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Abstract -We consider the problem of decentralized
change detection using the CUSUM test. More than one
sensors acquire independent signals and send their quan-
tized version to a fusion center that uses this information
to detect a simultaneous change in all sensors. By in-
troducing a recurrence relation that defines the optimum
performance of the CUSUM test for given quantization,
we further optimize this measure with respect to the quan-
tization scheme. We compare the resulting optimum test
with a simple, asynchronous one shot strategy, where each
sensor performs a local CUSUM test and communicates
with the fusion center only once to signal its detection.

Keywords: Change detection, CUSUM, Decentralized detec-
tion.

1 Introduction

We consider the problem of sequential change detec-
tion under a distributed setup. As it is illustrated in
Fig. 1,K sensors acquire sequentially discrete time signals
{xi

n}∞
n=1, i = 1, . . . ,K, and send the corresponding sam-

ples to a fusion center for further processing. In order to
reduce communication load the samplesxi

n before trans-
mission are quantized to a finite alphabet with the help of
a quantizerQi(x). Consequently the fusion center receives
zi
n = Qi(xi

n) instead ofxi
n.

Q
1

Q
2

Q
K

xn

2 xn

1

xn

K

Fusion

Center

zn

1

zn

K

zn

2

Zn-1

Zn-1

Zn-1

Figure 1:Topology of a distributed change detection scheme.

The problem we would like to solve is the distributed se-
quential change detection. Specifically we assume that the
collection ofK signals{xi

n} follows some nominal statis-
ticsP∞ up to and including some timeτ , while after timeτ

these statistics change toP0. Timeτ is considered unknown
and we would like to detect it as soon as possible. Our goal
is to develop a detection scheme that can be implemented
at the fusion center. This suggests that the correspond-
ing test can use only the available quantized information
zi
n = Qi(xi

n) as well as any existing prior information. Un-
like conventional change detection, in the distributed ver-
sion, in addition to the detection scheme, we also need to
specify all quantizersQi(x).

This problem has been considered in the past in [8, 9, 6]
following a Baysian approach and using notions introduced
in [7]. A very interesting alternative idea is presented in [2]
where instead of quantizing the observations, each sensor
performs locally its own change detection test and sends its
decisions to the fusion center; with the latter being respon-
sible for the final decision.

In this work we consider the change detection problem
using Lorden’s criterion as our performance measure. With
the help of an integral equation we relate the performance
of the CUSUM test to the quantizers in the sensors and
propose a means to obtain combined quantization/detection
strategies that minimize Lorden’s criterion. This latter task
can only be performed numerically.

In the last part of our work, we follow a similar line of
reasoning as in [2] and consider sensors that perform a local
change detection test. The sensors are allowed to commu-
nicate with the fusion center onlyonce, namely whenever
they need to signal a detection. The communication with
the fusion center is clearly asynchronous allowing for al-
ternative final decision strategies for the fusion center. The
performance of different “one shot” schemes is compared
against the performance of the optimum quantizer/detector
structure of the first part.

2 Background

The general change detection model presented in the In-
troduction will now be specified and drastically simplified.
We recall that even under the conventional change detec-
tion setup, a nonasymptotic solution exists only for the
i.i.d. case.

Let the signals{xi
n}, i = 1, . . . ,K, be independent and

for each sensori assume that the acquired samples are
i.i.d. before and after the change. More specifically for the
density functions before and after timeτ we assume that

xi
n ∼

{
f i

∞(x), for 1≤ n≤ τ

f i
0(x), for τ < n,



where the density functionsf i
∞(x),f i

0(x), i = 1, . . . ,K, are
assumed known, and the timeτ is deterministic but un-
known.

2.1 Quantization models

As far as the quantizersQi(x), i = 1, . . . ,K, is concerned,
there are different possibilities.

