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Abstract. Assuming that sensors have full local memory, we introduce a novel test
for the problem of decentralized change detection that is asymptotically optimum.
According to our proposed scheme, sensors perform locally repeated SPRTs and
communicate, asynchronously, their one-bit decisions to a fusion center. The fusion
center in turn uses the sequentially acquired information to perform a CUSUM test
in order to decide whether a change took place or not. We prove that the average
detection delay of the proposed test differs from the optimum centralized CUSUM
test only by a constant. This fact suggests order-2 asymptotic optimality as com-
pared to existing schemes that are optimal of order-1.
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1 Introduction

Consider the geometry depicted in Fig. 1 where K sensors observe K statis-
tically independent, continuous-time processes {ξt,i}t≥0, i = 1, . . . , K. At a
deterministic but unknown time τ ≥ 0 the observed processes experience a

Fig. 1. Geometry of the decentralized change detection problem.
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simultaneous change in their statistics from a probability measure P∞,i to
an alternative P0,i. The goal is to detect this change as soon as possible.
Detection must be performed at a Fusion Center which receives, sequentially,
discrete-time information {zn,i}n≥0, n ∈ Z, conveyed from the sensors with
the help of standard (wireless) digital communication systems. In order to
limit the need in communication bandwidth between sensors and fusion cen-
ter the communication rate must be kept low. This requirement practically
excludes transmission of samples obtained from the continuous-time signals
by conventional deterministic canonical sampling and demands for sampling
strategies that are more efficient.

Decentralized detection was first introduced by Tsitsiklis (1990) and later
in Veeravali et.al. (1993) we find a detailed presentation of the different sam-
pling models that can be defined. We note that a decentralized detection
scheme is comprised of two parts 1) the sampling strategy at the sensors and
2) the fusion center detection policy. Sampling strategies define the type of
information to be transmitted from sensors to the fusion center whereas de-
tection policies how this information should be utilized by the fusion center
to produce its final decision (whether a change took place or not). We also
distinguish the decentralized schemes from the centralized detection struc-
tures in which the fusion center has complete access to the continuous-time
processes {ξt,i}. It is clear that the application of a centralized optimum test
gives rise to the ultimate point of reference in performance.

Current decentralized literature mainly refers to discrete-time signals and
to synchronous communication between sensors and fusion center, silently
assuming the existence of a global clock. Transferring this methodology to the
continuous-time case requires the processes {ξt,i} to be sampled concurrently,
using canonical sampling. The acquired samples ξnT,i (T being the constant
sampling period) need to be further processed with the help of an additional
sampler, more accurately quantizer, in order to produce the signals {zn,i} to
be transmitted. We should mention the work by Tartakovsky and Veeravalli
(2002) where one can find (asymptotically) optimum schemes for the models
with partial local memory and feedback or with no local memory and no
feedback, under a Bayesian setting. The corresponding results under a non-
Baysian formulation can be found in Moustakides (2006).

In both cases the proposed sampling/detection strategies result in tests
whose performance is significantly inferior to the corresponding centralized
test, suggesting possibilities for important improvements. The first effort in
this direction was offered by Mei (2005). The sampling/detection scheme
developed in this work was for the model with full local memory where sensors
remember all their past acquired samples. The proposed test was shown to
be asymptotically optimum, in the sense that the ratio of its performance
and the performance of the centralized test tends to 1, as the false alarm
period tends to ∞. Comparisons of this scheme with other decentralized and
centralized alternatives are reported in Tartakovsky and Kim (2006).
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In this work we follow the same model as in Mei, i.e. examine sensors with
full local memory. However, the test we develop has performance that falls
behind the centralized test only by a finite amount. This should be compared
with Mei’s scheme whose performance, as reported in Tartakovsky and Kim
(2006), diverges from the centralized test, even though the ratio tends to 1.

2 Problem formulation and random sampling

At Sensor-i, let ut,i = log dP0,i

dP∞,i
(Ft,i) denote the local log-likelihood ratio,

where {Ft,i} is the filtration generated by the observed continuous-time signal
{ξt,i}. Let also {tin} be a strictly increasing sequence of sampling instances
with limn→∞ tin = ∞ a.s. where tn,i are stopping times (s.t.) adapted to
{Ft,i}. Consider now the sampled version {uti

n,i} of the local log-likelihood
ratio and suppose that these values are available at the fusion center at the
sampling times {tin}.

