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Abstract -We consider the problem of decentralizedhese statistics changeltg. Timer is considered unknown
change detection using the CUSUM test. More than onend we would like to detect it as soon as possible. Our goal
sensors acquire independent signals and send their quaris to develop a detection scheme that can be implemented
tized version to a fusion center that uses this informationat the fusion center. This suggests that the correspond-
to detect a simultaneous change in all sensors. By ining test can use only the available quantized information
troducing a recurrence relation that defines the optimumz?, = Q*(z¢) as well as any existing prior information. Un-
performance of the CUSUM test for given quantization,like conventional change detection, in the distributed ver-
we further optimize this measure with respect to the quansion, in addition to the detection scheme, we also need to
tization scheme. We compare the resulting optimum testpecify all quantizer§)’(x).
with a simple, asynchronous one shot strategy, where each This problem has been considered in the pastin [8, 9, 6]
sensor performs a local CUSUM test and communicatefollowing a Baysian approach and using notions introduced
with the fusion center only once to signal its detection. in [7]. A very interesting alternative idea is presented in [2]

where instead of quantizing the observations, each sensor
Keywords: Change detection, CUSUM, Decentralized deted?€rforms locally its own change detection test and sends its
tion. decisions to the fusion center; with the latter being respon-

sible for the final decision.

In this work we consider the change detection problem

1 Introduction using Lorden’s criterion as our performance measure. With

the help of an integral equation we relate the performance
We consider the problem of sequential change detedf-the CUSUM test to the quantizers in the sensors and
tion under a distributed setup. As it is illustrated iPropose a means to obtain combined quantization/detection
Fig. 1, K sensors acquire sequentially discrete time signatfategies that minimize Lorden’s criterion. This latter task
{2i}°_,, i=1,...,K, and send the corresponding saran only be performed numerically.
ples to a fusion center for further processing. In order to In the last part of our work, we follow a similar line of
reduce communication load the sampi€s before trans- reasoning as in [2] and consider sensors that perform a local
mission are quantized to a finite alphabet with the help ehange detection test. The sensors are allowed to commu-
a quantizerQ’(z). Consequently the fusion center receivesicate with the fusion center ontynce namely whenever
2l = Q'(x!) instead ofr’,. they need to signal a detection. The communication with
the fusion center is clearly asynchronous allowing for al-
ternative final decision strategies for the fusion center. The
performance of different “one shot” schemes is compared
against the performance of the optimum quantizer/detector
structure of the first part.

2 Background

The general change detection model presented in the In-
troduction will now be specified and drastically simplified.
We recall that even under the conventional change detec-
tion setup, a nonasymptotic solution exists only for the
i.i.d. case.
Let the signalgz? }, i = 1,..., K, be independent and
Figure 1:Topology of a distributed change detection schemefor each sensof assume that the acquired samples are
i.i.d. before and after the change. More specifically for the
The problem we would like to solve is the distributed sedensity functions before and after timeve assume that
guential change detection. Specifically we assume that the 4
collection of K signals{z?,} follows some nominal statis- 2 { fo(z), forl<n<r
tics P up to and including some time while after timer " fé(z), forr<mn,




where the density functiong, (z), fé(z), i =1,..., K, are which is adapted to the filtratiofi generated by the quan-
assumed known, and the timeis deterministic but un- tized data arriving at the fusion center. For each combina-

known. tion [Q,T] we can then define Lorden’s performance mea-
sure [1]

2.1 Quantization models J(Q,T) = SUp_essufE; (T —7)psny|F]

T <00
As far as the quantize@’(z), i = 1,..., K, is concerned,
there are different possibilities. whereP,, E. denote the probability measure and the corre-
Memoryless Quantizer§he simplest model consists inSPonding expectation induced by the data when the change

app|y|ng a memory'ess non"nearity of the form t|me iS 7. In Other WOI’dS Lorden pI‘OpOSGS the use Of the

worst possible average detection delay with respect to the
2 =Qial),i=1,...,K, history before (and including) time as a measure of per-

formance of a detection scheme. Although Lorden’s perfor-

whereQ’ (z) is a function only ofz. mance measure does not explicitly reveal any dependence