Memoryless Quantizers:The simplest model consists in
applying a memoryless nonlinearity of the form

zi
n = Qi(xi

n), i = 1, . . . ,K,

whereQi(x) is a function only ofx.
Quantizers with Memory:An alternative possibility is

to consider quantizers that take into account the data his-
tory. More specifically let us denote withZn = [z1

n, . . . ,zK
n ]

the data vector arriving at the fusion center at timen af-
ter we applied the quantization process. The collection
Fn = {Zn, . . . ,Z1} constitutes the available information at
the fusion center at timen, that can be used to make a deci-
sion. It is possible this information to become also available
to each sensor, if the fusion center transmits to all sensors
(see Fig.1) the vectorZn−1 of the previous time instant. In-
formationFn−1 can subsequently be used by each sensor to
quantize the next samplexi

n. In other words we are propos-
ing the following quantization scheme at every sensori

zi
n = Qi(xi

n,Fn−1).

As an intermediate step between the memoryless quan-
tizer and the previous one where the whole fusion history
Fn is used, we can consider a scheme whereFn is sum-
marized with the help of afinite length vectorZn. Such
quantizers are particularly attractive in cases where sensor
memory is limited. The vectorZn−1 can then be used for
the quantization of the next data samples, that is,

zi
n = Qi(xi

n,Zn−1).

This can be compactly written as

Zn = Q (Xn,Zn−1); (1)

whereQ = [Q1, . . . ,QK ]t is the collection of all quantiz-
ers in a vector function form andXn = [x1

n, . . . ,xK
n ]t is the

vector of acquired signal samples at the sensors. The vec-
tor of quantized valuesZn will in turn be used to update
the vectorZn that summarizes the history, in the following
way

Zn = Φ(Zn,Zn−1) (2)

whereΦ(·, ·) is a vector function. The two quantization
schemes, namely the one that uses the whole historyFn and
the one that uses the summaryZn produce the same effect
if Zn is asufficient statisticsfor the quantization problem.

2.2 Lorden’s criterion

A distributed sequential detection scheme consists of a set
of quantizersQ = [Q1, . . . ,QK ] and a stopping time (s.t.)T

which is adapted to the filtrationF generated by the quan-
tized data arriving at the fusion center. For each combina-
tion [Q ,T ] we can then define Lorden’s performance mea-
sure [1]

J(Q ,T ) = sup
0≤τ<∞

essupEτ

[
(T − τ)1l{T>τ}|Fτ

]
,

wherePτ ,Eτ denote the probability measure and the corre-
sponding expectation induced by the data when the change
time is τ . In other words Lorden proposes the use of the
worst possible average detection delay with respect to the
history before (and including) timeτ as a measure of per-
formance of a detection scheme. Although Lorden’s perfor-
mance measure does not explicitly reveal any dependence
on the quantization strategiesQ , this dependence is present
because the s.t.T uses the quantized sequence to decide
whether to stop or continue sampling.

The goal is to minimize Lorden’s performance measure
by suitably selecting the quantities we can control, namely
the quantization strategiesQ and the s.t.T . Of course, at
the same time we also need to assure a minimal false alarm
rate. Extending Lorden’s original optimality setup [1], we
propose the following optimization problem that is consis-
tent with the goal and the requirement we just stated

inf
Q ,T

J(Q ,T ); under the constraint:E∞[T ]≥ γ; (3)

whereγ a given constant. In other words we would like
to select the quantization scheme and the s.t. that mini-
mize Lorden’s criterion assuring at the same time that false
alarms will occur at an average period which is no less than
a prescribed valueγ.

3 The CUSUM test

Lorden’s criterion is very closely related to the CUSUM
test [1, 3, 4] and our goal is to demonstrate that the optimal-
ity properties of CUSUM continue to hold in a distributed
setup as well.

Let {Zn} be a sequence of random data that are avail-
able sequentially and consider two alternative conditional
probability densities forZn: f∞(Z|Fn−1) for nominal con-
dition andf0(Z|Fn−1) for changed. We can then define the
CUSUM statisticsSn by the following recursion

Sn = max

{
Sn−1 + log

f0(Zn|Fn−1)
f∞(Zn|Fn−1)

,0

}
, S0 = 0,

and the corresponding CUSUM s.t. by

T = inf
n
{n : Sn ≥ ν}

whereν is a constant threshold. Thresholdν is selected
so that the CUSUM test satisfies the false alarm constraint
with equality (i.e.E∞[T ] = γ).

