach for obtaining Qo

i (σ). To initialize
the algorithm, let Γi = ∅ and B = {f1(σ), . . . , fℓ+1(σ)}. We
repeat the “main step”; until the process terminates.

Main step: Check if B = ∅; if yes, stop and return the set
Γi; if no, then do the following: pick an arbitrary permutation
ϕ ∈ B, say of length q, with |σ| < q ≤ N ; check if ϕ is
both eligible and type i-positive (Qi(ϕ) ≥ Qo

i (ϕ)); if yes, set
Γi = Γi ∪ ϕ and B = B − ϕ; if no, do not update Γi and let

B = (B − ϕ) ∪
q+1⋃
j=1

fj(ϕ).

From the above algorithm we have Qo
i (σ) = ⊕µ∈ΓiQi(µ),

and by (2), Qi(µ) = Q1(µ)+Qo
i−1(µ) if i ≥ 2. Thus, Q̄s([1])

can be derived using an inductive argument.
The next lemma establishes the useful properties of the

probabilities Qi(σ), Qo
i (σ), Q̄i(σ) that they only depend

on the length and the value of the last position of σ. The
proof uses the correspondence between prefix trees under
permutations of the same length. Moreover, the result shows
that Qo

i (σ) only depends on the length of σ and does not
depend on the value of the last position of σ.
Lemma 1. For all 1 ≤ i ≤ s, the probability Qi(σ) only
depends on the length and the value of the last position of σ;
at the same time, Qo

i (σ) only depends on the length of σ.
We see in Fig. 1 that all permutations of the same length

(i.e., at the same level of the tree) share the same probabilities
Qo

1 and Qo
2, respectively. Moreover, Q1([123]) = Q1([213])

and Q2([123]) = Q2([213]), as they are both eligible and have
length 3. In order to simplify our exposition, we henceforth
change the notation and let Qi(σ), Qo

i (σ), Q̄i(σ) stand for the
numerators in the definition of the underlying probabilities,
each with respect to denominator SD(σ).

We show in Lemma 2 that if an eligible permutation is
negative then all eligible permutations of shorter length are
negative as well. Define Q̄0 = 0 for any permutation.

Lemma 2. For σ = [12 · · · (k − 1)] and 1 ≤ i ≤ s, we have

Qo
i (σ) = (k − 1) ·Qo

i (fk(σ)) + Q̄i(fk(σ)) and

Qi(σ) = (k − 1) ·Qi(fk(σ)) + Q̄i−1(fk(σ)).
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Fig. 1. The prefix tree, the Q1, Qo
1, Q2, Qo

2 probabilities, and a 2-strike set for our problem with four applicants.

Corollary 1. For increasing permutation σ = [12 · · · (k− 1)]
and fk(σ) = [12 · · · k], we have that if fk(σ) is type i-negative
then σ is type i-negative, where 1 ≤ i ≤ s.

In words, Corollary 1 asserts that each Qi(k)−Qo
i (k) is a

non-decreasing function of k.
Example 1. To clarify the above concepts, we present an
example for the case s = 2 and N = 4. An optimal strategy is
the (0, 1)-strategy where we accept the first applicant, ask the
expert whether this applicant is the best, and then accept the
next left-to-right maximum. The optimal winning probability
is 17/24, an improvement of 6/24 when compared to the
optimal winning probability (equal to 11/24) for the case when
only one selection is allowed (see Fig. 1). Note that for each
permutation σ ∈ S4, we list the probabilities Q1, Q

o
1 in the first

line and the probabilities Q2, Q
o
2 in the second line underneath

each permutation shown in Fig. 1.
III. THE OPTIMAL STRATEGY

The maximum probability of winning for the Dowry model
with s selections and the query-based model with s − 1
queries are the same, as both models have a budget of
s selections and the goal is to choose the best applicant.
However, the expected stopping times are very different. Under
the query-based model, the process immediately terminates
after obtaining a positive answer from the expert. On the
other hand, the decision making entity continues to interview
the remaining applicants after a selection is made (provided
there is a selection left) under the Dowry setting, as it has no
information weather the current applicant is the best.

To obtain the optimal strategy for the Dowry model, we
observe that Qo

i (σ) ≥ Qo
i−1(σ), Qi(σ) ≥ Qi−1(σ), and

Qi(σ) ≥ Qo
i−1(σ) hold true for every σ ∈

N⋃
k=1

Sk and

1 ≤ i ≤ s−1. Let Qi(k) denote the probability Qi of eligible
prefixes of length k, where 1 ≤ i ≤ s. The probabilities Qo

i (k)
and Q̄i(k), where 1 ≤ i ≤ s, are defined similarly.