Let {F̃t} be the filtration at the fusion center generated by the received
samples from all sensors, i.e. F̃t = σ{uti

n,i; tin ≤ t; i = 1, . . . , K} is all the
asynchronously received information up to time t. We also distinguish the
filtration {Ft} where Ft = σ{us,i; s ≤ t; i = 1, . . . ,K} is the received infor-
mation at the fusion center for the continuous-time centralized test. Note that
since {ut,i} is a sufficient statistics for Sensor-i in the centralized test, trans-
mitting this signal instead of the observed {ξt,i} produces no performance
loss for the optimum detection structures.

We now recall a popular test for the solution of the change detection
problem under the centralized setup. The Cumulative Sum (CUSUM) test is
perhaps the most well-known test for solving the problem of interest. It is
defined as follows

ut = ut,1 + ut,2 + · · ·+ ut,K ; mt = inf
0≤s≤t

us; yt = ut −mt;

S = inf
t≥0
{t : yt ≥ ν},

where ν > 0 is a constant threshold and S is the first time the test statistics
yt exceeds this quantity. Optimality of CUSUM in continuous-time was first
established by Shiryayev (1996), for a Brownian Motion (BM) with constant
drift before and after the change. Specifically one can demonstrate that S
solves the following optimization problem due to Lorden (1971)

inf
T

sup
τ≥0

essupEτ [(T − τ)+|Fτ ]; subject to E∞[T ] ≥ γ. (1)

Here Eτ [·] denotes expectation with respect to the probability measure in-
duced by a change at time τ . More precisely we are looking for the s.t. T that
minimizes the worst average detection delay subject to the constraint that
the average period between false alarms is no less than γ. As was indicated,
CUSUM solves (1) for BMs provided that ν is selected so that the false alarm
constraint is satisfied with equality.
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2.1 CUSUM with general sampling
Replacing the continuous-time log-likelihood ratios {ut,i} with their sampled
versions {uti

n,i}, gives rise to the test statistics ũt = ut1nt
,1 + · · · + utK

nt
,K ,

where tint
= maxti

n≥0{tin : tin ≤ t} is the last sampling instant before (and
including) t at Sensor-i. In other words, at every time t we add the most
recently acquired local log-likelihood ratios. The test then continuous as in
the case of the continuous-time CUSUM, specifically we define

m̃t = inf
0≤s≤t

ũs; ỹt = ũt − m̃t; S̃ = inf
t≥0
{t : ũt ≥ ν̃}, (2)

where again ν̃ is selected to satisfy the false alarm constraint with equality.
The need for transmitting the samples {uti

n,i} exhibits the same difficulty
as in the case of canonical sampling with tin = nT , since these quantities are
real numbers. Regarding canonical sampling, we recall that the resulting test
applied at the fusion center, is the discrete-time CUSUM which is known to
optimize the discrete-time version of Lorden’s criterion. Next we are going to
introduce a suitable selection of sampling instances {tin} that allows for the
communication of {uti

n,i} by simply transmitting 1-bit information.

3 Proposed sampling/detection strategies

Crucial point in being able to implement the test in (2) is the availability, at
the fusion center, of the samples {uti

n,i} of the local log-likelihood ratios. We
observe that we can write

uti
n,i = [uti

n,i − uti
n−1,i] + [uti

n−1,i − uti
n−2,i] + · · ·+ [uti

1,i − uti
0,i] (3)

where we define ti0 = 0 and assume that u0,i = 0. It is therefore sufficient
for Sensor-i to transmit the differences [uti

n,i − uti
n−1,i] between consecutive

sampling times. The key idea is to select the sequence of s.t. {tin} so that
these differences constitute 1-bit information. In fact, as we shall see next,
this is not very complicated.

For Sensor-i select before hand two boundaries Ai < 0 < Bi which are
also known to the fusion center. Suppose that tin−1 is already set and define

tin = inf
t>ti

n−1

{t : ut,i − uti
n−1,i 6∈ (Ai, Bi)}.

