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Abstract. This work examines the problem of sequential change detection in the constant drift of a
Brownian motion in the case of multiple alternatives. As a performance measure an extended Lorden’s
criterion is proposed. When the possible drifts, assumed after the change, have the same sign, the CUSUM
rule designed to detect the smallest in absolute value drift, is proven to be the optimum. If the drifts have
opposite signs then a specific 2-CUSUM rule is shown to be asymptotically optimal as the frequency of false
alarms tends to infinity.
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1 Introduction and Mathematical formulation of the problem.

We begin by considering the observation process {ξt}t>0 with the following dynamics:

dξt =
{

dwt t ≤ θ
µi dt + dwt t > θ, i = 1, 2,

where θ, the time of change, is assumed deterministic but unknown; µi, the possible drifts the process can
change to, are assumed known, but the specific drift the process is changing to is assumed to be unknown.
Our goal is to detect the change and not to infer which of the changes occurred.

The observation process {ξt}t>0 generates the filtration {Ft}t>0 on the space Ω = C[0,∞), as well as
the families of probability measures

1. {Pi
θ}, θ ∈ [0,∞), whenever the change is µi, i = 1, 2.

2. P∞, the Wiener measure, whenever no change takes place.

The objective is to detect the change as soon as possible while at the same time controlling the frequency
of false alarms. This is achieved through the means of a stopping rule τ adapted to the filtration Ft. One
of the possible performance measures of the detection delay, suggested by Lorden in [5], considers the worst
detection delay over all paths before the change and all possible change points θ. It is

J(τ) = sup
θ

ess sup Eθ

[
(τ − θ)+|Fθ

]
, (1)

giving rise to the following constrained stochastic optimization problem:

inf
τ

J(τ); subject to E∞ [τ ] ≥ T. (2)

In order to incorporate the different possibilities for the µi we extend Lorden’s performance measure
inspired by the idea of the worst detection delay regardless of the change (along the lines of [3]). It is

JL(τ) = max
i

sup
θ

ess supEi
θ

[
(τ − θ)+|Fθ

]
, (3)
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which results in a corresponding optimization problem of the form:

inf
τ

JL(τ); subject to E∞ [τ ] ≥ T. (4)

It is easily seen, that in seeking solutions to the above problem, we can restrict our attention to stopping
times that satisfy the false alarm constraint with equality. This is because, if E∞ [τ ] > T , we can produce
a stopping time that achieves the constraint with equality without increasing the detection delay, simply by
randomizing between τ and the stopping time that is identically 0, as first advocated by [6]. To this effect,
we introduce the following definition:

Definition 1 K = {τ ∈ Ft; E∞ [τ ] = T}.

The paper is organized as follows: In Section 2 the one-sided CUSUM stopping rule along with its optimal
character is presented. Section 3 is devoted to the presentation of the 2-CUSUM stopping rules and certain
families amongst them that display interesting properties. Finally, in Section 4, two asymptotic optimality
results are presented as T →∞.

2 The one-sided CUSUM stopping time

The CUSUM statistic process and the corresponding one-sided CUSUM stopping time are defined as follows:

Definition 2 Let λ ∈ R and ν ∈ R+. Define the following processes:

1. ut(λ) = λξt − 1
2λ2t; mt(λ) = inf0≤s≤t us(λ).

2. yt(λ) = ut(λ)−mt(λ) ≥ 0, which is the CUSUM statistic process.

3. τc(λ, ν) = inf{t ≥ 0; yt(λ) ≥ ν}, which is the CUSUM stopping time.

We are now in a position to examine two very important properties of the one-sided CUSUM stopping
time. The first is seen in the following lemma:

Lemma 1 Fix θ ∈ [0,∞). Let t ≥ θ and consider the CUSUM process when starting at time θ, yt,θ =
ut − uθ − infθ≤s≤t(ut − uθ). We have that yt ≥ yt,θ with equality if yθ = 0.

