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Abstract. We address a simple changepoint detection problem where observations are i.i.d. before and after the change with
known pre- and post-change distributions. For this setting, the CUSUM test is known to be optimal in the minimax setting for
Lorden’s essential supremum metric, whereas the Shiryaev-Roberts procedure is optimal for detecting a change that occurs at
a distant time horizon. At the same time, a randomized extension of the Shiryaev-Roberts test proposed by Pollak, enjoys a
very strong asymptotic minimax property with respect to Pollak’s supremum metric. We conjecture that a deterministically
initialized version of the Shiryaev-Roberts test can compete with the latter procedure very efficiently. We propose a numerical
scheme for the systematic comparison of these detection procedures in both settings, i.e., minimax and for detecting changes
that occur in the distant future. Our goal is accomplished by deriving a set of integral equations for the performance metrics of
interest, which are solved numerically. We present numerical results for the problem of detecting a change in the mean of an
exponential sequence which justify our conjecture and allow for a precise comparison of a number of changepoint detection
procedures.
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1 Introduction
Quickest changepoint detection is concerned with the problem of detecting changes in distributions that
occur at unknown points in time. The goal is to detect the change as soon as possible after its occurrence,
while maintaining a prescribed false alarm level. A sequential changepoint detection procedure is a
stopping time T with respect to the observed sequence at which a decision on a change occurrence is
made.

In this paper we consider the simplest version of the changepoint detection problem where it is
assumed that the observations are i.i.d. before and after the change with known pre- and post-change
densities. The objective is to provide a comparative study of the following detection procedures: the
Cumulative Sum (CUSUM) test introduced by Page (1954); the Shiryaev-Roberts (SR) test proposed
by Shiryaev (1961) for the Brownian motion case and Roberts (1966) for discrete time; its randomized
extension, which we refer to as the Shiryaev-Roberts-Pollak (SRP) test, suggested by Pollak (1985),
whose idea was to sample the starting point from the quasi-stationary distribution; and the Shiryaev-
Roberts-rA (SR-rA) test introduced in this paper. In the latter procedure the head start of the detection
statistic is not zero as in the conventional SR procedure, but rather a deterministic point chosen in such
a way so that the “best” possible performance is achieved. It is of major practical interest to compare
these tests with respect to several detection speed metrics and to quantify their performance difference.

The rest of the paper is organized as follows. Section 2 gives a preliminary background in change-
point detection and presents the CUSUM, the SR, the SRP and the SR-rA test. In Section 3 a set of
integral equations for various performance characteristics is introduced, and a simple numerical scheme
to solve the equations is described. Finally, Section 4 considers an example of detecting a change in the
mean of an exponential sequence and reports the obtained results.
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2 Problem formulation and changepoint detection procedures
Consider the simplest version of the changepoint detection problem. Let a sequence {Xn}n≥1 of i.i.d.
random variables be observed sequentially. Initially the sequence is “in-control”, i.e., all observations
are coming from the same probability density function (pdf) f(x). At an unknown point in time ν ≥ 0
something happens and the sequence runs “out of control” by abruptly changing its statistical properties
so that from ν + 1 on, the pdf becomes g(x) 6≡ f(x). The objective is to detect a change as quickly as
possible and with as few as possible false detections.

Given the sequence {Xn}n≥1, a sequential detection procedure is defined as a stopping time T
adapted to the filtration {Fn}n≥0, where Fn = σ(X1, . . . , Xn) is the (smallest) σ-algebra generated by
the observations up to time instant n and with F0 denoting the trivial σ-algebra. Put another way, for
n ≥ 0, the set {T ≤ n} belongs to the σ-algebra Fn. At time instant T the procedure stops and declares
that a change has occurred.

The design of such procedures involves optimizing a trade-off between two types of performance
metrics, one being a measure of the detection delay and the other being the rate of false alarms. Let us
denote with Pk, Ek the probability and the corresponding expectation induced by a change occurring at
time ν = k ≥ 0. We will adopt the convention that if the change occurs at ν = k, then the first post-
change observation isXk+1. According to this definition P∞ (E∞) denotes the probability (expectation)
when there is no change (ν = ∞), while P0 (E0) the corresponding quantities when the change takes
place before surveillance begins.