For the ith selection (j = s + 1 − i selections left), 1 ≤
i ≤ s, by the algorithm described in Theorem 1, we check if
σ is eligible and type j-positive (i.e., if Qj(σ) ≥ Qo

j(σ)); if
yes, we accept the current applicant and continue to the next
selection (if one is left); if no, we reject the current applicant
and continue our search; if there are no selections left, we
terminate the process. By Corollary 1, we know each Qj(k)−
Qo

j(k) is a non-decreasing function of k, which allows us to
formulate the optimal strategy.

Theorem 2. An optimal strategy for the problem with s
selections is a positional s-threshold strategy, i.e. there are
s numbers 0 ≤ k1 ≤ k2 ≤ . . . ≤ ks ≤ N such that when
considering the ith selection, where 1 ≤ i ≤ s, we reject the
first ki applicants, wait for the (i − 1)th selection, and then
accept the next left-to-right maximum.

Proof. Let j = s+1− i. By Corollary 1, and since we know
Qj(σ) ≥ Qo

j(σ) for a permutation, there exists some 0 ≤ ki ≤
N such that Qj(k) ≥ Qo

j(k) for k ≥ ki + 1 and Qj(k) <
Qo

j(k) for all k ≤ ki, where 1 ≤ i ≤ s. Therefore, an optimal
strategy is to reject the first ki applicants and then accept the
next left-to-right maximum thereafter. It is also clear that every
optimal strategy needs to proceed until the (i− 1)th selection
is made before considering the ith selection. Thus, ki−1 ≤ ki
for each i ∈ {2, . . . , s}.

By the definition of the Qj(k), Q
o
j(k), Q̄j(k) probabilities,

we know that they only depend on k,N , and the number of
selections left before interviewing the current applicant, i.e. the
subscript j. Thus, for two different models where the number
of selections are s1 and s2 respectively (w.l.o.g. s1 < s2),
with the same value of N , each of the thresholds k′s1+1−j

for the model with s1 selections and k′′s2+1−j for the model
with s2 selections are the same for 1 ≤ j ≤ s1. In other
words, an optimal strategy is right-hand based. This leads to
the following result.
Corollary 2. Let N be a fixed positive integer. There is a
sequence of numbers a1, a2, . . . , such that when the number
of selections s ≥ 1 is fixed, then an optimal strategy is the
(as, as−1, . . . , a1)-strategy. In other words, the (s + 1 − i)th

threshold ks+1−i (the ith from the right) does not depend on
the total number of selections allowed, i.e. the value of s, and
always equals ai, for 1 ≤ i ≤ s.

IV. COMPLETE PROBLEM SOLUTION

Let 0 ≤ k1 ≤ k2 ≤ . . . ≤ ks ≤ N . The (k1, k2, . . . , ks)-
strategy is a strategy for which when making the ith selection,
where 1 ≤ i ≤ s, we (1) wait until the (i − 1)th selection is
made (if i = 1 then there is no need to wait) and (2) reject
the first ki applicants and then accept the next left-to-right
maximum. Let 0 ≤ r ≤ s. We call a permutation π with at
most N elements a (k1, k2, . . . , ks)-r-choosable permutation
if we can make at most r selections when applying the
(k1, k2, . . . , ks)-strategy on π.

Finally, let 0 ≤ k1 ≤ k2 ≤ . . . ≤ ks ≤ N . We denote the
number of (k1, k2, . . . , ks)-r-choosable permutations in SN by



TABLE I
THE OPTIMAL THRESHOLDS (THRESHOLD RATIOS) AND SUCCESS PROBABILITIES.

x1 x2 x3 x4 x5 . . .
Thresholds 0.3678794412 0.2231301601 0.1410933807 0.0910176906 0.0594292419 . . .

Optimal probability 0.3678794412 0.5910096013 0.7321029820 0.8231206726 0.8825499146 . . .

Tr(N, k1, k2, . . . , ks). Furthermore, we denote the number of
permutations in SN such that the value N can be selected
using the (k1, k2, . . . , ks)-strategy by W (N, k1, k2, . . . , ks).

Note that the winning probability by using the
(k1, k2, . . . , ks)-strategy is W (N, k1, k2, . . . , ks)/N !. We first
obtain a recurrence relation on Tr−1(m, k1, . . . , kr) and then
use it to obtain a recurrence relation on W (m, k1, . . . , kr).
Lemma 3. Let 0 ≤ k1 ≤ k2 ≤ . . . ≤ ks ≤ N be fixed,
1 ≤ r ≤ s, and m ≥ kr. Then

Tr−1(m, k1, . . . , kr) =

(m− 1)!
{
kr +

m∑
i=kr+1

Tr−2(i− 1, k1, . . . , kr−1)

(i− 1)!