Proof: The proof comes as a result of noticing that yt = yt,θ +
(
infθ≤s≤t(us − uθ) + yθ

)+

≥ yt,θ and that
infθ≤s≤t(us − uθ) ≤ 0. ¦

By its definition it is clear that yt,θ depends only on information received after time θ. Thus, we conclude
that all contribution of the observation process {ξt} before time θ, is summarized in yθ. Lemma 1, therefore
suggests that the worst detection delay before θ occurs whenever yθ = 0. In other words,

ess sup Eθ

[
(τc(λ, ν)− θ)+|Fθ

]
= Eθ

[
(τc(λ, ν)− θ)+|yθ = 0

]
= E0 [τc(λ, ν)] . (5)

Equ. (5) states that the CUSUM stopping time is an equalizer rule over θ, in the sense that its performance
does not depend on the value of this parameter.

The second property of the one-sided CUSUM comes as a result of noticing that mt is nonincreasing and
that when it changes (decreases) we necessarily have mt = ut. In other words, when mt changes, yt attains
its smallest value, that is 0. When this happens we will say that the CUSUM statistic process restarts.

Lemma 2 Suppose a CUSUM stopping rule is based on the CUSUM statistic with drift parameter λ ∈ R
and has threshold ν ∈ R+. Then, the detection delay when the observation process ξt has drift µ ∈ R is
given by E [τc(λ, ν)] = (2/λ2)g(ν, ρ), where

g(ν, ρ) =
e−ρν + ρν − 1

ρ2
and ρ = 2

µ

λ
− 1.

ASA Section on Quality & Productivity

2117



Proof: The proof follows from the second property of the one sided CUSUM combined with standard
stochastic calculus results (see [4]). For more details refer to [7]. ¦

Notice that for α 6= 0 we have 1
α2 g(ν, ρ) = g( ν

|α| , ρ|α|). This suggests the following alternative expression
for the delay function

E[τc(λ, ν)] = 2g

(
ν

|λ| , sign(λ)(2µ− λ)
)

. (6)

In [2] and [8] it is shown that when there is only one possible alternative for the drift µ, the CUSUM
stopping rule τc(µ, ν), with ν satisfying 2

µ2 g(ν,−1) = T , solves the optimization problem defined in (2). It is
also interesting to note that in [7], after a proper modification of Lorden’s criterion that replaces expected
delays with Kullback-Leibler divergences, the optimality of the CUSUM can be extended to cover detection
of general changes in Itô processes.

When the sign of the alternative drifts is the same, with the help of the following lemma we can show
that the one-sided CUSUM stopping rule that detects the smallest in absolute value drift is the optimal
solution of the problem in (4).

Lemma 3 For every path of the Brownian motion wt, the process yt(λ) is an increasing (decreasing) function
of the drift of the observation process ξt when λ > 0 (λ < 0).

Proof: Consider two possible drift values µ1, µ2 with µ1 < µ2. We define the following two observation
processes ξt(µi) = µi(t− θ)+ + wt, i = 1, 2, that lead to the corresponding CUSUM processes

ut(λ, µi) = λξt(µi)− 1
2
λ2t = λ{wt + µi(t− θ)+} − 1

2
λ2t; mt(λ, µi) = inf

0≤s≤t
us(λ, µi)

yt(λ, µi) = ut(λ, µi)−mt(λ, µi).

Consider the difference yt(λ, µ2)−yt(λ, µ1) = δ(t−θ)+−mt(λ, µ2)+mt(λ, µ1) where δ = λ(µ2−µ1). Notice
now that λ > 0 implies δ > 0 and we can write

us(λ, µ2) = us(λ, µ1) + δ(s− θ)+ ≤ us(λ, µ1) + δ(t− θ)+.