Quantizers with MemoryAn alternative possibility is 0N the quantization strategies this dependence is present
to consider quantizers that take into account the data Hgcause the s.f” uses the quantized sequence to decide
tory. More specifically let us denote with, = [z2,..., 2] Wwhether to stop or continue sampling.
the data vector arriving at the fusion center at timef- The goal is to minimize Lorden’s performance measure
ter we applied the quantization process. The collectidly Suitably selecting the quantities we can control, namely
Fpo ={Zn,..., 71} constitutes the available information athe quantization strategieg and the s.tI". Of course, at
the fusion center at time, that can be used to make a decithe same time we also need to assure a minimal false alarm
sion. Itis possible this information to become also availablate. Extending Lorden’s original optimality setup [1], we
to each sensor, if the fusion center transmits to all sens§f@pPose the following optimization problem that is consis-
(see Fig.1) the vectof,,_; of the previous time instant. In- tent with the goal and the requirement we just stated
formation#,_1 can subsequently be used by each sensorto . )
guantize the next sampté . In other words we are propos- ({';J(Qa T); under the constrainE«[T] > v;  (3)
ing the following quantization scheme at every serisor

where~ a given constant. In other words we would like
2t = QN z!, Fn1). to select the quantization scheme and the s.t. that mini-
mize Lorden’s criterion assuring at the same time that false

As an intermediate step between the memoryless quatarms will occur at an average period which is no less than
tizer and the previous one where the whole fusion histoayprescribed value.

.. is used, we can consider a scheme whggeis sum-

marized with the help of &inite length vectorZ,,. Such

quantizers are particularly attractive in cases where sensor 1he CUSUM test
memory is limited. The vectoZ,, 1 can then be used for

the quantization of the next data samples, that is, Lorden’s criterion is very closely related to the CUSUM
test[1, 3, 4] and our goal is to demonstrate that the optimal-
ZZ = Qi(wi”Zn—l) ity properties of CUSUM continue to hold in a distributed
setup as well.
This can be compactly written as Let {Z,} be a sequence of random data that are avail-
able sequentially and consider two alternative conditional
Zn = Q(Xpn, Zp_1); (1) probability densities fo,,: fwo(Z|F,-1) for nominal con-

dition andfo(Z|¥,—1) for changed. We can then define the
whereQ = [@%,...,Q%]" is the collection of all quantiz- CUSUM statisticss,, by the following recursion
ers in a vector function form anil,, = [:17}” .., zK]tis the
vector of acquired signal samples at the sensors. The vec-g _ max{SnlJr log fo(Zn|Fn-1) 0} So=0
tor of quantized valueg,, will in turn be used to update ' ' fo(Zn|Fn-1)" }’ ’

the vectorz,, that summarizes the history, in the following )
way and the corresponding CUSUM s.t. by

Zyp =P(Zp, Zn-1) (2 T =inf{n:S,>v}

where ®(-,-) is a vector function. The two quantization . ]
schemes, namely the one that uses the whole higipgnd Wherev is a constant threshold. Threshalds selected
the one that uses the summagy produce the same effectSO that the CUSUM test satisfies the false alarm constraint
if Z, is asufficient statisticéor the quantization problem. With equality (i.e Ee[T] = ). _ .
If in particular a proces§Z,,} summarizes the fusion
history and is used for quantization as described in (1),(2),
2.2 Lorden’s criterion then the CUSUM update becomes

A distributed sequential detection scheme consists of a set fo(Zn| Zn-1)
of quantizer®d = [QL,...,Q¥] and a stopping time (s.t  <n = MaX{ Sn-1-+10g Foo(Zon| Zot) 0, So=0, (4)



with the whole historyf,, 1 being replaced by its summarywhered > 0 a Lagrange multiplier. We can now attempt to
vector Z,,_1. Itis interesting to note that the pdis,,, Z,) solve theunconstrainegroblem

is Markovian, which allows for application of optimal stop- .
ping theory. %‘&U(T, Q). (6)

, L It turns out that the solution to the unconstrained problem,
3.1 Lower bound for Lorden’s criterion for a suitable selection of the parameters can also solve

A crucial step in proving optimality of CUSUM with re- the constrained problem (5). This special parameter combi-

spect to Lorden’s criterion is the introduction of a suitabl&@tion can be obtained as follows. For any givendenote

and simpler to work with, lower bound. We would like thidh€ oPtimum pair in the sense of (6) @4, T..a. For every
lower bound tacoincidewith Lorden’s performance mea-Value ofc > 0 we compute a valug(c) such that the opti-

sure in the case of the CUSUM s.t. This assures that UM S.t. satisfieBe (T, 4()] = 7. Among the combinations

