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Abstract— We propose an asymptotically optimum test for
the problem of decentralized sequential hypothesis testing in
continuous time, in the case where the sensors have full local
memory and no feedback from the fusion center. According
to our scheme, the sensors perform locally repeated SPRTs
and communicate, asynchronously, their one-bit decisions to
the fusion center. The fusion center in turn uses the received
information to perform a centralized SPRT in order to make the
final decision. The expected time for a decision of the proposed
scheme differs from the optimum continuous-time centralized
SPRT only by a constant. This fact suggests order-2 asymptotic
optimality of our test as compared to existing schemes that are
optimal of order-1. Moreover, simulation experiments reveal that
the performance of our scheme is significantly better than that
of the discrete-time centralized SPRT.
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I. INTRODUCTION

Consider the geometry depicted in Fig. 1 where K sensors
observe K statistically independent continuous-time processes
{ξt,i}t≥0, i = 1, . . . , K. There are two simple hypotheses
about these processes, H0 and H1. According to H0, the law of
the process {ξt,i}t≥0 is described by the probability measure
P0,i, whereas according to H1 by P1,i, i = 1, . . . , K. The goal
is to choose between the two hypotheses as soon as possible.
The decision is made at a fusion center which receives,
sequentially, discrete-time information {zn,i}n≥0, n ∈ Z,

Fig. 1. Geometry of the decentralized hypothesis testing problem.

conveyed from the sensors with the help of standard (wireless)
digital communication systems. In order to limit the need in
communication bandwidth between sensors and fusion center
the communication rate must be kept low. This requirement
practically excludes transmission of samples obtained from the
continuous-time signals by conventional deterministic canon-
ical sampling and demands for sampling strategies that are
more efficient.

We note that a decentralized decision strategy is comprised
of two parts 1) the sampling strategy at the sensors and 2) the
fusion center decision policy. Sampling strategies define the
type of information to be transmitted from the sensors to the
fusion center , whereas decision policies how this information
should be utilized by the fusion center to produce its final
decision. We also distinguish the decentralized schemes from
the centralized structures in which the fusion center has
complete access to the continuous-time processes {ξt,i}. It is
clear that the application of a centralized optimum test gives
rise to the ultimate point of reference in performance.

The decentralized detection problem was first introduced
by Tsitsiklis [7]. Later, in Veerevali et.al [8] we find a
detailed presentation of the different sampling models that
can be defined. In this work, Veeravalli et.al produce -under
a Bayesian setting- optimum schemes for the models with no
and partial local memory i.e. when each sensor has access to
the past decisions of all sensors, but not access to its own pre-
vious observations or only to its current observation. Mei [3],
also under a Bayesian setting, developed a sampling/detection
scheme for the model with full local memory and no feedback,
i.e. when sensors remember all their past acquired samples,
but they have no access to the previous decisions of the other
sensors. The proposed test was shown to be asymptotically
optimum, in the sense that the ratio of its performance and
the performance of the centralized test tends to 1, as the
appropriate error probability tends to 0.

The current decentralized literature on this problem mainly
refers to discrete-time signals and to synchronous communi-
cation between sensors and fusion center, silently assuming
the existence of a global clock. Transferring this methodology
to the continuous-time case requires the processes {ξt,i}
to be sampled concurrently, using canonical sampling. The
acquired samples ξnT,i (T being the constant sampling period)



need to be further processed with the help of an additional
sampler (more accurately quantizer) in order to produce the
signals {zn,i} to be transmitted. A discussion of asynchronous
sampling in the problem of distributed sequential hypothesis
testing can be found in Samarasooriya et.al [4], where the
number of local decisions of the sensors is modeled by a
Poisson process.

Moreover, the work that has been done so far in the
problem of distributed hypothesis testing follows mainly the
Bayesian approach. A very interesting exception can be found
in Hussain [1], where the frequentist approach is followed and
the suggested test in this work is the analogue in discrete time
of the test that we present here. However in [1] no theoretical
justification of any form is provided regarding the proposed
scheme.

In this work, we examine sensors with full local memory and
we assume that there is no feedback from the fusion center.
We take the frequentist approach, i.e our goal is to minimize
the expected time for a decision under each hypothesis for
given Type I and Type II error probabilities.