If in particular a process{Zn} summarizes the fusion
history and is used for quantization as described in (1),(2),
then the CUSUM update becomes

Sn = max

{
Sn−1 + log

f0(Zn|Zn−1)
f∞(Zn|Zn−1)

,0

}
, S0 = 0, (4)



with the whole historyFn−1 being replaced by its summary
vectorZn−1. It is interesting to note that the pair(Sn,Zn)
is Markovian, which allows for application of optimal stop-
ping theory.

3.1 Lower bound for Lorden’s criterion

A crucial step in proving optimality of CUSUM with re-
spect to Lorden’s criterion is the introduction of a suitable,
and simpler to work with, lower bound. We would like this
lower bound tocoincidewith Lorden’s performance mea-
sure in the case of the CUSUM s.t. This assures that, if
CUSUM optimizes the lower bound, then it will also opti-
mize the original criterion. The lower bound we are inter-
ested in, is given in the following lemma.

Lemma 1 For every combination(Q ,T ) we have that

J(Q ,T )≥ E∞
[
∑T−1

n=0 eSn
]

E∞[eST ]
= J (Q ,T ).

We have equality wheneverT is equal to the CUSUM s.t.T .

Proof: The proof follows the same steps as in [3].
Based on Lemma 1, instead of solving (3) we are going

to consider the following alternative constrained optimiza-
tion problem

inf
Q ,T

J (Q ,T ); under the constraint:E∞[T ]≥ γ; (5)

where we have replaced the original Lorden measure with
the lower bound. If the CUSUM test is optimum in (5) it
will clearly be optimum in (3) as well.

4 Optimum schemes

In this section we are going to define the optimum combina-
tion quantizer/stopping time. Our work will heavily rely on
existing results proposed for alternative performance mea-
sures in [6, 8, 9]. We first consider optimum schemes for
quantizers with (infinite) memory.

4.1 Quantizers with memory

The first step consists in limiting the search for the opti-
mum s.t. to within the class that satisfies the constraint with
equality.

Lemma 2 For any s.t. withE∞[T ] > γ we can always
find an alternative s.t.T ′ with E∞[T ′] = γ and such that
J (T,Q )≥ J (T ′,Q ).

Proof: We use the same randomization technique pre-
sented in [3]

If c is the optimum value of the problem in (5) and since,
due to Lemma 2, without loss of generality we can limit
ourselves to s.t. that satisfy the constraint with equality, we
can then write for any such s.t.T that

U(T,Q ) = E∞

[
T−1

∑
n=0

eSn

]
− cE∞[eST ]−dE∞[T ]

= E∞

[
T−1

∑
n=0

(eSn −d)− ceST

]
≥−dγ

whered > 0 a Lagrange multiplier. We can now attempt to
solve theunconstrainedproblem

inf
T,Q

U(T,Q ). (6)

It turns out that the solution to the unconstrained problem,
for a suitable selection of the parametersc,d can also solve
the constrained problem (5). This special parameter combi-
nation can be obtained as follows. For any givenc,d denote
the optimum pair in the sense of (6) asQc,d,Tc,d. For every
value ofc > 0 we compute a valued(c) such that the opti-
mum s.t. satisfiesE∞[Tc,d(c)] = γ. Among the combinations
c,d(c) we look for the specific selectionc = c? for which
U(Tc?,d(c?),Qc?,d(c?)) =−d(c?)γ. This specific parameter
selection yields also the optimum for the constrained prob-
lem in (5). This is true because for any s.t.T that satisfies
the constraint with equality, we have

E∞

[
T−1

∑
n=0

(eSn −d(c?))− c?e
ST

]
≥−d(c?)γ

⇔ E∞

[
T−1

∑
n=0

eSn − c?e
ST

]
≥ 0

⇔ E∞
[
∑T−1

n=0 eSn
]

E∞[eST ]
≥ c?.

From the preceding discussion, it is clear that the key for
finding the optimum scheme is to be able to obtain the so-
lution to the unconstrained problem in (6). For this, as we
said in the beginning of this section, we are going to rely on
methodology already developed in [6, 8, 9] for other per-
formance measures. We start by considering the problem of
finding the optimum quantizer strategyQ for given s.t.Q.
We have the following theorem.