CUSUM optimizes the lower bound, then it will also opti< ¢(¢) We look for the specific selection= c, for which

mize the original criterion. The lower bound we are interd(Te. d(c.)s Qe d(c.)) = —d(cx)y. This specific parameter
ested in, is given in the following lemma. selection yields also the optimum for the constrained prob-
’ lem in (5). This is true because for any gtthat satisfies

Lemma 1 For every combinatiofiQ,T") we have that the constraint with equality, we have

J0.T)> Eo [y 5e™] T s St
(QT)> T Ealet] I1(Q,T). Eo nZO(e —d(cy)) — e’ | > —d(ce)y
We have equality whenevelis equal to the CUSUM s .. T-1
& Eo e —c,eT| >0
Proof: The proof follows the same steps as in [W. n=0
Based on Lemma 1, instead of solving (3) we are going Foo [ Tflejn}
R . . ! LT oo n=0
to consider the following alternative constrained optimiza- & TEojer] 2 Cx-

tion problem
) _ From the preceding discussion, it is clear that the key for
g};](Q,T); under the constrainE« (7] > v;  (5) finding the optimum scheme is to be able to obtain the so-
lution to the unconstrained problem in (6). For this, as we
where we have replaced the original Lorden measure WiHid in the beginning of this section, we are going to rely on
the lower bound. If the CUSUM test is optimum in (5) itmethodology already developed in [6, 8, 9] for other per-
will clearly be optimum in (3) as well. formance measures. We start by considering the problem of
finding the optimum quantizer strategy for given s.t.Q).

4 Optimum schemes We have the following theorem.

Theorem 1 For given s.tT" the optimum quantizer strategy
In this section we are going to define the optimum combin& that minimizest(T', Q) is a monotone likelihood ratio
tion quantizer/stopping time. Our work will heavily rely onquantizer (MLRQ), with thresholds that depend on the his-
existing results proposed for alternative performance mdery 7,,_1.
sures in [6, 8, 9]. We first consider optimum schemes f?;roof:

. AR We use exactly similar arguments as in [6, 8, H|.
guantizers with (infinite) memory. y g [ "

In view of Theorem 1 we can limit ourselves to MLRQ
) _ and continue with the final optimization afi(7, Q) over
4.1 Quantizers with memory all s.t. and the thresholds of the MLRQ.

The first step consists in limiting the search for the optFheorem 2 The optimum s.t. that solves (6) is the CUSUM
mum s.t. to within the class that satisfies the constraint wigtnd the thresholds of the corresponding optimum MLRQ
equality. depend only on the CUSUM statisti€s 1.

Lemma 2 For any s.t. withE,[T] > v we can always Proof: Asin [6, 8, 9], our claim can be proved by con-
find an alternative s.t7” with E«[1”] = v and such that sidering the finite horizon problem first and showing, by
J(T,Q)>J9(T",Q). induction, that in every step the optimum stopping is a
o . threshold rule ons,, while the optimum MLRQ involves
Proof: We use the same randomization technique Pr&iresholds that depend ¢fy_1. Letting then the horizon

Se”teo,‘ in [3]m , , . tend too transforms all thresholds to stationary (not de-
If cis the optimum value of the problem in (5) and S'”C'?Jending om). W

due to Lemma 2, without loss of generality we can limit

) e ) a consequence of Theorem2, iI(S) =
ourselves to s.t. that satisfy the constraint with equality, VY.,

@ U(T,Q) denotes the optimum cost to go when

can then write for any such sT.that the initial value of the CUSUM statistics i§ = .S, we
T_1 can write the following Bellman (dynamic programming)
UT,Q) = Ew| | —cEule’"] — dEx[T] equation
n=0

‘ZI(S) =min {85 —d—+ m&nEw[‘u(Sl)‘SO = 5]7 _CES}

- E.
)

T-1
Z (€5 —d) —ceST | > —dy
n=0



where the minimization oveg is with respect to the thresh-5  One shot schemes

olds of the MLRQ. Notice that the thresholds will be func-

tions of § since the minimization is performed point-wisdn this section we consider schemes in which each sensor
for everyS. The minimizatiorming Ee[7(S1)]S0 = 5] re- performs, locally, a CUSUM test using its own observa-
sults in a functioniZ(.S) which yields?($) = min{eS —d+ tions. The sensors communicate with the fusion center only
ril(g)7 —ceS}. We stop sampling whenever the right term i®nce when they must signal a detection. The communica-
smaller than the left. According to Theorem 2, this happe#ign is clearly asynchronous and the fusion center can use
whens$ > v. Equ.(7) can serve as a basis for finding thie acquired information in different ways. Here we con-
optimum quantization/detection pair, iteratively. sider the following two strategies

] a) Minimal: An alarm is issued when any of the sensors
4.2 Memoryless quantizers reports a detection.

