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Abstract—“THIS PAPER IS ELIGIBLE FOR THE STUDENT
PAPER AWARD.”
We develop optimal centralized sequential estimators under
different formulations of the problem. Decentralized sequential
estimation is also considered for wireless sensor networks. We
propose an asymptotically optimal decentralized scheme based
on level-triggered sampling, a non-uniform sampling technique.
Performance of the proposed scheme is analyzed.

I. INTRODUCTION

Sequential estimation is a classical problem in sequential
analysis. It was, together with sequential hypothesis testing,
first studied by Wald in his seminal work [1]. In sequential
estimation, the sample size is not fixed, as opposed to the
fixed sample size methods. Instead, it is determined by the
collected samples according to a predefined stopping rule [2].

Decentralized parameter estimation is a fundamental signal
processing task that can be realized in wireless sensor net-
works. Due to stringent bandwith and energy requirements
imposed by sensors it is typically performed under the con-
straints of low bandwith usage and low communication rate.
In this paper we are interested in sequential decentralized
estimators rather than fixed-sample-size ones. There are a
few works considering the sequential decentralized estimation
in the literature, e.g., [3], [4], in which sensors employ the
conventional uniform-in-time samplers to sample and transmit
their local observations. On the other hand, similar to [5], in
this paper we will consider using level-triggered sampling, a
non-uniform sampling strategy, which perfectly fits to trans-
mitting information in decentralized systems as recently shown
in [6], [7].

II. PROBLEM FORMULATION AND BACKGROUND
INFORMATION

We represent scalars with lower-case letters, vectors with
upper-case letters and matrices with upper-case bold letters.
Consider the following linear signal model,

yt = HT
t X + wt, t ∈ N, (1)

where yt ∈ R is the observed sample, X ∈ R
n×1 is the de-

terministic but unknown vector of parameters to be estimated,
Ht ∈ R

n×1 is the random vector of scaling coefficients (e.g.,
channel gain vector in a multiaccess channel) and wt ∈ R is
the additive noise. We observe, at each time t, the sample
yt and the coefficient vector Ht. Hence, at each time t,

{(yn, Hn)}tn=1 are known. We assume {wt} are i.i.d. with
E[wt] = 0 and Var(wt) = σ2.

The ordinary least squares (OLS) estimator minimizes the
sum of squared errors, i.e.,

X̂t = argmin
X

t∑
n=1

(yn −HT
n X)2, (2)

and given by

X̂t =

(
t∑

n=1

HnH
T
n

)−1 t∑
n=1

Hnyn = (HT
t Ht)

−1HT
t Yt,

(3)
where Ht = [H1, . . . , Ht]

T and Yt = [y1, . . . , yt]
T .

Under Gaussian noise, wt ∼ N (0, σ2), the OLS estima-
tor coincides with the minimum variance unbiased estima-
tor (MVUE). That is to say, the OLS estimator achieves
the Cramer-Rao lower bound (CRLB), i.e., Cov(X̂t|Ht) =
CRLB. To compute the CRLB we first write the log-likelihood
ratio of the vector Yt given X and Ht as

Lt = log f(Yt|X,Ht) = −
t∑

n=1

(yn −HT
n X)2

2σ2
− t

2
log(2πσ2).

(4)
Then, we have

CRLB =

(
E

[
− ∂2

∂X2
Lt

∣∣Ht

])−1

= σ2U−1
t , (5)

where E
[
− ∂2

∂X2Lt

∣∣Ht

]
is the Fisher information matrix and

we defined U t � HT
t Ht. Since E[Yt|Ht] = HtX and

Cov(Yt|Ht) = σ2I , from (3) we have E[X̂t|Ht] = X and
Cov(X̂t|Ht) = σ2U−1

t , thus from (5) Cov(X̂t|Ht) = CRLB.
Note that the maximum likelihood estimator, maximizing (4),
coincides with the OLS estimator in (3).