Theorem 1 For given s.t.T the optimum quantizer strategy
Q that minimizesU(T,Q ) is a monotone likelihood ratio
quantizer (MLRQ), with thresholds that depend on the his-
tory Fn−1.

Proof: We use exactly similar arguments as in [6, 8, 9].
In view of Theorem 1 we can limit ourselves to MLRQ

and continue with the final optimization ofU(T,Q ) over
all s.t. and the thresholds of the MLRQ.

Theorem 2 The optimum s.t. that solves (6) is the CUSUM
and the thresholds of the corresponding optimum MLRQ
depend only on the CUSUM statisticsSn−1.

Proof: As in [6, 8, 9], our claim can be proved by con-
sidering the finite horizon problem first and showing, by
induction, that in every stepn the optimum stopping is a
threshold rule onSn while the optimum MLRQ involves
thresholds that depend onSn−1. Letting then the horizon
tend to∞ transforms all thresholds to stationary (not de-
pending onn).

As a consequence of Theorem 2, ifU(S) =
infT,Q U(T,Q ) denotes the optimum cost to go when
the initial value of the CUSUM statistics isS0 = S , we
can write the following Bellman (dynamic programming)
equation

U(S) = min

{
eS −d+min

Q
E∞[U(S1)|S0 = S ],−ceS

}

(7)



where the minimization overQ is with respect to the thresh-
olds of the MLRQ. Notice that the thresholds will be func-
tions of S since the minimization is performed point-wise
for everyS . The minimizationminQ E∞[U(S1)|S0 = S ] re-
sults in a functionŨ(S) which yieldsU(S)= min{eS−d+
Ũ(S),−ceS}. We stop sampling whenever the right term is
smaller than the left. According to Theorem 2, this happens
whenS ≥ ν. Equ. (7) can serve as a basis for finding the
optimum quantization/detection pair, iteratively.

4.2 Memoryless quantizers

In the memoryless case, as was indicated in Subsection 2.1,
the quantizers do not depend on the history. Although we
do not know what the optimum form of these quantizers
is, it seems only natural to consider again MLRQ but with
constant thresholds. Proceeding along the same lines of the
previous case, we end up with a similar Bellman equation

U(S) = min

{
eS −d+ min

Q ,S=0
E∞[U(S1)|S0 = S ],−ceS

}

(8)
only now the minimization overQ (the thresholds) is per-
formed not for every value ofS , but only forS = 0.

4.2.1 Example

Let us present in more detail the two-sensor and two-level
quantization case. We assume that the two sensor signals
before the change are both GaussianN (0,σ2) and after
the changeN (ρ,σ2). Call a(λ) = log(Φ(λ−ρ

σ )/Φ(λ
σ )) and

b(λ) = log([1−Φ(λ−ρ
σ )]/[1−Φ(λ

σ )]) whereΦ(·) denotes
the Gaussian cdf andλ the common quantization threshold.
We then have

E∞[U(S1)|S ] = Φ2
(

λ

σ

)
U([S +2a]+)

+2Φ
(

λ

σ

)[
1−Φ

(
λ

σ

)]
U([S +a+ b]+)

+
[
1−Φ

(
λ

σ

)]2

U([S +2b]+). (9)

Notice that this function depends only on the normalized
parameters̃λ = λ/σ andρ̃ = ρ/σ.

For the optimum quantizer with memory, we perform the
minimization

Ũ(S) = min
λ
E∞[U(S1)|S ]

and obtain a thresholdλ(S) as a function ofS . If on the
other hand we consider

Ũ(S) = min
λ,S=0

E∞[U(S1)|S ]

where the minimization overλ is performedonly for S = 0,
this yields the optimum threshold for the memoryless case.

As was indicated above, the Bellman equation can give
rise to an iterative computation of the optimum scheme.
The iteration we refer to, is the following

Un(S) =

min

{
eS −d+ min

λ,(S=0)
E∞[Un−1(S1)|S0 = S ],−ceS

}
,

where we initialize withU0(S) = 0.