}
,

while for m ≥ kr + 1 we have
W (m, k1, . . . , kr) =

Tr−1(m− 1, k1, . . . , kr) + (m− 1) ·W (m− 1, k1, . . . , kr).

By Corollary 2, we know that an optimal strategy is right
hand based. Let s ≥ 1 be fixed. By solving the recurrence
relations found in Lemma 3, we obtain

W (N, as, . . . , a1)

N !
=

s∑
i=1

Hi, where

Hs =
as
N

·
( as−1−1∑

i=as

1

i
+

as−2−1∑
i1=as−1+1

1

i1

i1−1∑
i2=as−1

1

i2
+

as−3−1∑
i1=as−2+1

1

i1

i1−1∑
i2=as−2

1

i2

i2−1∑
i3=as−1

1

i3
+ · · ·+

N−1∑
i1=a1+1

1

i1

i1−1∑
i2=a1

1

i2

i2−1∑
i3=a2

1

i3
· · ·

is−1−1∑
is=as−1

1

is

)
.

A. Asymptotics

It is also of interest to analyze the model when N → ∞. In
this case we need to normalize certain quantities. In particular,
define xi = lim

N→∞
ai

N . For 0 ≤ xs ≤ xs−1 ≤ . . . ≤ x1 ≤ 1,
and 1 ≤ r ≤ s, as N → ∞ we have

Hr → xr ·
( xr−1∫

xr

1

t
dt+

xr−2∫
xr−1

1

t1

t1∫
xr−1

1

t2
dt2 dt1+

xr−3∫
xr−2

1

t1

t1∫
xr−2

1

t2

t2∫
xr−1

1

t3
dt3 dt2 dt1 + · · ·+

1∫
x1

1

t1

t1∫
x1

1

t2

t2∫
x2

· · ·
tr−1∫

xr−1

1

tr
dtr dtr−1 · · · dt1

)
=: H ′

r

lim
N→∞

W (N, as, . . . , a1)

N !
=

s∑
r=1

H ′
r =: P.

For 1 ≤ i ≤ s, the optimal probability is a function of
x1, . . . , xs and does not depend on N . By Corollary 2, we
can first find x1 for the case s = 1, then find x2 for the case
s = 2, . . ., and so on up to xs. An optimal strategy has to
satisfy: (i) if ai = o(N), then xi = 0; (ii) if N − ai = o(N),
then xi = 1; (iii) otherwise, lim

N→∞
ai

N = xi ∈ (0, 1). Only (iii)
is possible, i.e., each xi ∈ (0, 1), for 1 ≤ i ≤ s. Indeed

Ir−1 =

xr−2∫
xr−1

1

t1

t1∫
xr−1

1

t2
dt2 dt1

+ · · ·+
1∫

x1

1

t1

t1∫
x1

1

t2

t2∫
x2

· · ·
tr−1∫

xr−1

1

tr
dtr dtr−1 · · · dt1.

We know that Ir−1 is a constant when x1, . . . , xr−1 are given
and the optimal value of xr which realizes the maximum value
of P equals xr−1 · eIr−1−1. Thus, we can compute xr−1 and
Ir−1 sequentially.

When N is large, by Corollary 2, an optimal strategy for
the case of s selections is the (xs ·N, . . . , x1 ·N)-strategy: we
reject the first xs ·N applicants and then select the first left-to-
right maximum applicant thereafter; for the second selection,
we wait until after the (xs−1 · N)th position and then select
the left-to-right maximum after the first selection made, . . .,
for the sth selection, we wait until after the (x1 ·N)th position
and then select the left-to-right maximum after the (s − 1)th

selection is made. The results for s ≤ 5 are shown in Table I.
B. The expected stopping position

The expected position of stopping divided by N (ESR in
short) for both the Dowry model and our query-base model
are 0.7357N when s = 1. However, when s is large, the two
models behave very differently. In the Dowry model, ESR
approaches 1 as s becomes large. In the query-based model,
ESR approaches 0.5 as s → ∞. This follows since when s is
sufficiently large, we have a success probability close to 1 and
will stop at the position at which the value N appears if this
is identified during the s− 1 queries (even for s = 6 we will
have a probability > 0.9 of identifying the best applicant).
Thus, ESR → 0.5, the expected position of N . However, in
the Dowry model, the probability of successfully identifying
the best applicant during the first s − 1 selections → 1 as s
increases. Furthermore, since we have no information about
whether the selected applicant is the best or not, we try our
best to use all selections and thus have probabilities → 1 of
stopping at the end of the list. Thus, ESR → 1 as N → ∞ in
the Dowry model.

The readers are referred to [16] for the full version.
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