We are interested in two different mathematical setups. First is the minimax approach proposed by
Lorden (1971) who suggested to use JL(T ) = supk≥0 ess sup Ek[(T −k)+|X1, . . . , Xk] as the measure
of performance (worst average detection delay). Lorden (1971) proposed to minimize JL(T ) in the
class ∆(γ) = {T : E∞[T ] ≥ γ}, where γ > 1 is a prescribed false alarm level. The value of E∞[T ] is
usually called the average run length (ARL) to false alarm. An alternative, appropriate for a significantly
narrower class of changepoint problems (for a discussion see Moustakides, 2009), was proposed by
Pollak (1985) where the detection speed is expressed via the supremum average (conditional) detection
delay JP(T ) = supk≥0 Ek[T − k|T > k].

The second formulation aims at minimizing the relative integral average detection delay
RIADD(T ) =

∑∞
k=0 Ek[(T − k)+]/E∞[T ] in the class ∆(γ). Following Shiryaev (1963) who con-

sidered this problem for the Brownian motion, Pollak and Tartakovsky (2009) argue that this is instru-
mental in detecting a change that occurs in the distant future (large ν) and is preceded by a stationary
flow of false alarms. Specifically, consider a context in which it is of utmost importance to detect a
real change quickly even at the expense of raising many false alarms (using a repeated application of
the same stopping rule) before the change occurs. That is, the changepoint ν is substantially larger
than the ARL to false alarm γ which, in this case, defines the mean time between false alarms. Let
T1, T2, . . . denote sequential independent copies of the stopping time T and let Tj = T1 +T2 + · · ·+Tj
be the time of the j-th alarm. Define Iν = min{j ≥ 1: Tj > ν}. In other words, TIν is the time
of detection of a true change that occurs at ν after Iν − 1 false alarms have been raised. Denote
STADD(T ) = limν→∞ Eν [TIν − ν] the limiting value of the average detection delay that we will
refer to as the stationary average detection delay (STADD). It follows from Theorem 2 in Pollak and
Tartakovsky (2009) that STADD(T ) = RIADD(T ) =

∑∞
k=0 Ek[(T−k)+]/E∞[T ]. STADD(T ) is the

second performance measure we will adopt for our comparisons in the context of a multi-cycle change
detection.

For n ≥ 1, define Λn = g(Xn)/f(Xn), to be the “instantaneous” likelihood ratio between the post-
change and pre-change hypotheses. To avoid complications we shall assume that Λ1 is continuous. Yet,
if need be, the case where Λ1 is non-arithmetic can also be covered with a certain additional effort. The
SR procedure stops and raises an alarm at

T SR
A = inf{n ≥ 1: Rn ≥ A}

assuming inf{∅} = ∞, where Rn is the SR detection statistic defined as Rn =
∑n

k=1

∏n
j=k Λj and

A = Aγ > 0 is a threshold chosen so that the false alarm constraint E∞[T SR
A ] = γ is met. It is easily
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verified that the SR statistic allows for the following convenient recursive representation

Rn = (1 +Rn−1) Λn, R0 = 0. (1)

As we mentioned above, Pollak and Tartakovsky (2009) showed that the SR procedure T SR
Aγ

is exactly
optimal in the sense of minimizing the relative integral average detection delay RIADD(T ) and hence
the stationary average detection delay STADD(T ) of a multi-cycle detection procedure for every γ > 1.

Having the SR test as a prototype we now propose to consider initializing the test from any value
R0 = r ≥ 0, either random or deterministic. Let us define the modified SR statistic Rrn as in (1), but
with the initial condition Rr0 = r, and the corresponding stopping time as

SrA = inf{n ≥ 1: Rrn ≥ A}, (2)

where A is selected so that E∞[SrA] = γ. We shall refer to this test as SR-r, emphasizing its relation to
the initializing value r. Clearly, the thresholdA and the starting point r are related through E∞[SrA] = γ.
To satisfy this equality one can either assume that A is a function Ar of r, or the opposite, that is, that r
is a function rA of the threshold A. Additionally we will usually assume that r < A.