5 One shot schemes

In this section we consider schemes in which each sensor
performs, locally, a CUSUM test using its own observa-
tions. The sensors communicate with the fusion center only
once, when they must signal a detection. The communica-
tion is clearly asynchronous and the fusion center can use
the acquired information in different ways. Here we con-
sider the following two strategies

a) Minimal: An alarm is issued when any of the sensors
reports a detection.

b) Maximal: An alarm is issued when all sensors have
reported a detection.

For simplicity we considercontinuous timeprocesses{xi
t}

in order to make use of the formulas that are available for
CUSUM, for the Brownian Motion case [5]. Again we limit
ourselves to the two-sensor case and signals with identical
statistics. Specifically we consider the detection of a change
from the processdxi

t = dwi
t to thedxi

t = µdt+dwi
t, where

wi
t is a standard Wiener processes. In other words in each

sensor, before the change, the signal is zero mean Gaussian
whereas after the change it has a nonzero mean.

If Ti is the CUSUM stopping time in each sensor,
then the minimal strategy stops atTm = min{T1,T2},
whereas the maximal atTM = max{T1,T2}. To measure
the performance of these two schemes we need to com-
pute the average run length under both hypotheses, that is,
Ei[Tm], Ei[TM ], i = 0,∞. It is easy to see that the two
s.t. are related to each other as follows

TM = T1 +T2−Tm,

therefore it suffices to compute the performance ofTm.
From [5] we have the following formula for the expecta-
tion of the CUSUM s.t.T1

Ei[T1] =
2
µ2{e−εiν + εiν−1} (10)

whereε0 = 1, ε∞ =−1 andν denotes the threshold. Finding
however the corresponding expression for the expectation
of Tm (the minimum between two CUSUM s.t.) turns out
to be a difficult task. We were able to obtain only a series
expansion for the desired expectation. In order to present
this result we need the moment generating function of the
CUSUM s.t. which will be given in terms of the following
functions

Φi(ω) =
ωeεiν/2

ωcosh(ω)+ εi(ν/2)sinh(ω)
, i = 0,∞.

According to [5], the CUSUM moment generating function
can then be written as

Ei[e−sT1] = Φi

(
ν

2

√
1+

8s

µ2

)
= Fi(s), i = 0,∞.

We are interested in the poles of the functionFi(s)
and for this we first need to identify the poles ofΦi(ω).
Let z0 be thepositive realroot of the equationtanh(z) +
(εiν/2)z = 0 (there exists atmost one) and{zn},n =
1,2, . . . the positive real roots of the equationtan(z) +



(εiν/2)z = 0 (there exists an infinite number). If we de-
fine ω0 = z0 andωn = jzn, then the{ωn} constitute poles
for Φi(ω). If now we define

sn =
µ2

8

(
4ω2

n

ν2 −1

)

then{sn} are the poles ofFi(s). With the help of{ωn}
and{sn} we are now in a position to compute the desired
average delay.

Theorem 3 Let {ωn},{sn} be the poles defined above,
then

Ei[Tm] = Ei[T1]

−64eεiν/2

µ2ν2

∞

∑
n=0(1)

Φi

(
ν
2

√
2− 4ω2

n
ν2

)
ω3

n

(
4ω2

n
ν2 −1

)2[
ν2

4 + εiν
2 +ω2

n

]
sinh(ωn)

.

The sum includes the poleω0 whenever this pole exists. We
recall thatε0 = 1, ε∞ =−1.

Proof: SinceTm is the minimum between the two ran-
dom variablesT1,T2, we have thatEi[Tm] =

R ∞
0 P2

i [T1 >
t]dt. The Laplace transform ofPi[T1 > t] is equal to
[1−Fi(s)]/s which suggests that the Laplace ofP2

i [T1 > t]
is the following convolution in the transform domainZ

e−stP2
i [T1 > t]dt =

1
2πj

Z
1−Fi(w)

w

1−Fi(s−w)
s−w

dw.

By substitutings = 0, we obtainZ
P2

i [T1 > t]dt =
1

2πj

Z
1−Fi(w)

w

1−Fi(−w)
−w

dw

=
∞

∑
n=0(1)

1−Fi(−sn)
s2

n

lim
s→sn

(s−sn)Fi(s).