In general, under a non-Gaussian distribution the OLS
estimator is the best linear unbiased estimator (BLUE). In
other words, any linear unbiased estimator AtYt, where
E[AtYt|Ht] = X for any At ∈ R

n×t which is a func-
tion of Ht, has a covariance no smaller than that of the
OLS estimator in (3), i.e., Cov(AtYt|Ht) ≥ σ2U−1

t in
the positive semidefinite sense. To see this result we write
At = (HT

t Ht)
−1HT

t +Bt for some Bt ∈ R
n×t, and then

Cov(AtYt|Ht) = σ2U−1
t + σ2BtB

T
t , where BtB

T
t is a

positive semidefinite matrix.



The recursive least squares (RLS) algorithm enables us to
compute X̂t in a much simpler way than (3), which requires
a matrix inversion at each time t. Using RLS, at each time t,
we can update X̂t as

X̂t = X̂t−1 +Kt(yt −HT
t X̂t−1)

where Kt =
P t−1Ht

1 +HT
t P t−1Ht

and P t = P t−1 −KtH
T
t P t−1,

(6)

Kt ∈ R
n×1 being the gain vector and P t = U−1

t . While
applying RLS we first initialize X̂0 = 0 and P 0 = δ−1I ,
where 0 represents a zero vector and δ is a very small number,
and then at each time t compute Kt, X̂t and P t as in (6),
respectively.

III. OPTIMAL SEQUENTIAL ESTIMATORS

In this section we aim to find the optimal pair (T , X̂T )
of stopping time and estimator. The stopping time for an
estimator is selected as the first time it achieves a target
accuracy level. We assess the accuracy of an estimator by
using either its covariance matrix Cov(X̂t) or conditional
covariance matrix Cov(X̂t|Ht). Specifically, we have the
following constrained optimization problems,

min
T ,X̂T

E[T |HT ] such that f
(
Cov(X̂T |HT )

)
≤ C,

(7)

and min
T ,X̂T

E[T ] such that f
(
Cov(X̂T )

)
≤ C, (8)

under the conditional and unconditional setups, respectively,
where f(·) is a function from R

n×n to R and C ∈ R is the
target accuracy level.

Note that the constraint in (7) is stricter than the one in (8)
since it requires that X̂T satisfies the target accuracy level
for each realization of HT , whereas in (8) it is sufficient
that X̂T satisfies the target accuracy level on average. In
other words, even if for some realizations of HT we have
f
(
Cov(X̂T |HT )

)
> C, we can still have f

(
Cov(X̂T )

)
≤

C. The accuracy function f should be a monotone function of
the covariance matrices Cov(X̂T |HT ) and Cov(X̂T ) in order
to make fair accuracy assessments. Two popular and easy-to-
compute choices are the trace Tr(·) and the Frobenius norm
‖ · ‖F . We will next deal with (7) and (8) separately.

A. Conditional Problem

It is known that, in general, with an unconstrained stop-
ping time the sequential CRLB is not attainable under any
kind of noise (Gaussian or non-Gaussian) except Bernoulli-
distributed-noise [8]. We will next show that, with a stopping
time T that {Ht}-adapted, the OLS estimator attains the
sequential CRLB, i.e., X̂T is the sequential MVUE, under
Gaussian noise and it is also the sequential BLUE under non-
Gaussian noise. Denote the sigma-algebra and the filtration
generated by the coefficient vectors H1, . . . , Ht with Ht and
{Ht}, respectively. Similarly denote the sigma-algebra and

the filtration generated by the sample y1, . . . , yt with Ft and
{Ft}, respectively. Then, we are interested in {Ht}-adapted
stopping times. Note that an unconstrained stopping time could
in general be {Ft ∪Ht}-adapted, for which unfortunately we
know that there is no optimal sequential estimator.

Lemma 1. Having a monotone accuracy function f and an
{Ht}-adapted stopping time T we can write, for the constraint
in (7),

f
(
Cov(X̂T |HT )

)
≥ f

(
σ2U−1

T
)

(9)

for all unbiased estimators under Gaussian noise, and for all
linear unbiased estimators under non-Gaussian noise. And the
OLS estimator satisfies this inequality with equality.