It can be shown that

JP(SrA) ≥ inf
T∈∆(γ)

JP(T ) ≥ inf
T∈∆(γ)

rE0[T ] +
∑∞

k=0 Ek[(T − k)+]
r + E∞[T ]

=
rE0[SrA] +

∑∞
k=0 Ek[(SrA − k)+]

r + E∞[SrA]
= JB(SrA).

Therefore, it is reasonable to choose the starting point r of the SR-r statistic such that it would min-
imize the difference between the upper bound JP(SrA) and the lower bound JB(SrA), i.e., rA =
arg minr{JP(SrA)− JB(SrA)}.

The SRP procedure is defined similarly to (1) and (2). Only instead of R0 = r being deterministic
it is now a random variable distributed according to the quasi-stationary distribution of the SR statistic
Rn, i.e.,

QA(x) = P[R0 ≤ x] = lim
n→∞

P∞[R0
n ≤ x|S0

A > n], x ∈ [0, A]. (3)

The SRP procedure stops at
SQ
A = inf{n ≥ 1: RQ

n ≥ A},

where RQ
n satisfies the recursion (1) with RQ

0 ∼ QA, i.e., the initializing variable is random and dis-
tributed according to the quasi-stationary distribution QA(x). The threshold A is selected so that the
false alarm constraint is satisfied with equality, i.e., E∞[SQ

A ] = γ.
The CUSUM test is motivated by the maximum likelihood argument and is based on the comparison

of the maximum likelihood ratio Vn = max1≤k≤n
∏n
j=k Λk with a positive detection threshold A, i.e.,

the CUSUM stopping time is
TCS
A = inf{n ≥ 1: Vn ≥ A}. (4)

It is easily verified that the statistic Vn can be computed recursively as

Vn = max{1, Vn−1}Λn, V0 = 1. (5)

Note that the conventional Page’s CUSUM statistic is given by Wn = max{0,Wn−1 + log Λn} where
W0 = 0. Clearly, the trajectories of this statistic coincide with the trajectories of log Vn on the positive
half plane and, therefore, the CUSUM stopping time defined in (4) is equivalent to the familiar Page’s
stopping time T PG

A = inf{n ≥ 1: Wn ≥ logA} as long as A > 1. Note also that, although not
crucial for most practical purposes, the CUSUM procedure given by (4) and (5) is more general than
the classical Page rule since it allows for thresholds A ≤ 1 (the classical test with such thresholds stops
in one step). The threshold A = Aγ is chosen in such a way so that the ARL to false alarm meets
the constraint E∞[TCS

Aγ
] = γ exactly. While we use the same notation A for the thresholds in both

the CUSUM and the SR-r procedure, we emphasize that the thresholds are in fact fairly different for
achieving the same false alarm rate.
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3 The methodology for performance evaluation
Note that all aforementioned tests are particular cases of the following stopping time

T sA = inf{n ≥ 1: Ssn ≥ A} (6)

with the corresponding Markov detection statistic following the recursion

Ssn = ξ(Ssn−1) Λn, n = 1, 2, . . . , (7)

where Ss0 = s ≥ 0 is a preset (fixed) starting point, A is a positive (detection) threshold and ξ(s) is a
positive-valued function. Indeed, for CUSUM ξ(s) = max{1, s} and for the SR-r tests ξ(s) = 1 + s.

We now derive a set of equations for the performance metrics of the generic detection procedure
given by (6) and (7), which then can be easily adapted to the CUSUM and SR-r procedures by appro-
priately choosing ξ(s).