The last equality is a consequence of the residue theorem
applied to the poles{sn} of Fi(s). Substitutingsn in terms
of ωn and computing the limit (with the help of Hospital’s
rule), yields the desired series expansion.

It is interesting to note that the expression for the average
delay is of the formC(ν)/µ2 whereC(ν) a function ofν
only. Notice that this form is also enjoyed by the average
delay of the CUSUM s.t., as we can see from (10).
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Figure 2: Detection delay as a function of false alarm.

Using the result of Theorem 3 we can now compute the
worst detection and false alarm delays and plot the first as a
function of the second. Fig. 2 depicts exactly this curve for
the minimal and maximal strategy. We can clearly deduce
from this figure that the minimal strategy is preferable to
the maximal one. In other words, when locally we use the
CUSUM tests, it is preferable for the fusion center to issue
an alarm whenever it receives the first detection, than to
wait until all sensors have acknowledged a detection.

We need to point out that, in the minimal strategy, us-
ing the CUSUM s.t. as the local test at the sensors, is by no
means optimum. Although CUSUM minimizes the aver-
age detection delay at each sensor, this does not necessarily
guarantee that it will also minimize the average detection
delay of theminimumof the local s.t.

6 Comparisons

Let us now compare the minimal, one shot scheme, against
the optimum detector of Section 4. We must proceed with
caution since the first is a continuous time detection struc-
ture whereas the second a discrete time. To be able to apply
the discrete time scheme, we are going to assume that we
apply uniform sampling with periodP . This means that the
samplesxi

n are going to be i.i.d. and GaussianN (0,P ) be-
fore the change andN (µP,P ) after. Since there is specific
sampling involved, we can relate discrete timen to contin-
uous timet using the relationt = n×P . This suggests that
the average delay of the scheme in Section 4 must be mul-
tiplied by P in order to find its corresponding continuous
time performance.

Notice from the Example 4.2.1 and specifically Equ. (9)
that the optimum performance in discrete time is a func-
tion of the parameterA = ρ

σ = µ
√

P and the false alarm
constraintγ. If therefore we callC (A,γ) the optimum per-
formance of the discrete time scheme, its continuous time

analog is equal toP ×C (A,γ) = A2C (A,γ)
µ2 , which is again

of the formC/µ2, as in the minimal strategy.
The ultimate point of reference is of course the central-

ized CUSUM s.t.To performed at the fusion center that
has available both continuous time signals. To compute its
performance, for the two-sensor and identically distributed
signals, we need the log-likelihood ratiout, which for this
scenario satisfies the following sde

dut = (−µ2

2
dt+µdx1

t )+(−µ2

2
dt+µdx2

t )

= εiµ
2dt+µ(dw1

t +dw2
t ) = εiµ

2dt+
√

2µdwt,

wherew1
t ,w

2
t ,wt are standard Wiener processes. If we use

ut to form the CUSUM s.t.To, then the corresponding op-
timum performance is

Ei[To] =
1
µ2{e−εiν + εiν−1}.

Comparing this to the single sensor performance case in
(10), we realize that there is a gain factor equal to 2. Again
we recover the same formC/µ2 for the optimum perfor-
mance, as in the previous two cases.



Figure 3: Relative performance of detection schemes.

Since all competing schemes have performance that can
be written asC/µ2, without loss of generality we can as-
sume that the drift parameter is normalized, i.e.µ = 1. In
Fig. 3 we plot the average detection delay of the minimal
strategyTm, the optimumTo and the optimum quantized
scheme for different values of the parameterA. We can see
that the simple minimal strategy follows remarkably close
the optimum quantized detector. The performance of the
latter is in fact relatively insensitive to the parameterA that
controls the sampling period. This of course raises seri-
ous questions about the practical usefulness of the detection
schemes proposed in Section 4, since with a much simpler
strategy likeTm, we can obtain comparable results.

Finally we observe that the proposed classical dis-
tributed test, as well as, the simple one shot scheme, fall
significantly behind the optimum centralized CUSUM in
performance. It is clearly new ideas, as the one presented
in [2], that can close this important gap.
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