Proof: In the previous section, the OLS estimator was
shown to be MVUE under Gaussian noise and BLUE under
non-Gaussian noise. It was also shown that Cov(X̂t|Ht) =
σ2U−1

t . Hence, we write

f
(
Cov(X̂T |HT )

)

= f

(
E

[ ∞∑
t=1

(X̂t −X)(X̂t −X)T �{t=T }
∣∣Ht

])

= f

( ∞∑
t=1

E
[
(X̂t −X)(X̂t −X)T

∣∣Ht

]
�{t=T }

)
(10)

≥ f

( ∞∑
t=1

σ2U−1
t �{t=T }

)
(11)

= f
(
σ2U−1

T
)
, (12)

for all unbiased estimators under Gaussian noise and for all
linear unbiased estimators under non-Gaussian noise. We used
the fact that the event {T = t} is Ht-measurable and E[(X̂t−
X)(X̂t − X)T |Ht] = Cov(X̂t|Ht) ≥ σ2U−1

t to write (10)
and (11), respectively.

Since T is {Ht}-adapted, we have E[T |HT ] = T , and
thus from (7) we want to find the first time that a member of
our class of estimators (i.e., unbiased estimators under Gaus-
sian noise and linear unbiased estimators under non-Gaussian
noise) satisfies the constraint f

(
Cov(X̂T |HT )

)
≤ C, and

also the estimator that attains this earliest stopping time. From
Lemma 1 it is seen that the OLS estimator achieves the
earliest stopping time among its competitors. Hence, for the
conditional problem the optimal pair of stopping time and
estimator is (T , X̂T ) where T is given by

T = min{t ∈ N : f
(
σ2U−1

t

)
≤ C}, (13)

and from (3), X̂T = U−1
T HT

T YT , which can be computed
recursively as in (6). The recursive computation of U−1

t in
the test statistic in (13) is also given in (6). Note that for an
accuracy function f such that f(σ2U−1

t ) = σ2f(U−1
t ), e.g.,

Tr(·) and ‖ · ‖F , we can use the following stopping time,

T = min{t ∈ N : f
(
U−1

t

)
≤ C′}, (14)

where C′ = C/σ2 is the relative target accuracy with respect
to the noise power. Hence, given C′ we do not need to know



the noise variance σ2 to run the test given by (14).
Note that U t, being the summation of covariance matrices

up to time t, is a non-decreasing positive semidefinite ma-
trix, and thus, from the monotonicity of f , the test statistic
f
(
σ2U−1

t

)
is a non-increasing scalar function of time. Specif-

ically, for accuracy functions Tr(·) and ‖·‖F we can show that
if the minimum eigenvalue of U t tends to infinity as t → ∞,
then the stopping time is finite, i.e., T < ∞.

For the special case of scalar parameter estimation, we do
not need a function f to assess the accuracy of the estimator
since instead of a covariance matrix we now have a variance
σ2

ut
, where ut =

∑t
n=1 h

2
n and ht is the scaling coefficient in

(1). Hence, from (14) the stopping time in the scalar case is
given by

T = min

{
t ∈ N : ut ≥

1

C′

}
, (15)

where ut

σ2 is the Fisher information at time t. This result is in
accordance with [9, Eq. (3)].

