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Abstract. We consider the problem of detecting a proportional change in the intensity of a counting
process with a continuous compensator. We prove that if the counting process does not have explosions,
the CUSUM test is optimal in a Lorden sense. In particular, the CUSUM test minimizes the worst-case
conditional expected number of events that occur after the change and before raising an alarm given the
worst possible history up to the time of the change. We apply this result to the detection of the onset
of epidemics and we discuss modifications of the optimal detection rule when the processes of interest
are monitored in discrete times.
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1 Introduction and motivation

Since its introduction by Page (1954) the Cumulative Sums or CUSUM test has been one of the
most popular sequential schemes for detecting abrupt changes in the dynamics of a stochastic
system. A strong theoretical argument in its favor was provided by Moustakides (1986), who
proved that the CUSUM is the optimal detection rule according to the criterion suggested by
Lorden(1971) in the case of independent and identically distributed random variables before and
after the change. The optimality of the CUSUM rule was later extended for other probabilistic
models for the observations (for example, Shiryaev (1996), Moustakides(2004)).

As it was discussed by Mei et. al (2009), a natural field of application for the techniques of
quickest detection -and the CUSUM in particular- is biosurveillance. The goal in biosurveillance
is to detect rapidly and accurately the onset of an epidemic, that is, when the incidence rate
of a particular disease in a certain population has increased significantly above the standard
rate. Thus, in order to detect the outbreak of a disease it is important to take into account not
only the number of cases but also the corresponding population size. We do this in a counting
process framework.

2 Problem formulation and main result

Let (£2, F,P) be a probability space on which we define the stochastic processes { N¢, By, Dt }4>0.
N; counts the number of cases in the population up to time t, whereas B; and D; represent the
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number of births and deaths in the population up to time ¢. We assume that all these processes
are observable and we denote by {F;} the corresponding filtration:

Fit=0(Ng,Bs,Ds: 0< s<t), t>0.

We model the emergence of an epidemic as an abrupt change in the intensity of the counting
process {N;}, which occurs at some unknown and deterministic time 7 € [0, 00] (7 = o0 cor-
responds to the case of no change). In other words, we parametrize the underlying probability
measure P by the unknown time of the change 7 and we assume that

t
Mtth—/ Aods, >0
0
is a (P, F;)-martingale, where
5 @t:Po—i—Bt—Dt, tz()

\ = ly, whent <7
Y7\ ply, when t > T

Py is the initial population size at time ¢ = 0 and p # 1 a known constant. Thus, we assume that
the intensity of {V;} is proportional to the population size with a constant of proportionality
that changes at the onset of the epidemic 7. The goal is to detect 7 based on the sequentially
acquired observations, thus any JF;-stopping time is a potential detection rule.

The CUSUM detection rule has the following form:

S.=inf{t >0:y; >c}, where y =u;—m; and

t
ut:(logp)Nt—I—(l—p)/ lsds , my=(—y)A i<nf<tus, 0<t< o0
0 <s<

0
y is the initialization for (y;);>0 and can take any value in the interval [0, ¢|. The standard choice
is y = 0, whereas a positive value for y leads to faster detection.

In this work, we establish the exact optimality of S, under a modified version of Lorden’s
criterion. Thus, we consider the following performance measure for an arbitrary detection rule
T:

JT) = sg% esssup E; (N7 — N.)"| 7],
-
where E;[-] is the expectation with respect to P,. J[T] represents the worst-case conditional
expected delay of T given the worst possible history up to the time of the change. The difference
with the original performance measure suggested by Lorden is that here we measure the detection
delay in terms of the number of cases - not the actual time- that occur between the change (or
onset of epidemic) and the issuing of the alarm.
Our main contribution can be summarized in the following theorem:

Theorem 1. Let ¢ be chosen so that E[S.] = v, where v is a fized design parameter. If
Py(Neo = 0) = 1, then:
T18.] = inf T[T],

where the infimum is taken over detection rules such that Eo [NT] > 7.

Thus, we prove that S, is the best detection rule among stopping times for which the expected
number of events till a false alarm is at least . The condition Py(N = 00) = 1 guarantees that
S. terminates almost surely and implies that the number of cases -after the change- increases
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with the horizon of observations. Therefore, the optimality of S, does not necessarily hold for
right-censored counting processes where only a finite number of events can be observed.
Moreover, note that the above optimality property is valid independently of the particular
stochastic model for ¢;. Thus, it is straightforward to generalize the above model by allowing
l; to be a function of other observed stochastic processes which may explain the evolution of

{N:}.

3 The case of discrete-time observations

Suppose now that the processes { Ny, By, D;} are observed only at the discrete times 0 = tg <
t1 <...<ty, <...,which may not be deterministic and equidistant. Since

tn,
up, —ug,_, = (logp) (Ny, — N¢, )+ (1—p) / lyds, meN

tn—1

we cannot in general recover u;, — uy, , based on By, — B, , and Dy — D, ., the observed
number of births and deaths in (¢,_1,,].

We suggest approximating the integral f:"ﬁl {5 ds with the corresponding conditional expec-
tation, i.e. Po(t, —tn—1) + B, — D,,, where

tn tn

anE[ Bsds‘Bt”—BtTH] , DH:E[

tn—1

D, ds( Dy, — Dtm}, neN.

tn—1

Thus, the (stochastic) model for the evolution of the population plays an important role in the

construction of an efficient discrete-time approximation for S, unlike the continuous-time case

where the stochastic models for {B;} and {D;} were not affecting the implementation of S..
Then, we can approximate {us, } and {m;, } with

iy = (log p) N, +(1—p)[P0tn+Z(Bj —f)j)} iy = min @, , neN
j=1

and apply the CUSUM rule as follows
So = inf{t, : 9, > ¢}, where G, = Uy — 1.

Again, ¢ should be chosen so that E| A@] = .
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