Taking the infimum over 0 ≤ s ≤ t we get mt(λ, µ2) ≤ mt(λ, µ1) + δ(t − θ)+ from which, by rearranging
terms, we get that yt(λ, µ2) ≥ yt(λ, µ1). The case λ < 0 can be shown similarly. ¦

From Lemma 3 it also follows that µ1 ≤ µ2 implies E1[τc(λ, ν)] ≥ E2[τc(λ, ν)] when λ > 0 and the
opposite when λ < 0. As a direct consequence of this fact comes our first optimality result concerning drifts
with the same sign.

Theorem 1 Let 0 < µ1 ≤ µ2 or µ2 ≤ µ1 < 0, then the one-sided CUSUM stopping time τc(µ1, ν1) with ν1

satisfying 2
µ2

1
g(ν1,−1) = T solves the optimization problem defined in (4).

Proof: The proof is straightforward. Since ν1 was selected so that τc(µ1, ν1) satisfies the false alarm
constraint, we have τc(µ1, ν1) ∈ K. Then, ∀ τ ∈ K we have

JL(τ) = max
i

sup
θ

ess supEi
θ

[
(τ − θ)+|Fθ

]
≥ sup

θ
ess sup E1

θ

[
(τ − θ)+|Fθ

]

≥ E1
0 [τc(µ1, ν1)] = max

i
Ei

0[τc(µ1, ν1)] = JL(τc(µ1, ν1)) =
2
µ2

1

g(ν1, 1).

The last inequality comes from the optimality of the one-sided CUSUM stopping rule and the last three
equalities are due to Lemmas 3, 2 and the definition of JL(τ) in (3) ¦

It is worth pointing out that if we had n alternative drifts (instead of two) of the form 0 < µ1 ≤ µ2 ≤
· · · ≤ µn or 0 > µ1 ≥ µ2 ≥ · · · ≥ µn and we used the extended Lorden’s criterion in (3), the optimality of
τc(µ1, ν1), presented in Theorem1, would still be valid. Our result should be compared to [3] (which refers to
discrete time and the exponential family), where for the same type of changes only asymptotically optimum
schemes are offered.

We also have the following corollary of Lemma 3:
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Corollary 1 Let 0 < |µ1| ≤ |µ2| and define ηi, i = 1, 2, so that 2
µ2

i

g(ηi,−1) = T > 0. Then we have

1
µ2

1

g(η1, 1) ≥ 1
µ2

2

g(η2, 1). (7)

Proof: Since the result is independent of the sign of the two drifts, without loss of generality we may assume
0 < µ1 ≤ µ2. Consider the two CUSUM rules τc(µi, ηi), i = 1, 2. Because the two thresholds ηi were selected
to satisfy the false alarm constraint, using Lemma 1, Lemma 3 and the optimality of the one-sided CUSUM
stopping time, the following inequalities hold ∀ τ ∈ K:

2
µ2

1

g(η1, 1) = E1
0 [τc(µ1, η1)] ≥ E2

0 [τc(µ1, η1)] = sup
θ

ess sup E2
θ

[
(τc(µ1, η1)− θ)+|Fθ

]

≥ inf
τ

sup
θ

ess supE2
θ

[
(τ − θ)+|Fθ

]
= E2

0 [τc(µ2, η2)] =
2
µ2

2

g(η2, 1). ¦

3 Different drift signs and the 2-CUSUM stopping time

Let us now consider the case µ2 < 0 < µ1. The very interesting problem of knowing the amplitude of the
drift but not the sign falls into this setting. What has traditionally been done in the literature, dating as far
back as Barnard in [1], is to use the minimum of the stopping rules τc(µ1, ν1) and τc(µ2, ν2) each tuned to
detect the respective changes µ1 and µ2. To this effect, we introduce the following 2-CUSUM stopping rule:

Definition 3 Let λ2 < 0 < λ1. The 2-CUSUM stopping time τ2c(λ1, λ2, ν1, ν2) is defined as follows:
τ2c(λ1, λ2, ν1, ν2) = τc(λ1, ν1) ∧ τc(λ2, ν2).