The rest of the paper is organized as follows: in Section II
we introduce the notation that we will use and we define
mathematically the problem. Moreover, we discuss the optimal
centralized test and define its random-sampling modification.
In Section III, we develop our test and in Section IV we
prove its order-2 asymptotic optimality in the case where
each observed continuous-time signal at each sensor is a
Brownian motion with constant drift (not necessarily the same
in all sensors). In Section V, we develop an exact simulation
algorithm for the simulation of the suggested scheme and we
compare it with the optimum continuous-time test, its discrete
version and Mei’s [3] approach. We conclude in Section VI.

II. PROBLEM FORMULATION AND RANDOM SAMPLING

A. Problem formulation

Let (Ωi,F∞,i) be a probability space, on which we define
the stochastic process {ξt,i}t≥0, whose statistics are given
by P0,i under the null hypothesis H0 and by P1,i under the
alternative hypothesis H1, where P0,i and P1,i are probability
measures on (Ωi,F∞,i), i = 1, . . . ,K.

If we consider now the probability space (Ω,F∞), where
Ω = Ω1 × . . . × ΩK and F∞ = F∞,1 × . . . × F∞,K , the
K-dimensional process {ξt = (ξt,1, . . . , ξt,K)}t≥0 is defined
on this space and we have the following hypothesis testing
problem about its law, which we we will denote by P:

H0 : P = P0 , H1 : P = P1 (1)

where P0 = P0,1 × . . . × P0,K and P1 = P1,1 × . . . × P1,K .
Let now {Ft,i} be the filtration generated by the ob-

served continuous-time signal {ξt,i} and {ut,i} the local log-
likelihood ratio at Sensor-i. Then:

ut,i = log
dP0,i

dP∞,i
(Ft,i) . (2)

Let also {F̃t} be the filtration generated by the samples
{zn,i} that are sent from the sensors to the fusion center,

i.e. {F̃t} is all the received information at the fusion center
up to time t. We also distinguish the filtration {Ft} where
Ft = σ{us,i; s ≤ t; i = 1, . . . ,K} is the received information
at the fusion center for the continuous-time centralized test,
i.e. the continuous-time signals from each sensor. Note that
because {ut,i} is a sufficient statistic for Sensor-i in the cen-
tralized test, transmitting these signals instead of the observed
{ξt,i} produces no performance loss for the optimum decision
structures.

Therefore, we can think of a decentralized decision strategy
as a triplet ({F̃t}, T̃ , d̃),where {F̃t} is the filtration at the
fusion center, T̃ a stopping time with respect to this filtration
and d̃ a F̃T̃ - measurable random variable which takes values
on the set {0, 1}. {F̃t} reflects the sampling strategy, the
structure of the information that we transmit from the sensors
to the fusion center, whereas (T̃ , d̃) is the decision policy at
the fusion center, which should be compatible with the chosen
sampling strategy.

Thus, the decentralized hypothesis testing problem -under a
non-Bayesian setting- is the minimization of the expected time
for a decision under each hypothesis, for given Type I and
Type II error probabilities, jointly over all possible sampling
strategies at the sensors and decision policies at the fusion
center.

B. The optimal centralized test

Let us now recall the optimal test for the solution of the
centralized sequential hypothesis testing problem, which is
Wald’s Sequential Probability Ratio Test (SPRT) and is defined
as follows:

ut = ut,1 + ut,2 + · · · + ut,K (3)

S = inf
t≥0

{t : ut /∈ (−A,B)} (4)

dS = 1{uS=B}, (5)

where A,B > 0 are two constant thresholds; S is the SPRT
stopping time, i.e. the first time the test statistics leaves the
open interval (−A,B); and dS is an FS -measurable random
variable, according to which H0 is accepted if the lower
threshold is crossed, whereas H1 is accepted if the upper
threshold is crossed. Optimality of the SPRT in continuous-
time was established by Shiryaev [5] for Brownian Motion
(BM) with constant drifts under each hypothesis. In particular,
following Wald’s setup [9], S solves the following constrained
optimization problem

inf
T

E[T ]; subject to P0[dT = 1] ≤ α and P1[dT = 0] ≤ β.

(6)
Here E[·] denotes expectation with respect to the probability
measure induced by either of the two hypotheses and α, β > 0
are such that α + β < 1. In other words, the SPRT minimizes
the expected time for a decision under both hypotheses H0 and
H1 among all sequential tests (T , d) with Type I and II error
probabilities no larger than α and β, respectively. Time T is
an integrable {Ft}- stopping time and dT and FT -measurable
random variable with values on {0, 1}.