For fixed A and s, define φi(s) = Ei[TA], where i = {∞, 0}, so that φ∞(s) = E∞[TA] is the ARL
to false alarm and φ0(s) = E0[TA] is the ARL to detection. For k ≥ 0, define δk(s) = Ek[(TA − k)+],
ρk(s) = P∞(T > k) and let Fi(x) = Pi[Λ1 ≤ x] denote the cumulative distribution function of the
likelihood ratio Λ1 for i = {∞, 0}. Using the Markov property of the statistic Sn it can be shown that

φi(s) = 1 +
∫ A

0
φi(x)

[
∂

∂x
Fi

(
x

ξ(s)

)]
dx, (8)

and for k ≥ 1

δk(s) =
∫ A

0
δk−1(x)

[
∂

∂x
F∞

(
x

ξ(s)

)]
dx, ρk(s) =

∫ A

0
ρk−1(x)

[
∂

∂x
F∞

(
x

ξ(s)

)]
dx, (9)

with the initial conditions δ0(s) = φ0(s) and ρ0(s) = 1. The integral equation (8) gives both the ARL
to false alarm E∞[T sA] = φ∞(s) and the ARL to detection E0[T sA] = φ0(s). Also, from (9) one can
recursively compute δk(s) and ρk(s), quantities that are necessary for the evaluation of the conditional
average detection delay Ek[T sA − k|T sA > k] = δk(s)/ρk(s).

Let ψ(s) =
∑∞

k=0 Ek[(T sA − k)+] =
∑∞

k=0 δk(s). It can be shown that ψ(s) satisfies the following
equation

ψ(s) = δ0(s) +
∫ A

0
ψ(x)

[
∂

∂x
F∞

(
x

ξ(s)

)]
dx. (10)

Consequently, knowing ψ(s) and φ∞(s) from (10) and (8) we can compute the stationary average delay
to detection STADD(T sA) = ψ(s)/φ∞(s).

Let qA(x) = dQA(x)/dx denote the density of the quasi-stationary distribution (3) (recall that we
assume that Λ1 and therefore Rn are continuous). For the quasi-stationary density we have

λAqA(x) =
∫ A

0
qA(s)

[
∂

∂x
F∞

(
x

ξ(s)

)]
ds, (11)

where 0 < λA < 1 is the leading eigenvalue of the linear operator and qA(x) the corresponding eigen-
function. We also conclude that for the SRP test, the ARL to false alarm is 1/(1−λA) and the conditional
average detection delay is E0[T qA] = Ek[T qA − k|T

q
A > k] =

∫ A
0 qA(x)δ0(x) dx, i.e., it does not depend

on the point of change k.
Observe that (8) and (10) are Fredholm equations of the second kind. Since generally (except in

trivial cases) no analytical solutions to such equations are possible, numerical techniques may be in
order. A simple and efficient numerical scheme is based on using a quadrature rule with N � 1
breakpoints to approximate the integrals in the right-hand side of (8) and (10), thereby turning each of
these equations into a system of linear equations, which can then be solved either directly or iteratively.
A similar approach can be employed to recover the quasi-stationary distribution from Eq. (11). Clearly,
accuracy rides on the number of sample points N : the larger it is, the finer the partition and the more
accurate the approximation.
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4 A numerical example: Exponential scenario
Consider the case where observations are independent, originally having an Exponential(1) distribu-
tion, changing at an unknown time ν to Exponential(1 + θ), i.e., f(x) = e−x 1l{x≥0} and g(x) =

1
1+θ exp{− x

1+θ} 1l{x≥0}, where θ > 0.
We performed extensive numerical computations for various values of the parameter. Be-

low we present sample results for θ = 0.1 corresponding to a relatively small, not easily de-
tectable change. For all of the procedures we consider the ARL to false alarm is let to go
up to E∞[T ] = 104, i.e., low false alarm rate. The integration interval [0, A] is sampled
from N = 105 equidistant points. We are confident that such sampling is sufficiently fine
and provides a very high numerical precision, since the results of Monte Carlo experiments for
the conventional SR procedure (with 106 replications) matched our numerical results within 0.5%.
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Fig. 1. SADD(T ) vs. ARL(T ) for all of the procedures of interest and the lower bound for θ = 0.1.
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Fig. 2. STADD(T ) vs. ARL(T ) for the procedures of interest for θ = 0.1.