In the sequel, all 2-CUSUM rules will be denoted by τ2c unless it is necessary to give emphasis to their
four parameters. From Lemma 1, it follows that:

JL(τ2c) = max
i

sup
θ

ess sup Ei
θ

[
(τ2c − θ)+|Fθ

]
= max

i
Ei

0 [τ2c] . (8)

As we have seen the 2-CUSUM stopping rule is characterized by the four parameters, λ1, λ2, ν1 and ν2.
Since our intention is to propose a specific rule as the “preferable” we will gradually impose additional
constraints (apart from the false alarm constraint) on our 2-CUSUM structure in order to arrive to a unique
stopping rule. Once our rule is specified we will support its selection by demonstrating that it enjoys a strong
asymptotic optimality property.

3.1 A special class of 2-CUSUM rules

First we shed our attention to a specific class of 2-CUSUM stopping rules that allow for the exact computation
of their performance.

Definition 4 Define G = {τ2c(λ1, λ2, ν1, ν2); ν1 = |λ1|ν and ν2 = |λ2|ν}.

Lemma 4 Let τ2c ∈ G then, when τ2c stops, one of its CUSUM statistic processes hits its corresponding
threshold while the other necessarily restarts.

Proof: Although the proof given in [9, Page 28] for discrete time and the exponential family, applies here
as well, we prefer to give an alternative (hopefully easier) proof. Consider the sum

Yt = |λ2|yt(λ1) + |λ1|yt(λ2) = − 1
2 (|λ2|λ2

1 + |λ1|λ2
2)t− |λ2|mt(λ1)− |λ1|mt(λ2).

We notice that when neither of the two CUSUM processes yt(λi), i = 1, 2, restarts, the corresponding
processes mt(λi) ∀ i = 1, 2 stay constant, which implies that Yt decreases linearly in time. From this we
conclude that Yt can increase only when one of the two CUSUM processes yt(λi) restarts. We obviously
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cannot have both CUSUM processes restarting, since that would imply Yt = 0. Therefore, the 2-CUSUM
stops when one of the two CUSUM statistic processes hits its corresponding threshold. This occurs when Yt

attains the level |λ1λ2|ν > 0 for the first time. Since Yt attains a new level, it has to be during an increase
of Yt, which can only happen when one of the CUSUMs restarts. ¦

Lemma 5 Let τ2c = τ1 ∧ τ2 with τ2c ∈ G and τ1, τ2 the corresponding one-sided CUSUM branches. Then
the expected delay of the 2-CUSUM stopping time τ2c is equal to:

(E[τ2c])−1 = (E[τ1])−1 + (E[τ2])−1. (9)

Proof: The proof basically repeats the one presented in [9, Page 28] for the discrete time case. ¦

3.2 2-CUSUM equalizer rules

It is well known that min-max problems, such as (4), are solved by equalizer rules. Thus, we further restrict
ourselves among the class of equalizer rules.

Definition 5 Define D = {τ2c ∈ G;E1
0 [τ2c] = E2

0 [τ2c]}.

By the definition of the class of equalizer rules it follows that D ⊂ G. Using Eqs. (6), (9) we can see that in
order to have τ2c ∈ D we need λ1 + λ2 = 2(µ1 + µ2). We now proceed to select the parameter λ1 so that the
corresponding detection delay is asymptotically (as T →∞) minimized.

Theorem 2 Let µ2 < 0 < µ1 with |µ1| ≤ |µ2|. Consider all 2-CUSUM stopping times τ2c ∈ K ∩ D. Then
among all such stopping rules the one with λ1 = µ1, λ2 = 2µ2 + µ1 is asymptotically optimal as T →∞.

