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Abstract In this work we deal with the problem of decentralized sequential hypothesis testing in discrete time in the case that
the sensors have full local memory. We adopt the scheme called Decentralized Sequential Probability Ratio Test (D-SPRT),
which entails asynchronous communication of the sensors with the fusion center at random times. We prove that the D-SPRT
is asymptotically optimal and we show that in a certain sense this asymptotic optimality can be of order-2, i.e. for small type-I
and type-II error probabilities the expected time for a decision of the D-SPRT differs from that of the optimal centralized
SPRT by a constant. These results have important implications on the design of the suggested scheme. Simulation experiments
reveal that D-SPRT is efficient and outperforms existing asymptotically optimal schemes of the literature proposed for the
same problem.

1 Introduction
The problem of sequential hypothesis testing is one of the most classical and well-studied problems of
sequential analysis (see for example [3]). In the last two decades, there has been an intense interest in
the decentralized formulation of the problem, where the sequentially acquired information for decision-
making is distributed across a number of sensors and is transmitted to a global decision-maker (fusion
center) which is responsible for making the decision. Moreover, cost, reliability issues as well as, com-
munication bandwidth constraints require that the sensor observations be quantized before sent to the
fusion center, i.e. the fusion center must send messages that belong to a finite alphabet. For more details,
see [4].

Depending on the local memory that the sensors possess and whether there is feedback from the
fusion center, there are different configurations of the above sensor-network. Here, we consider the case
of full-local memory, i.e. we assume that at each time-instant each sensor has access to all its previous
observations and can use them in order to quantize the current observation. Mei [2] recently suggested
an asymptotically optimal scheme for this problem in a Bayesian setting.

In this work we assume that the alphabet that the sensors have in their disposal is binary and that
each time a sensor communicates with the fusion center it must send a one-bit signal.

2 Problem Formulation
Consider the existence of a global digital clock that counts the discrete time instances {n} with n ∈ N.
Assume also the existence of K sensors which acquire digital signals {ξn,i}∞n=1, i = 1, . . . ,K in a
synchronized way. Let (Ω,F ,P) denote a probability space on which the K random sequences {ξn,i}
are independent and each sequence has i.i.d. samples. We assume that sensor i observes sequentially the
sequence {ξn,i} whose common distribution we denote by Pi.

We would like to choose between the following two simple hypotheses; H0 : P = P0 , H1 : P = P1,
where P0,P1 are two probability measures on (Ω,F). The distribution Pi of ξn,i, is equal to P0,i

under H0 and P1,i under H1, where P0,i,P1,i are known Borel probability measures. Moreover, we set
ξn = (ξn,1, . . . , ξn,K), n ≥ 1 and we denote by P the distribution of the random vectors ξn, therefore
from the independence of observations accross sensors we obtain: P = P1 × . . .× PK . We also denote
by {Fn,i}({Fn}) the filtration generated by the process {ξn,i} ({ξn}) with F0,i(F0) denoting the trivial
σ-algebra.
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We assume that P1,i,P0,i are mutually absolutely continuous, therefore the Radon-Nikodym deriva-
tive dP1,i

dP0,i
and its logarithm are well-defined. From the i.i.d. assumption within the sensors and the

independence assumption accross the sensors, we can define the log-likelihood ratio process locally at
sensor i and globally in the sensor-network as:

un,i =
n∑
j=1

`j,i, un =
K∑
i=1

un,i,

respectively, where u0,i = 0 and `j,i = log dP1,i

dP0,i
(ξj,i). In other words, `j,i is the log-likelihood ratio of

the jth observation in the ith sensor.
We also define the Kullback-Leibler Divergence I1,i = E1[`n,i], I0,i = −E0[`n,i] of P1,i versus

P0,i and P0,i versus P1,i respectively which we assume that are finite in every sensor i. Let also I1 =∑K
i=1 I1,i, I0 =

∑K
i=1 I0,i.