In the memoryless case, as was indicated in Subsection 2.3y Maximal: An alarm is issued when all sensors have
the quantizers do not depend on the history. Although we  reported a detection.

do not know what the optimum form of these quantizers 4

is, it seems only natural to consider again MLRQ but witiior simplicity we considecontinuous timerocesses; }
constant thresholds. Proceeding along the same lines ofith@rder to make use of the formulas that are available for

previous case, we end up with a similar Bellman equatioUSUM, for the Brownian Motion case [5]. Again we limit
ourselves to the two-sensor case and signals with identical

U(S) =min {65 —d+ min Eo[U(S1)|S0 = 5], 665} statistics. Specifically we consider the detection of a change
Q5=0 from the procesdz! = dw! to thedx! = udt + dw?, where
L . (8) w! is a standard Wiener processes. In other words in each
only now the minimization ove (the thresholds) is per- sensor, before the change, the signal is zero mean Gaussian
formed not for every value &, but only for$ = 0. whereas after the change it has a nonzero mean.
If 7; is the CUSUM stopping time in each sensor,
4.2.1 Example then the minimal strategy stops &, = min{Ty, T},

Let us present in more detail the two-sensor and two-leyiéfiereas the maximal afy; = max{7;, To}. To measure

quantization case. We assume that the two sensor sigridfs Performance of these two schemes we need to com-
before the change are both Gaussiif0,o2) and after pute the average run length under both hypotheses, that is,

the change\((p,0?). Calla(\) = log(®(2=2) /®(2)) and  EilZm], EilTarl, i = 0,. ltis easy to see that the two
b(\) = log([1— q’(?)]/[l— ®(2)]) whered(-) denotes s.t. are related to each other as follows

the Gaussian cdf ankithe common quantization threshold. Ty =Ti4+T—T.

We then have "

5[ A N therefore it suffices to compute the performanceZnf.
Eo[U($1)[S] = ® (U) U([S +2a]") From [5] we have the following formula for the expecta-
A A tion of the CUSUM s.t7;
+2¢() [1—¢<>} U([S+a+b]") 2
7 , 7 E 7] = S5 {e™" +ev—1} (10)
A K
+ {1—CD<>} U([S+2b] 7). 9) o
o whereeg = 1, e.c = —1 andv denotes the threshold. Finding
Notice that this function depends only on the normalizdtPwever the corresponding expression for the expectation
parameters. = A\ /o andj = p/o. of 7., (the minimum between two CUSUM s.t.) turns out
minimization expansion for the desired expectation. In order to present
~ i this result we need the moment generating function of the
U(S) = MinEw[U(S51)|5] CUSUM s.t. which will be given in terms of the following
. . functions
and obtain a threshold($5) as a function ofS. If on the Hnet
other hand we consider wesi/? ,
N P;(w) = . , 1=0,00.
‘U(.S) — min EW[U(SJ_)‘S] wCOS"(w)+€1‘(V/2) Slnf(w)
A,8=0

L _ According to [5], the CUSUM moment generating function
where the minimization ovex is performednlyfor § =0, can then be written as

this yields the optimum threshold for the memoryless case.

As was indicated above, the Bellman equation can give v 8s
rise to an iterative computation of the optimum scheme. Eile™*™] il5 12 i), t="Y,%.
The iteration we refer to, is the following

Uy (S) = We are interested in the poles of the functiéi(s)
and for this we first need to identify the poles &f(w).
}, Let zo be thepositive realroot of the equatiotanh(z) +
(e;v/2)z = 0 (there exists amostone) and{z,},n =
where we initialize withtlp(S) = 0. 1,2,... the positive realroots of the equatiorian(z) +

min{eS —d+ min Eo[U, 1(51)[S = S], —ce’
,(5=0)