Optimality of SPRT according to the above sense is guar-
anteed as long as the SPRT boundaries A,B are chosen so
that the error probabilities are satisfied with equalities, which
implies:

A = log
(

1 − α

β

)
, B = log

(
1 − β

α

)
. (7)

or equivalently

α =
eA − 1

eA+B − 1
, β =

eB − 1
eA+B − 1

. (8)

C. SPRT with adapted random sampling

Let {tin} be a strictly increasing sequence of sampling
instances with limn→∞ tin = ∞ (P0, P1-a.s.), where each tn,i

is a stopping time (s.t.) adapted to {Ft,i}. Consider now the
sampled version {uti

n,i} of the local log-likelihood ratio and
suppose that these values are available at the fusion center at
the sampling times {tin}. Replacing the continuous-time log-
likelihood ratios {ut,i} with their sampled versions {uti

n,i},
gives rise to the following test statistic

ũt = ut1nt
,1 + · · · + utK

nt
,K (9)

where tint
= maxti

n≥0{tin : tin ≤ t} is the last sampling instant
before (and including) t at Sensor-i. In other words, at every
time t we add the latest available local log-likelihood ratios.
The test now at the fusion center continuous as in the case of
the continuous-time SPRT and it is defined as follows

S̃ = inf
t≥0

{t : ũt /∈ (−Ã, B̃)}, (10)

d̃S̃ = 1{ũS̃≥B̃}, (11)

where again Ã, B̃ are selected to satisfy the constraints in the
error probabilities with equality.

We observe that the Fusion decision policy (S̃, d̃S̃) in this
approach is based on the sequential information expressed with
the help of the filtration {F̃t}, where F̃t = σ{uti

n,i; tin ≤
t; i = 1, . . . ,K} denotes all the asynchronously received
information at the fusion center up to time t.

Note that, transmitting the samples {uti
n,i} is equally dif-

ficult as in the case of deterministic canonical sampling with
tin = nT , since these quantities are real numbers. Given the
latter sampling strategy, we recall that the resulting test at
the Fusion center is the discrete-time SPRT which is also
optimum (for discrete time), as long as the continuous-time
signals {ξt,i} are Levy processes.

In the next section we are going to introduce a suitable
selection of sampling instances {tin} that allows for the
communication of the samples {uti

n,i} simply by transmitting
1-bit information.

III. PROPOSED SAMPLING/DETECTION STRATEGIES

Crucial point in being able to implement the test in (10) is
the availability, at the fusion center, of the samples {uti

n,i} of
the local log-likelihood ratios. We observe that we can write

uti
n,i = [uti

n,i−uti
n−1,i]+[uti

n−1,i−uti
n−2,i]+· · ·+[uti

1,i−uti
0,i]

(12)

where we define ti0 = 0 and assume that u0,i = 0. It is
therefore sufficient for Sensor-i to transmit the differences
[uti

n,i − uti
n−1,i] between consecutive sampling times. The

key idea is to select the sequence of s.t. {tin} so that these
differences constitute 1-bit information. In fact, as we shall
see next, this is not very complicated.

For Sensor-i select before hand two boundaries −Ai < 0 <
Bi which are also known to the fusion center. Suppose that
tin−1 is already set, then define tin as

tin = inf
t>ti

n−1

{t : ut,i − uti
n−1,i �∈ (−Ai, Bi)}.

If {ut,i} has continuous paths we observe that at time tin the
difference uti

n,i − uti
n−1,i will hit either −Ai or Bi and this

information can be transmitted, at time tin, to the fusion center
using 1 bit. Indeed, if zti

n,i is the information to be transmitted
we define

zti
n,i =

{
1 if uti

n,i − uti
n−1,i ≥ Bi

0 if uti
n,i − uti

n−1,i ≤ −Ai.

Once tin has been set we repeat the same process for tin+1, . . . ,
etc. The procedure we just described is simply a repeated
Sequential Probability Ratio Test (SPRT) where every time
the test statistics ut,i − uti

n−1,i hits one of the two boundaries
−Ai, Bi we restart the SPRT by updating the term uti

n−1,i.
The interesting point is that by properly selecting the two
boundaries −Ai, Bi we have complete control over the av-
erage sampling period since the latter is simply the “detection
delay” of the corresponding SPRT.