Shown in Fig. 1(a) is the supremum average detection delay SADD(T ) = JP(T ) as a function
of the ARL to false alarm E∞[T ] for all of the detection procedures of interest, plus the lower bound
JB(T ). CUSUM outperforms the classical Shiryaev-Roberts test but SRP and SR-rA are more efficient.
Fig. 1(b) is a magnified version of the SADD(T )-vs-ARL(T ) curve for the SR test, the SR-rA test and
the lower bound for relatively high values of the false alarm rate, ARL(T ) ∈ [5000, 10000]. It can be
seen that the best minimax performance is offered by the SR-rA test: performance-wise this test is very
close to the lower bound JB(T ). This suggests that the unknown optimal test can offer only a practically
insignificant improvement over SR-rA with respect to Pollak’s JP(T ) measure. Although the difference
in performance between the SRP and SR-rA procedures is very small, we may conclude that the SRP
procedure is not exactly optimal but only order-3 asymptotically optimal, as has been proven by Pollak
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(1985). This conclusion is important since the question of whether the SRP procedure is exactly optimal
or not was an open question for two decades.

Fig. 2(a) shows the behavior of the stationary average detection delay STADD(T ) against the ARL
to false alarm E∞[T ] for all of the procedures under discussion. Since for detecting distant changes
using a repeated application of the same stopping rule the SR test is exactly optimal, it can be seen
that it performs better than the CUSUM test. For the SRP test the STADD(T )-vs-ARL(T ) curve is
exactly the same as the SADD(T )-vs-ARL(T ) curve since for this test STADD(T ) = SADD(T ) due
to its equalizer property. Fig. 2(b) is a magnified version of Fig. 2(a) for ARL(T ) ∈ [5000, 10000]. The
obtained results for selected values of ARL(T ) are also summarized in Table 1.

Table 1. Summary of operating characteristics for the procedures of interest for θ = 0.1
Test γ 50 100 250 500 750 1000 2500 5000 7500 10000

CUSUM

A 1.59 1.98 2.85 4.19 5.38 6.52 12.93 23.14 33.14 43.06

ARL 49.71 100.49 249.35 500.36 750.59 1001.05 2499.28 5001.24 7499.61 9999.37

STADD 28.08 48.48 90.44 143.07 180.61 210.93 326.84 432.57 500.25 550.55

SADD 31.8 55.31 104.02 165.12 208.52 243.39 375.11 492.8 566.94 621.46

Shiryaev-Roberts

A 46.0 91.0 228.0 455.0 682.0 909.0 2273.0 4546.0 6818.0 9091.0

ARL 50.6 100.1 250.8 500.5 750.2 999.9 2500.29 5000.53 7499.86 9999.84

STADD 21.89 39.67 81.36 130.38 167.13 196.93 311.91 416.97 484.42 534.59

SADD 41.92 72.88 140.3 213.41 265.17 305.63 452.56 577.81 655.23 711.31

Shiryaev-Roberts-Pollak

A 104.0 173.0 353.0 626.0 885.0 1138.0 2597.0 4957.0 7286.0 9601.0

ARL 49.84 99.91 249.65 500.00 749.69 1000.05 2499.71 4999.82 7499.66 9999.63

STADD 30.09 50.71 94.73 144.46 180.87 210.24 322.51 425.13 491.22 540.48

SADD 30.09 50.71 94.73 144.46 180.87 210.24 322.51 425.13 491.22 540.48

Shiryaev-Roberts-rA

A 105.0 173.0 347.0 612.0 862.0 1106.0 2526.0 4839.0 7132.0 9419.0

rA 66.0 90.2 132.0 172.7 197.9 216.7 278.31 322.37 345.31 361.07

ARL 49.5 100.1 249.7 500.5 750.2 999.9 2500.29 5000.53 7499.86 9999.84

STADD 28.5 48.22 91.25 139.9 176.23 205.31 317.58 420.72 487.26 536.88

SADD 29.85 50.45 94.23 143.78 180.0 209.25 320.9 422.88 488.74 537.8

We would like to underline that the criteria evaluated in this article are tailored towards a special
class of changepoint mechanisms in which the decision about the change is made without taking into
account the observations (see Moustakides 2009). This means that they refer to a less general class
than Lorden’s performance measure. Consequently the numerical findings tend to display a biased view,
favoring the SR test and its variants as compared to the CUSUM test which is optimum in the Lorden
sense and therefore capable of confronting, efficiently, a much richer class of changepoint mechanisms.
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