Proof: Since µ1 + µ2 ≤ 0 and τ2c ∈ D, for any λ1 > 0, we get |λ1| ≤ |λ2|. From the false alarm constraint
we get λ1ν = log T (1 + o(1)). Using Eqs. (6), (9) and substituting the expression for λ2 in terms of λ1, µ1

and µ2, which ensures that τ2c ∈ D we get:

Ei
0[τ2c] =

(
1

2g(ν, 2µ1 − λ1)
+

1
2g(ν, 2µ2 − λ1)

)−1

=





2ν
2µ1−λ1

(1 + o(1)) for 2µ1 > λ1 ≥ 0
ν2(1 + o(1)) for 2µ1 = λ1

2eν|2µ1−λ1|
(2µ1−λ1)2

(1 + o(1)) for 2µ1 < λ1.

(10)

From (10) it is clear that it is sufficient to limit ourselves to the case 0 ≤ λ1 < 2µ1, since for λ1 ≥ 2µ1

the detection delay increases significantly faster as ν increases. For 0 ≤ λ1 < 2µ1, the detection delay,
after substituting ν from the false alarm constraint, can be written as 2 log T

λ1(2µ1−λ1)
(1 + o(1)), which is clearly

minimized, asymptotically, for λ1 = µ1. Since τ2c ∈ D, we also get λ2 = 2µ2 + µ1. ¦

4 Asymptotic optimality in opposite sign drifts

For the specific 2-CUSUM rule introduced at the end of the previous section, we are going to demonstrate two
asymptotic optimality results by means of an upper and a lower bound on the performance of the unknown
optimal stopping rule. We will show that the difference in performance between the unknown optimum rule
and the proposed 2-CUSUM rule is bounded above by a constant (equal in absolute value drifts) or tends
to 0 (unequal in absolute value drifts) as T → ∞. This should be compared to most existing asymptotic
optimality results (see [10]) where it is shown that the ratio between the performance of the optimum and
the proposed scheme tends to unity (first order optimality). Our form of asymptotic optimality is clearly
stronger since it implies first order optimality, while the opposite is not necessarily true.

Let τ2c denote the specific 2-CUSUM rule proposed in the previous section with the threshold ν selected
so that the false alarm constraint is satisfied with equality. Since τ2c constitutes a possible choice in the
class K ∩D, we have that ∀ τ ∈ K

E1
0 [τ2c] = E2

0 [τ2c] = JL(τ2c) ≥ inf
τ

JL(τ) ≥ max
i

inf
τ

sup
θ

ess sup Ei
θ[(τ − θ)+|Fθ] = max

i

2
µ2

i

g(ηi, 1) (11)
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where the two thresholds ηi, i = 1, 2, are selected to satisfy the false alarm constraint 2
µ2

i

g(ηi,−1) = T . The
asymptotic results that follow examine the way the two bounds approach each other, which also determine
the rate with which the 2-CUSUM approaches the optimal solution.

4.1 The case of equal in absolute value drifts

We first consider the special case µ1 = −µ2 = µ. Here our parameter selection takes the form λ1 = µ1 = µ
and λ2 = 2µ2 + µ1 = µ2 = −µ which coincides with the 2-CUSUM scheme proposed in the literature.

Theorem 3 The difference in the performance between the proposed 2-CUSUM stopping rule and the optimal
stopping rule is bounded above by a quantity that tends to the constant 2 log 2

µ2 , as the false alarm constraint
T →∞.

Proof: Solving for ν from the false alarm constraint E∞[τ2c] = g(ν,−µ) = T we obtain µν = log T +
log µ2

2 +log 2+o(1). On the other hand, we can write the upper bound in Equ.(11) as JL(τ2c) = 2
µ2 {µν+e−µν−

1}{1+O(µνe−3µν)}. Substituting the estimate for ν we get JL(τ2c) = 2
µ2

{
log T + log µ2

2 − 1 + log 2 + o(1)
}

.