At the fusion center, whenever we receive a new information
bit from any sensor, we update the corresponding local log-
likelihood ratio from (12) and we apply the test according to
(10). In fact, it is possible to directly update ũt as follows:
suppose that at time t the fusion center receives the bit zt,i

from Sensor-i, then

ũt = ũt− + (1 − zt,i)(−Ai) + zt,iBi, 0 (13)

where ũt− denotes the test statistics right before the bit arrival.
It is not difficult to verify that (13) yields the same update as
computing ũt following (9).

IV. THE BROWNIAN MOTION CASE

Let us now focus on the special case where {ξt,i} is a
standard BM with drift equal to 0 under H0 and µi �= 0 under
H1. We can then verify that ut,i = −0.5µ2

i t + µiξt,i. First
we treat the centralized SPRT test. For this case we have the
following convenient formulas:

E0[S] =
2

µ2
1 + · · · + µ2

K

[
A(eB − 1) − B(eA − 1)

eA+B − 1

]
(14)

E1[S] =
2

µ2
1 + · · · + µ2

K

[
B(eA − 1) − A(eB − 1)

eA+B − 1

]
. (15)

Regarding now the proposed test, the next theorem demon-
strates that our scheme differs from the optimum, only by a
bounded quantity.



Theorem 1: Let ξt,i, i = 1, . . . ,K, be as above and fix
the local boundaries −Ai < 0 < Bi, i = 1, . . . ,K. At the
Fusion center consider the proposed test S̃ with boundaries
−Ã < 0 < B̃. Let also S denote the optimal continuous-
time centralized SPRT test with thresholds −A < 0 < B
and assume that both pairs (A,B) and (Ã, B̃) are chosen so
that the corresponding decision strategies (S, dS) and (S̃, dS̃)
satisfy the error probability constraints with equality, then we
have

0 ≤ E0[S̃] − E0[S] ≤ C̃,

0 ≤ E1[S̃] − E1[S] ≤ C̃,

uniformly over β and α, where C̃ is some positive constant.
Proof: First of all, we observe that by the definition of

the suggested repeated SPRT sampling we have

−Ai < ut,i − uti
nt

,i < Bi, ∀i = 1, . . . ,K,

therefore∑
(−Ai) < ut − ũt <

∑
Bi ⇒ |ut − ũt| < C < ∞,

where C = max(
∑

Ai,
∑

Bi). This observation has the
following important implications

• The stopping time of our test S̃ can be bounded from
above and from below by two SPRT stopping times.
Indeed:

S̃ = inf{t > 0 : ũt ≤ −Ã

or ũt ≥ +B̃}
= inf{t > 0 : (ũt − ut) + ut ≤ −Ã

or (ũt − ut) + ut ≥ B̃}
= inf{t > 0 : ut ≤ −(ũt − ut) − Ã

or ut ≥ B̃ − (ũt − ut)}.

Now using our initial observation, we have: Sl ≤ S̃ ≤ Su,
where

Sl = inf
t≥0

{t : ut /∈ (−Ã + C, B̃ − C)} (16)

Su = inf
t≥0

{t : ut /∈ (−Ã − C, B̃ + C)}. (17)

• the thresholds of the stopping times S̃,S that correspond
to the same error probabilities have a bounded distance,
i.e. |B̃ − B| ≤ C ′ and |Ã − A| ≤ C ′. Indeed using the
definition of Sl,Su we observe

E0[1{uSl
≥B̃−C}] ≥ E0[1{ũS̃≥B̃}] ≥ E0[1{uSu≥B̃+C}].

Recalling now that E0[1{ũS̃≥B̃}] = α = E0[1{uS≥B}]
and using (8) we have

e−(B̃−C)+o(1) ≥ e−B+o(1) ≥ e−(B̃+C)+o(1)

which leads to the desired conclusion that |B − B̃| ≤
C + o(1) ≤ C ′. In exactly similar way we can prove the
other inequality.