In classical sequential hypothesis testing, the goal is to choose between the hypotheses H0 and H1

using a sequential test, i.e. a pair (T , dT ), where T is an {Fn}-adapted stopping time and dT is an
FT -measurable r.v. with values in {0, 1}.

In the decentralized version of the problem we must choose: (1) an increasing sequence of {Fn,i}-
adapted stopping times {τ ik}∞k=1 at each sensor i at which times to communicate with the fusion center
(sampling strategy), (2) a sequence of quantized signals {zik}∞k=1 to transmit to the fusion center from
sensor i at the times {τ ik} (quantization strategy) and (3) a sequential test that is based on the available
information at the fusion center, i.e. the quantized signals {zik} from all sensors and the corresponding
stopping times {τ ik}.

The above formulation of the decentralized problem generalizes the typical mathematical setup in
the literature (see e.g. [2], [4]), where only steps (2) and (3) are included and the sensors are assumed to
communicate, synchronously, with the fusion center at every time instant n. It should be noted that in
the proposed approach communication between sensors and fusion center is asynchronous and sparse.

2.1 Performance Criteria and the Optimal Centralized Tests
We use Wald’s approach [5] to formulate the sequential hypothesis-testing problem. We start by intro-
ducing the discrete-time version of the Sequential Probability Ratio Test (SPRT), which is defined as
follows:

N = inf{n ≥ 1 : un /∈ (−A,B)} , dN = 1{uN≥B} , (1)

where A,B > 0 are two constant thresholds. The SPRT was shown by Wald and Wolfowitz in [6] to be
optimal in the sense that it solves the following optimization problem:

inf
(T ,dT )

Ej [T ]; subject to P0[dT = 1] ≤ α and P1[dT = 0] ≤ β, (2)

where j = 0, 1 and α, β > 0 are such that α + β < 1. The boundaries A,B are chosen so that the
error probability constraints in (2) are satisfied with equalities. It is well-known that under appropriate
conditions on the process {un}, such as existence and finiteness of the moment-generating function (see
[3]), we have that as α, β → 0:

A = O(| log β|) , I1E1[N ] = | logα|(1 + o(1))
B = O(| logα|) , I0E0[N ] = | log β|(1 + o(1)).

2.2 Suggested Decentralized Test
Sampling & Quantization Strategy. Following [1] we suggest that sensor i sends a quantized signal
to the fusion center at the stopping times {τ ik}, which are defined recursively as follows:

τ ik = inf{n ≥ τ ik−1 : un,i − uτ ik−1,i
/∈ (−∆i, ∆i)}, (3)
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where ∆i,∆i > 0 are the sampling thresholds in sensor i and τ i0 = 0. The signal that the ith sensor
sends at time τ ik , i.e. at the kth time it communicates with the fusion center, will be:

zik = 1{u
τi
k
,i
−u

τi
k−1

,i
≥∆i}. (4)

We denote by ηik the overshoot that occurs in the kth sample from the ith sensor, i.e.

ηik = (uτ ik,i − uτ ik−1,i
−∆i)+ + (uτ ik,i − uτ ik−1,i

−∆i)
−.

We also denote by ˜̀
k,i the log-likelihood ratio of zik. For any given sensor i, {ξn,i} is a sequence of

i.i.d. r.v’s under both hypotheses, thus {zik} is a sequence of i.i.d. Bernoulli r.v’s with parameter 1−π1,i

under H1 and π0,i under H0, where

π1,i = P1[zik = 0] , π0,i = P0[zik = 1],

where we note that π0,i, π1,i < 0.5. This suggests that:

˜̀
k,i = λiz

i
k − λi(1− zik), where λi = log

(
1− π1,i

π0,i

)
, λi = log

(
1− π0,i

π1,i

)
.