(e;v/2)z = 0 (there exists an infinite number). If we de- Using the result of Theorem 3 we can now compute the
fine wp = 2o andw,, = jz,, then the{w,,} constitute poles worst detection and false alarm delays and plot the first as a

for @;(w). If now we define function of the second. Fig. 2 depicts exactly this curve for
the minimal and maximal strategy. We can clearly deduce
2 (4 from this fi hat the minimal strategy is preferable t
o = P[4 rom this figure that the minimal strategy is preferable to
"8\ 12 the maximal one. In other words, when locally we use the

CUSUM tests, it is preferable for the fusion center to issue
then {s,} are the poles of’(s). With the help of{w,} an alarm whenever it receives the first detection, than to
and{s, } we are now in a position to compute the desiregajt until all sensors have acknowledged a detection.
average delay. We need to point out that, in the minimal strategy, us-
ing the CUSUM s.t. as the local test at the sensors, is by no
means optimum. Although CUSUM minimizes the aver-
age detection delay at each sensor, this does not necessarily
Ei[T.] = E:[T] guarantee thiat.it will also minimize the average detection

delay of theminimumof the local s.t.

2— 4°J%> w3

Bacciv/2 © i (5 2 | n
p? o & (“;“—51—1)2[”—2+%+w£]sinh(wn). 6 Comparisons

Theorem 3 Let {w,},{s,} be the poles defined above
then

4

The sum includes the palg whenever this pole exists. We-€t us now compare the minimal, one shot scheme, against
recall thateg = 1, €0 = —1. the optimum detector of Section4. We must proceed with
caution since the first is a continuous time detection struc-
Proof: Since7,, is the minimum between the two ran-ture whereas the second a discrete time. To be able to apply
dom variablesZi, 7, we have thaft;[7,,] = f(§° IP’%[‘Tl > the discrete time scheme, we are going to assume that we
t]dt. The Laplace transform oP;[71 > ¢] is equal to apply uniform sampling with perio#. This means that the
[1— F;(s)]/s which suggests that the LaplaceRf7; >t] samples:?, are going to be i.i.d. and Gaussiaf(0, P) be-
is the following convolution in the transform domain fore the change an@( (1. P, P) after. Since there is specific
sampling involved, we can relate discrete tim&o contin-
/e*StIF’ZZ[‘Tl >t]dt = i/ 1-Fi(w) 1-Fi(s—w) dw. uoustimet using the relatio = n x P. This suggests that
2rj w s—w the average delay of the scheme in Section 4 must be mul-
tiplied by P in order to find its corresponding continuous
time performance.
1 1— F;(w) 1— Fy(—w) Notice from the Example 4.2.1 and specifically Equ. (9)
%/ dw that the optimum performance in discrete time is a func-
© 1 Fi(—s,) tion of t_he parametedl = £ = /P and the f_alse alarm
= z —5—= lim (s—s,)F;(s).  constrainty. If therefore we callC(A,~) the optimum per-
n=0(1) s e formance of the discrete time scheme, its continuous time
aé\pnalog is equal t& x C(A,v) = %, which is again

By substitutings = 0, we obtain

/Pﬂffpt}dt =

w —w

The last equality is a consequence of the residue theor y o

applied to the poleés,, } of F;(s). Substitutings,, in terms  Of the formC’/ %, as in the minimal strategy.

of w,, and computing the limit (with the help of Hospital's The ultimate point of reference is of course the central-

ru|e), y|e|ds the desired series expansi.]_ ized CUSUM s.t.7, performed at the fusion center that
Itis interesting to note that the expression for the averafjas available both continuous time signals. To compute its

delay is of the formC(v)/u2 whereC(v) a function of  Performance, for the two-sensor and identically distributed

only. Notice that this form is also enjoyed by the averagdgnals, we need the log-likelihood ratig, which for this

delay of the CUSUM s.t., as we can see from (10). scenario satisfies the following sde
1 1
18 S R duy = (—7dt+udm})+(—7dt+udxt2)
16 1
_uf | = apfdt+p(dwf+dwf) = ep? dt + V2 duwy,
)
S 121 .
5 wherew}, w?,w, are standard Wiener processes. If we use
g or u, to form the CUSUM s.t7,, then the corresponding op-
A timum performance is
£ 6
< 4 1 —€;iv
EZ[%] = —2{6 v — 1}
21 Minimal | | 12
i Maximal
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Comparing this to the single sensor performance case in
Average false alarm period (10), we realize that there is a gain factor equal to 2. Again

we recover the same forid@i/;? for the optimum perfor-
Figure 2: Detection delay as a function of false alarm. mance, as in the previous two cases.
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