From the optimality of the continuous-time SPRT S, we
have: Ej [S] ≤ Ej [S̃], j = 0, 1. Combining this with the
previous observations, we have:

0 ≤ Ej [S̃] − Ej [S] ≤ Ej [Su] − Ej [S] , j = 0, 1. (18)

But, both Su,S are SPRT stopping times, therefore the cor-
responding expectations Ej [Su], Ej [S], j = 0, 1 will be given
by the formulae (14) and (15), for the appropriate thresholds.
Moreover, we observe that α → 0 is equivalent to B → ∞,
and since |B − B̃| = O(1) it will also be B̃ → ∞. Similarly,
β → 0 is equivalent to A → ∞ and Ã → ∞. Thus, it suffices
to show that the limit as B, B̃ → ∞ of

−
[
(B̃ + C)(eÃ+C − 1) + (−Ã − C)eÃ+C(eB̃+C − 1)

eÃ+B̃+2C − 1

−B(eA − 1) − AeA(eB − 1)
eA+B − 1

]

and the limit as A, Ã → ∞ of[
−(Ã + C)(eB̃+C − 1) + (B̃ + C)eB̃+C(eÃ+C − 1)

eÃ+B̃+2C − 1

−−A(eB − 1) + BeB(eA − 1)
eA+B − 1

]

are both bounded, which can be easily verified.
Remark: The above theorem suggests -as in Mei [3]- that

feedback from the fusion center to the sensors is not neces-
sary for designing asymptotically optimum decentralized tests,
when the sensors have full local memory.

V. SIMULATIONS

In this section we perform simulation experiments in order
to illustrate the asymptotic optimality of the suggested scheme
and compare its performance with the optimal centralized
SPRT as well as its discrete time version. Specifically, we
implement an exact simulation algorithm, where we simulate
the intersampling times in each sensor. Therefore, we avoid
simulating Brownian Motions in the sensors, which would
require a fine time-discretization scheme and would lead to a
less accurate and more computationally expensive simulation
algorithm. In order to implement such an algorithm, we need
to compute the pdf of the intersampling times in each sensor
and sample from it.

Because of the Markov property of the Brownian motion,
it is clear that the intersampling times {tn,i − tn−1,i} and the
signals {zn,i} are sequences of iid random variables under
each hypothesis, thus it suffices to examine the distribution
of (t1,i, z1,i) under each hypothesis. This is what the next
proposition does, but before we state it, we introduce the
following notation:

• We denote by h(·; c, θ) the pdf of the stopping time Tc,
i.e. the first time a Brownian motion with constant drift
θ (starting from 0) hits the point c �= 0. h(·; c, θ) is the



inverse gaussian density (also known as Wald density)
and is given by the following formula:

h(t; c, θ) =
|c|√
2πt3

exp
{
− (c − θt)2

2t

}
, t > 0.

• In the case that the drift θ = 0, we simplify the notation
and we write: h(·; c) instead of h(·; c, 0).

• We also use the following notation:

g(t; c, d) =
∞∑

n=−∞
h(t; 2n(c + d) + c, 0) , t > 0,

where c, d > 0.
Proposition 1: a). The density of t1,i on the events {z1,i =

1} and {z1,i = 0}, under the null hypothesis, is given by the
formulas

P0,i(t1,i ∈ dt; z1,i = 1) = e
−Bi

2 −µ2
i
8 tg

(
t;

Bi

µi
,
Ai

µi

)
dt (19)

P0,i(t1,i ∈ dt; z1,i = 0) = e
Ai
2 −µ2

i
8 tg

(
t;

Ai

µi
,
Bi

µi

)
dt, (20)

and under the alternative by

P1,i(t1,i ∈ dt; z1,i = 1) = e
Bi
2 −µ2

i
8 tg

(
t;

Bi

µi
,
Ai

µi

)
dt

P1,i(t1,i ∈ dt; z1,i = 0) = e
−Ai

2 −µ2
i
8 tg

(
t;

Ai

µi
,
Bi

µi

)
dt.

b). The sequence of signals {zn,i}n∈N in sensor i is a
sequence of iid Bernoulli random variables under each hy-
pothesis, with parameter π0,i = eAi−1

eAi+Bi−1
under H0 and

π1,i = eAi+Bi−eBi

eAi+Bi−1
under H1. c). The expectation of the

intersampling time τ1,i, under the null hypothesis, is

E0[τ1,i] =
2
µ2

i

[(1 − π0,i)Ai − π0,iBi] ,

and under the alternative

E1[τ1,i] =
2
µ2

i

[π1,iBi − (1 − π1,i)(−Ai)] .