Sequential test at the fusion center. In order to define the suggested decentralized sequential test we
introduce the following notation, which suppresses the dependence on the sensor: we denote by τk the
time that the jth signal arrived to the fusion center independently of the sensor who sent it. Since it is
possible to have signals from different sensors sent at the same time to the fusion center, we order them
in an arbitrary way, for example in alphabetic order. Thus, if for example sensors i and m both send
a signal at time n=1, with i < m, then we set: τ1 = τ1,i = 1, τ2 = τ1,m = 1. Similarly, we denote
by zk the signal that arrived at the fusion center at time τk, ˜̀

k the log-likelihood ratio of zk and ηk the
corresponding overshoot. Moreover, we denote by δk the identity of the sensor which sent the signal zk,
i.e. δk = i, if the kth signal was sent from sensor i, i = 1, . . . ,K. Finally we denote by {Ck}∞k=0 the
flow of information at the fusion center, i.e.

Ck = σ {(zs, δs), 1 ≤ s ≤ k} .

Clearly, Ck ⊂ Fτk .
Suppose now that {ũk} is the log-likelihood ratio process of the messages {zk} that arrive at the

fusion center from any sensor. Then, from the independece across and within sensors and since the
fusion center knows which sentor sent each signal, we have the following representation:

ũk =
k∑

m=1

˜̀
m =

K∑
i=1

ki∑
m=1

˜̀
m,i, where ki =

k∑
m=1

1{δm=i}, i = 1, . . . ,K.

We note that index {k} counts the number of samples received at the fusion center and not global time.
Reference to global time is achieved by using the sequence of communication times {τk} since the kth
sample received by the center corresponds to the global time τk.

The suggested sequential test for the problem in (2) will then be:

Ñ = τK, where K = inf{k ≥ 1 : ũk /∈ (−Ã, B̃)} , dÑ = 1{ũK≥B̃} , (5)

where Ã, B̃ are chosen so that P0[dÑ = 1] = α and P1[dÑ = 0] = β.
Notice thatK is a stopping time with respect to filtration of the fusion center, i.eK is a {Ck}-adapted

stopping time. Moreover, CK ⊂ FÑ , since Ñ = τK. Finally, by the definition of the likelihood ratio
process we have the following relationship:

E0[euÑ |CK] = eũK .
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This is true, since the probability measures projected onto the space generated by the data transmitted to
the fusion center involves only Bernoulli random variables. Consequently the log-likelihood ratio at the
kth sample is simply ũk.

We now state some Lemmas, which are useful for proving the main results of this paper, however
we omit most of the proofs, due to space constraints.

Lemma 1. Ã ≤ | log β| , B̃ ≤ | logα|.

Lemma 2. For large values of ∆i, ∆i we have:

E1[|η1,i|] = O(1) , λi = ∆i + ρi + o(1) , ∆i = O(| log(π0,i)|)
E0[|η1,i|] = O(1) , λi = ∆i + ρ

i
+ o(1) , ∆i = O(| log(π1,i)|)

where ρi, ρi are positive constants which do not depend on ∆i, ∆i.

Lemma 3. For j = 0, 1, we have the following inequalities:

Ej

[ K∑
k=1

|ηk|

]
≤ Ej [K]

K∑
i=1

Ej [|η1,i|] , Ej

[ K∑
k=1

|˜̀k − Ej [˜̀k]|

]
≤ Ej [K]

K∑
i=1

Ej [|˜̀1,i − Ej [˜̀1,i]|].

The performance of the suggested scheme is characterized by the following inequalities:

Proposition 1.

I1
E1[Ñ ]
| logα|

≤

(
1 +

∑K
i=1 λi
| logα|

)(
1 +

∑K
i=1 E1[|η1,i|]

ζ1

)
, (6)

I0
E0[Ñ ]
| log β|

≤

(
1 +

∑K
i=1 λi
| log β|

)(
1 +

∑K
i=1 E0[|η1,i|]

ζ0

)
, (7)

where ζ1 ≡ mini E1[˜̀1,i] −
∑K

i=1

√
V1[˜̀1,i] , ζ0 ≡ mini E0[˜̀1,i] −

∑K
i=1

√
V0[˜̀1,i] and Vj denotes

variance.