Similarly, for the lower bound we have that the threshold η as a function of T becomes η = log T+log µ2

2 +o(1),
which follows from the false alarm constraint 2

µ2 g(η,−1) = T . As a result of substituting the above expression

for η in 2
µ2 g(η, 1), that is the lower bound in Equ. (11), we get 2

µ2 {log T+log µ2

2 −1+o(1)} for the lower bound.
Since the difference between the upper and the lower bound, bounds the difference JL(τ2c)− infτ JL(τ), we
conclude that

0 ≤ JL(τ2c)− inf
τ

JL(τ) ≤ 2
µ2
{log 2 + o(1)},

from which the result follows by letting T →∞. ¦
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Figure 1: Typical form of the upper and lower bounds of the performance of the optimum stopping rule for
the case µ1 = −µ2 = 1.

Figure 1 depicts the upper and lower bound as a function of the false alarm constraint T for the case
µ1 = −µ2 = 1. Notice the difference of the two bounds is increasing with T . The constant proposed by
Theorem3 corresponds to a worst case performance attained only as T →∞.
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4.2 The case of different in absolute value drifts

Theorem 4 The difference in the performance between the proposed 2-CUSUM stopping rule and the optimal
stopping rule is bounded and tends to 0, as the false alarm constraint T →∞.

Proof: We will only examine the case |µ1| < |µ2|. From Corollary 1 and Equ. (7) it follows that the maximum
in the lower bound in (11) is achieved for µ1. Hence, as in Theorem 3, we get 2

µ2
1
{log T + log µ2

1
2 − 1 + o(1)}

for the lower bound.

The upper bound is the detection delay of the proposed 2-CUSUM stopping time τ2c in Theorem 2.
Using Eqs (6) and (9), with λ1 = µ1, λ2 = 2µ2 + µ1, we have

JL(τ2c) = Ei
0[τ2c] =

2
µ2

1

{e−µ1ν + µ1ν − 1}{1 + O(µ1νe(2µ2−µ1)ν)}, (12)

where ν is selected to satisfy the false alarm constraint, which takes the form

E∞[τ2c] =
(

1
2g(ν,−µ1)

+
1

2g(ν, 2µ2 + µ1)

)−1

= T.

From it we get the estimate

µ1ν = log T + log
µ2

1

2
+ o(1).

This, when substituted in (12), produces JL(τ2c) = Ei
0[τ2c] = 2

µ2
1

{
log T + log µ2

1
2 − 1 + o(1)

}
.

Subtracting now the lower bound expression from the upper bound expression above we obtain

0 ≤ JL(τ2c)− inf
τ

JL(τ) ≤ o(1),

which tends to 0 as T →∞. ¦
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Figure 2: Typical form of the upper and lower bounds of the performance of the optimal stopping rule for
the case µ2 < 0 < µ1, with µ1 = 1 and µ2 = −1.05,−1.15,−1.3.

In Figure 2 we present the two bounds for µ1 = 1 and µ2 = −1.05,−1.15,−1.3. We recall that the upper
bound is the detection delay of the 2-CUSUM rule τ2c ∈ G ∩K with parameters λ1 = µ1 and λ2 = 2µ2 + µ1.
We can see that the difference between the two curves is tending to zero as the false alarm tends to infinity,
thus corroborating Theorem 4. What is more interesting, however, is the fact that the two curves rapidly
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approach each other, uniformly over T , as the ratio |µ2|/|µ1| of the two drifts increases. As we can see, in the
case µ1 = 1, µ2 = −1.3 the two bounds become almost indistinguishable. This suggests that the proposed
2-CUSUM rule can be (extremely) close to the unknown optimal rule, not only asymptotically, as proposed
by Theorem 4, but also uniformly over all false alarm values.

It is also worth noting that the difference in the performance of the optimal rule and any 2-CUSUM rule
in G with parameters λ1 = µ1 and λ2 ∈ (−µ1 2µ2 + µ1] (one such possibility is the selection proposed in the
literature λ1 = µ1, λ2 = µ2) also tends to 0 as T → ∞. Therefore, asymptotically optimal solutions allow
for many different choices. It is, however, our selection that leads to an equalizer rule.
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