d). Let πj,i(t) be the conditional probability that the ith sensor
hits the upper threshold given the corresponding intersampling
time, under hypothesis Hj , j = 0, 1. Then it will be:

π0,i(t) ≡ P0(z1,i = 1|t1,i = t)

=
P0,i(t1,i ∈ dt; z1,i = 1)

P0,i(t1,i ∈ dt)
,

π1,i(t) ≡ P1(z1,i = 1|t1,i = t)

=
P1,i(t1,i ∈ dt; z1,i = 1)

P0,i(t1,i ∈ dt)
,

e). The conditional densities of the intersampling time t1,i

given z1,i = 0 and given z1,i = 1 will be: under the null
hypothesis

P0,i(t1,i ∈ dt|z1,i = 1) =
P0,i(t1,i ∈ dt; z1,i = 1)

π0,i
,

P0,i(t1,i ∈ dt|z1,i = 0) =
P0,i(t1,i ∈ dt; z1,i = 0)

1 − π0,i
,

and under the alternative hypothesis

P1,i(t1,i ∈ dt|z1,i = 1) =
P1,i(t1,i ∈ dt; z1,i = 1)

π1,i
,

P1,i(t1,i ∈ dt|z1,i = 0) =
P1,i(t1,i ∈ dt; z1,i = 0)

1 − π1,i
.

f). The supremum of the ratio of each of the pdf’s in a), b)
and e) over the exponential pdf with rate µ2

i

8 is bounded.
Proof: It is well known (see for example [2, Page 99])

that g(·; Ai

µi
, Bi

µi
) is the density of the first exit time of a

standard Brownian motion from the interval (−Ai

µi
, Bi

µi
) on the

event that the lower boundary is crossed, whereas g(t; Bi

µi
, Ai

µi
)

is the corresponding density on the event that the upper
boundary is crossed.

For a) we follow a standard application of Girsanov’s the-
orem, similarly as in [2, Page 196]; b) and c) are well known
results that can be obtained from applications of Optional
Sampling Theorem to the log-likelihood ratio ut; d) and e)
are applications of Bayes Rule, whereas f) follows from the
boundedness of the pdfs that we obtained in the previous
questions.

Remarks:

• This proposition implies that, under each hypothesis, we
can simulate the conditional intersampling density given
the information on the boundary that was crossed through
an acceptance-rejection scheme, using the exponential pdf
with rate µ2

i

8 as the candidate density.
• We can choose the sampling thresholds in the sensors in

such a way that the sampling frequency in all sensors is
the same. In that case, we have to equate the expectations
in part (2) of the above proposition with the desired
sampling frequency and solve the resulting non-linear
equation. In order to determine the thresholds in a unique
way, we need another meaningful constraint at each
sensor. In the absence of such a constraint, we can simply
choose the thresholds to be symmetric, i.e Ai = Bi. In
that case, the simulation of the scheme has some very
appealing properties as the next proposition suggests.

Proposition 2: In the case of symmetric boundaries, Ai =
Bi, we have the following properties

1) The pdf of the intersampling time t1,i is the same under
the two hypotheses and will be denoted by h̃(·;Bi, µi)
(in analogy with the corresponding one-sided density).
It will be

h̃(t;Bi, µi) = cosh
(

Bi

2

)
e−

µ2
i
8 tg

(
t;

Bi

µi
,
Bi

µi

)
(21)

2) The signal z1,i is a Bernoulli random variable with
parameter π0,i = 1

1+eBi
(under H0) and π1,i = eBi

1+eBi

(under H1).
3) The signal z1,i is independent from the intersampling

time t1,i under each hypothesis, i.e. using the notation



of Proposition 1 we have under the null hypothesis

π0,i(t) = π0,i =
1

1 + eBi
,∀t > 0

and under the alternative

π1,i(t) = π1,i =
eBi

1 + eBi
,∀t > 0.

4) The ratio of the pdfs h̃(·;Bi, µi) and h(·; Bi

µi
, µi

2 ) is
bounded above by 2. In particular

sup
t>0

h̃(t;Bi, µi)
h(t; Bi

2 , µi

2 )
= 1 + e−Bi .

Proof: The first three parts follow from substitution
Ai = Bi in Proposition 1. The fourth part follows from the
observation that

∞∑
n=−∞

h
(
t; (4n + 1)Bi

µi
, 0

)
h(t; Bi

µi
, 0)

≤ 1.