Proof. We will work under H1 and prove (6), we can prove (7) in the same way. We observe that {un} is
a random walk and Ñ an integrable stopping time with respect to the filtration {Fn}. Therefore, we can
apply Wald’s identity and have:I1E1[Ñ ] = E1[uÑ ] = E1[uÑ − ũK]+E1[ũK]. From the definition of the
overshoots {ηk} we have: uÑ − ũK =

∑K
k=1 ηk ≤

∑K
k=1 |ηk|, thus from Lemma 3 we obtain:E1[uÑ −

ũK] ≤ E1[K]
∑K

i=1 E1[|η1,i|]. Moreover, ũK =
∑K

k=1(˜̀k − E1[˜̀k]) +
∑K

k=1 E1[˜̀k] ≥ −
∑K

k=1 |˜̀k −
E1[˜̀k]|+Kmini E1[˜̀1,i]. Using Lemma 3, the fact that the L2 norm is larger than the L1, and assuming
ζ1 > 0 yields I1E1[Ñ ] ≤ (1 +

∑K
i=1 E1[|η1,i|]/ζ1)E1[uÑ ]. Our proof is completed by observing

that from the definition of the sequential test in (5) and Lemma 1, we have: ũK ≤ B̃ +
∑K

i=1 λi ≤
| logα|+

∑K
i=1 λi, since

∑K
i=1 λi is the maximum possible overshoot ũK − B̃ on the event {ũK ≥ B̃}.

Thus: E1[ũK] ≤ | logα|+
∑K

i=1 λi.

We can now show that the suggested scheme is asymptotically optimal if we let the thresholds
∆i, ∆i →∞ appropriately as α, β → 0. Before we do that, we state the following Lemma:

Lemma 4. ζ1, ζ0 →∞ as ∆i, ∆i →∞.

Proposition 2. If α, β → 0 and ∆i, ∆i →∞ so that:

∆i = o(| logα|) , ∆i = o(| log β|), (8)

then Ej [Ñ ]
Ej [N ] → 1, j = 0, 1, i.e. the suggested scheme (Ñ , dÑ ) is asymptotically optimal of order-1.
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2.3 Optimal Rate for the Sampling Thresholds
It is very interesting now to determine the optimal divergence rate of the thresholds ∆i, ∆i as a function
of the error probabilities α, β.

Proposition 3. If ∆i, ∆i → ∞ then the optimal divergence rate for the sampling thresholds ∆i, ∆i as
α, β → 0 is:

∆i = O(
√
| logα|) , ∆i = O(

√
| log β|).

Under this selection, as α, β → 0, we have that:

E1[Ñ ] ≤
| logα|+ const.

√
| logα|+ const.

I1
, E0[Ñ ] ≤

| log β|+ const.
√
| log β|+ const.

I0
,

and

E1[Ñ ]− E1[N ] = O(
√
| logα|) , E0[Ñ ]− E0[N ] = O(

√
| log β|).

2.4 Oversampling and Asymptotic Optimality of order 2
Suppose now that, at each sensor, we have the possibility to modify the first absolute moment Ej [|ξn,i|]
of the acquired samples. In a real sensor network system where samples are obtained by sampling
continuous-time signals this can be realized by changing the sampling rate. We can then show that
provided that the second moment is sufficiently small we obtain asymptotic optimality of order-2 for
the suggested scheme even with fixed sampling thresholds ∆i, ∆i. This is the content of the following
proposition.

Proposition 4. Assume that as α, β → 0 we have the ability to force Ej [|ξn,i|] → 0, j = 0, 1, i =
1, . . . ,K. If for every sensor i we keep the sampling thresholds ∆i, ∆i fixed and select the rates as
follows

| logα| · E1[|ξ1,i|]→ 0 , | log β| · E0[|ξ1,i|]→ 0, (9)

then Ej [Ñ ]− Ej [N ] = O(1), j = 0, 1 , i.e. the suggested scheme (Ñ , dÑ ) is asymptotically optimal of
order-2 under both H0 and H1 for the problem in (2).