If {ut,i} has continuous paths we observe that at time tin the difference
uti

n,i − uti
n−1,i will hit either Ai or Bi and this information can be trans-

mitted, at time tin, to the fusion center using 1 bit. Indeed if zti
n,i is the

quantity to be transmitted we define it to be 1 when uti
n,i−uti

n−1,i ≥ Bi and
0 when uti

n,i−uti
n−1,i ≤ Ai. Once tin has been set, we repeat the same process

for tin+1, . . . , etc. The procedure we just described is simply a repeated Se-
quential Probability Ratio Test (SPRT) where every time the test statistics
ut,i−uti

n−1,i hits one of the two boundaries Ai, Bi we restart the SPRT after
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updating the term uti
n−1,i. The interesting point is that by properly selecting

the two boundaries Ai, Bi we have complete control over the average sampling
period since the latter is simply the “detection delay” of the corresponding
SPRT. At the fusion center, whenever we receive a new information bit from
any sensor, we update the corresponding local log-likelihood ratio from (3),
then compute the new test statistics ỹt and we apply the test following (2).

4 The Brownian Motion case

In this section we focus on the special case of the signals {ξt,i}, i = 1, . . . ,K
being standard BMs with drifts equal to 0 and µi 6= 0 before and after the
change respectively. We can then verify that ut,i = −0.5µ2

i t + µiξt,i. We first
examine the centralized CUSUM test. For this scheme we have the following
convenient formulas

E0[S] =
2

µ2
1 + · · ·+ µ2

K

(ν+e−ν−1); E∞[S] =
2

µ2
1 + · · ·+ µ2

K

(eν−ν−1). (4)

Threshold ν can be computed by imposing validity of the false alarm con-
straint with equality, i.e. E∞[S] = γ. This yields ν = log(γ)+O(1). Regarding
now the proposed test, the next theorem demonstrates that our scheme differs
from the optimum, only by a bounded quantity.

Theorem 1. Let ξt,i, i = 1, . . . , K, be as above; consider the centralized
CUSUM test S and the proposed test S̃ with fixed local boundaries Ai <
0 < Bi and select both thresholds ν, ν̃ to satisfy the false alarm constraint γ
with equality. Then, uniformly over γ, we have i) |yt − ỹt| ≤ C < ∞ and
ii) 0 ≤ E0[S̃]− E0[S] ≤ D < ∞.

Proof. We only highlight the main steps. To show i), because of SPRT sam-
pling we have Ai < ut,i − uti

nt
,i < Bi, suggesting

∑
Ai < ut − ũt <

∑
Bi.

Exactly the same double inequality holds for the difference mt− m̃t, yielding
the necessary uniform bound C for the difference yt − ỹt. For ii), using i)
we observe that Sl ≤ S̃ ≤ Su where Sl = inft≥0{t : yt + C ≥ ν̃} and
Su = inft≥0{t : yt−C ≥ ν̃}. Combining this observation with the formulas in
(4), we can show that ν̃ = log(γ) + O(1) and then that the desired difference
is indeed O(1). Our proof, when the local thresholds Ai, Bi are bounded,
assures order-2 asymptotic optimality. If we let Ai, Bi increase with γ but at
a rate such that (Ai, Bi)/ log(γ) → 0 then we can demonstrate only order-1
optimality. Such increase however in the local thresholds will result in an
extremely infrequent communication between sensors and fusion center.

4.1 Simulations
We examine the case of K = 2 sensors with µ1 = µ2 = 1 and apply three dif-
ferent tests. First is the continuous-time centralized CUSUM which serves as
a point of reference and its performance is analytically given in (4). Second,
we simulate the discrete-time centralized CUSUM, with signals sampled with
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a constant period T = 8 tanh(2) and the corresponding samples sent, with-
out quantization, to the fusion center. The latter applies the discrete-time
CUSUM test for its final decision. Third is our scheme with local boundaries
Bi = −Ai = 4 having an average sampling period of 2Bi tanh(Bi/2)/µ2

i that
matches the period T of the centralized discrete-time test. This is necessary
for a fair comparison of the two schemes.

Fig. 2 depicts the average detection delay (in linear scale) as a function of
the average false alarm period γ (in logarithmic scale). We observe that the
proposed test performs better than the discrete-time CUSUM, exhibiting a
performance which is very close to the optimum. We recall that in our test,
sensors transmit, asynchronously, just 1-bit information to the fusion center
while the centralized transmits, synchronously, real numbers. Mei’s scheme
also includes 1-bit (but synchronous) transmissions. Its performance on the
other hand, as mentioned before, diverges from the optimum.

Fig. 2. Relative performance of various change detection schemes.
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