This concludes the proof.
Remark: Proposition 2 suggests that in the case of symmet-

ric boundaries, we can sample the signals and the interarrival
densities independently. Moreover, it suggests h(·; Bi

2 , µi

2 ) as a
good candidate density for the simulation of the intersampling
density using an acceptance-rejection scheme. The exponential
density remains of course a potential candidate, but the inverse
Gaussian density appears to be much more efficient, in the
sense that the percentage of rejected samples is guaranteed to
be smaller than 50%.

A. Simulation Algorithm

We can now state the following algorithm for the simulation
of our scheme, which consists of two steps in each simulation
run. The first one is the computation of the stopping time
S̃ under each of the two hypotheses. The second is the
computation of the Type I and Type II error probabilities.

Thus, for each hypothesis Hj , j = 0, 1, we have:
1) Set ũ(j) = 0.
2) Sample z1,i ∼ Bernoulli(πj,i), i = 1, . . . ,K.
3) Sample t1,i from its conditional interarrival density

given z1,i , i = 1, . . . ,K.
4) Set k = arg mini{t1,i} and tnew = t1,k.
5) Set ũ(j) = ũ(j) + Bkz1,k + (−Ak)(1 − z1,k).
6) If −Ã < ũ(j) < B̃ , then:

• Set: t1,k = t1,k + tnew.
• If k = arg mini{t1,i}, go back to step (5), otherwise

go back to step (2).
7) If ũ(j) ≥ B̃ or ũ(j) ≤ −Ã, then S̃ = t1,k.
Now in order to compute the Type I and Type II error

probabilities of our scheme, γ̃ and δ̃ respectively, we apply
the classical trick of importance sampling (see Siegmund [6]
for details). Thus, the algorithm continues as follows:

• γ̃ = e−ũ(1)
1{ũ(1)≥B̃} and δ̃ = eũ(0)

1{ũ(0)≤−Ã}.
Repeating this procedure many times, we can obtain the

Monte-Carlo estimates and standard errors of the quantities of
interest, i.e. E0[S̃], E0[S̃], γ̃, δ̃.

In the special case of symmetric boundaries, the above
algorithm can be modified, so that step (3) takes the following
form:

• Sample t1,i from the unconditional interarrival density of
sensor i, h̃(·;−Bi, Bi, µi) using an acceptance-rejection
scheme, with h(·;Bi, µi) as the candidate.

B. Experiments

We proceed with a numerical example, where we have
K = 2 sensors with µ1 = µ2 = 1. We apply three tests.
First, the continuous-time centralized SPRT which serves as
a point of reference. Its performance is analytically given in
(14) and (15), as a function of the thresholds A,B. Second,
we simulate the discrete-time centralized SPRT, with signals
sampled with a constant period T = 2.71 and sent to the
fusion center, without quantization, to perform the discrete-
time SPRT test. Third is our scheme with local boundaries
Bi = −Ai = 3 producing an average sampling period of 2.71
(from part (4) of Proposition 1), which matches the period T
of the centralized discrete-time test. This selection is necessary
for a fair comparison. Finally, we also simulate Mei’s scheme
introduced in [3]. Fig. 2 depicts the average expected time for a
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Fig. 2. Expected detection delay as a function of the error probability.

decision under H1 as a function of the probability of Type I =
Type II error. We observe that the proposed test performs even
better than the discrete-time SPRT, exhibiting a performance
which is very close to the optimum.

VI. CONCLUSIONS

In this work, we examined the problem of decentralized
sequential hypothesis testing in continuous time in the case
where the sensors have full local memory and no feedback
from the fusion center. We suggested a very easily imple-
mentable scheme which entails asynchronous communication
of 1-bit decisions of the sensors to the fusion center. Moreover,
we proved that in the case where the observed processes in the
sensors are (drifted) Brownian motions, the proposed scheme
exhibits a strong asymptotic optimality property, in particular
it is asymptotically optimal of order-2, as compared to Mei’s



scheme [3], which is optimal of order-1. We illustrated this
optimality with simulation experiments, which indicated that
the performance of our scheme is even superior to that of
the centralized discrete-time SPRT and very close to the
optimal performance of the centralized continuous-time SPRT.
Thus, we can achieve better performance in the decentralized
problem than in the centralized one, as long as we implement
random sampling instead of the conventional deterministic
sampling.
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