Example: Suppose that the i.i.d. sequence of observations in each sensor is obtained from canonical
deterministic sampling of a continuous-time process {ξt,i}t≥0 at the discrete times t = nh, n ∈ N ,
where each {ξt,i} is a Brownian Motion with drift 0 under H0 and µi under H1. Each µi is a real non-
zero constant and h > 0 is the common sampling period for all sensors. We then have the followning
hypothesis testing problem:

H0 : {ξnh,i − ξ(n−1)h,i} ∼iid N (0, h) , H1 : {ξnh,i − ξ(n−1)h,i} ∼iid N (µih, h) (10)

Letting h → 0 makes the discrete problem converge to the continuous problem, thus:
limh→0 Ej [|ξ1,i|] = 0, j = 0, 1. Therefore, letting h → 0 and α, β → 0 in such a way that condi-
tion (9) is satisfied, leads to order-2 asymptotic optimality of the D-SPRT. Of course the question is
how dense the sampling must be in order to have performance which is comparable to the optimum. As
the next simulation example reveals, even crude sampling is sufficient to guarantee a very satisfactory
performance.

3 Design and Simulation Experiments
The main challenge in the implementation of the D-SPRT is the choice of the sampling thresholds ∆i

and ∆i. Small values of ∆i, ∆i’s entail more frequent communication between the sensors and the
fusion center, but make the scheme more vulnerable to the overshoot effect while overly large values of
the same parameters result in larger detection delays. Thus, we should choose the sampling thresholds
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to be large enough in order to stabilize the overshoot effect, but not too large to affect the frequency of
communication between sensors and fusion center.

In Propositions 2 and 3 we deal exactly with this problem and provide the (optimal) rate of diver-
gence for the sampling thresholds that allow the scheme to be asymptotically optimal. However, the
scheme will in practice be implemented with constant predetermined sampling thresholds; thus there is
still a lot of flexibility in the specification of the sampling thresholds, since Proposition 3 determines
only the optimal divergence rate of the ∆i, ∆i’s with respect to the error probabilities α, β.

In Proposition 4, we take a different approach and consider the sampling frequency h of the
continuous-time signal at the sensors as the control parameter, instead of the sampling thresholds. The
results of these propositions imply that oversampling at the sensor-level improves dramatically the effi-
ciency of the D-SPRT by minimizing the overshoot effect. In that case, we expect smaller ∆i,∆i’s to
lead to better performances for the D-SPRT.

We illustrate these ideas by performing two simulation experiments in the context of problem (10).
We set K = 4 and µ1 = . . . = µ4 = 1. We compare our scheme defined in (5) with the optimal central-
ized SPRT (1) and also with the test suggested by Mei in [2], which is also asymptotically optimal. We
consider two cases h = 1 and 0.1 while the sampling thresholds take the values∆i = ∆i = 1.5, 4.5, 7.5.
We plot the resulting average-length-run (ARL) curves and compare them to the corresponding curves
of the optimal SPRT and Mei’s test. The horizontal axis represents | logα|(= | log β|), since in our
example we consider α = β and the vertical axis represents the expected time for a decision.

Both graphs show the D-SPRT has a substantially better performance than Mei’s test and is also very
close to the optimal performance. This is true for all three choices of the sampling thresholds. Moreover,
in the graph to the right which corresponds to h = 0.1, the D-SPRT (with the same choices for the
sampling thresholds) is much closer to the optimal centralized test than in the left case where h = 1.
In addition to that, when h = 0.1 there is a clear ordering in the curves that correspond to the different
∆i = ∆i’s with smaller sampling thresholds leading to better performances. These graphs are consistent
with our results and seem to advocate the use of our scheme especially in combination with oversampling
at the sensor level.
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