B. Unconditional Problem

In this case we assume {Ht} is i.i.d.. From the constrained
optimization problem in (8), using a Lagrange multiplier λ we
obtain the following unconstrained optimization problem,

min
T ,X̂T

E[T ] + λf
(
Cov(X̂T )

)
. (16)

We are again interested in {Ht}-adapted stopping times to use
the optimality property of the OLS estimator in the sequential
sense. For the sake of simplicity assume a linear accuracy
function f so that f(E[·]) = E[f(·)], e.g., the trace function
Tr(·), which is also monotone. Then, our constraint function
turns out to be the sum of the individual variances, i.e.,
Tr
(
Cov(X̂T )

)
=
∑n

i=1 Var(x̂
i
T ). Since Tr

(
Cov(X̂T )

)
=

Tr
(
E
[
Cov(X̂T |HT )

])
= E

[
Tr
(
Cov(X̂T |HT )

)]
, we

rewrite (16) as

min
T ,X̂T

E
[
T + λTr

(
Cov(X̂T |HT )

)]
, (17)

where expectation is with respect to HT .
From Lemma 1, we have Tr

(
Cov(X̂T |HT )

)
≥

Tr
(
σ2U−1

T
)

where σ2U−1
t is the covariance matrix of the

OLS estimator at time t. Note that U t/σ
2 is the Fisher

information matrix at time t [cf. (5)]. Using the OLS es-
timator we minimize the objective function in (17), hence
X̂T = U−1

T HT
T YT [cf. (6) for recursive computation] is the

optimal estimator also in the unconditional problem.
Now, to find the optimal stopping time we need to solve the

following optimization problem,

min
T

E
[
T + λTr

(
σ2U−1

T
)]

, (18)

which can be solved by using optimal stopping theory. Writing
(18) in the following alternative form

min
T

E

[T −1∑
t=0

1 + λTr
(
σ2U−1

T
)]

, (19)

we see that the term
∑T −1

t=0 1 accounts for the cost of not stop-
ping until time T and the term λTr

(
σ2U−1

T
)

represents the
cost of stopping at time T . Note that U t = U t−1+HtH

T
t and

given U t−1 the current state U t is (conditionally) independent
of all previous states, hence {U t} is a Markov process. That
is, optimal stopping time for a Markov process is sought in
(19). From [11] the solution is given by

V (U) = min{λTr
(
σ2U−1

)
, 1 + E[V (U +H1H

T
1 )|U ]},

(20)
where expectation is with respect to H1 and V is the optimal
cost function. The optimal cost function is found by iterating
a sequence of functions {Vn} where V (U) = limn→∞ Vn(U)
and

Vn(U)

= min
{
λTr

(
σ2U−1

)
, 1 + E[Vn−1(U +H1H

T
1 )|U ]

}
.

(21)

In optimal stopping theory, the original complex optimiza-
tion problem in (18) is divided into simpler subproblems given
by (20). At each time t we are faced with a subproblem
consisting of a stopping cost F (U t) = λTr

(
σ2U−1

t

)
and

an expected sampling cost G(U t) = 1 + E[V (U t+1)|U t]
to proceed to time t + 1. The optimal cost function V (U t),
selecting the action with minimum cost (i.e., either continue
or stop), determines the optimal policy to follow at each time
t. Specifically, the optimal policy, as we will show later in this
section, chooses to continue as long as V (U t) = G(U t) and
stops the first time V (U t) = F (U t). We need to analyze the
structure of V (U t), i.e., the cost functions F (U t) and G(U t),
to show such a behavior for the optimal policy and find the
optimal stopping time T .

Note that V , being a function of the symmetric matrix
U ∈ R

n×n, is a function of n2+n
2 variables {uij : i ≤ j}

where U = [uij ]. Analyzing a multi-dimensional optimal cost
function proves intractable, hence we will analyze the special
case of scalar parameter estimation. Some numerical results
for the two-dimensional vector case, which demonstrate how
intractable the higher dimensional problems are, can be found
in [10].

For the scalar case, from (20) we have the following one-
dimensional optimal cost function,

V (u) = min

{
λσ2

u
, 1 + E[V (u + h2

1)]

}
, (22)

where expectation is with respect to h1 and h1 is a scalar
coefficient, scaling the parameter x to be estimated [cf. (1)].
Write V as a function of w � 1/u,

V (w) = min

{
λσ2w, 1 + E

[
V

(
w

1 + wh2
1

)]}
, (23)

where as before expectation is with respect to h1. We need
to analyze the cost functions F (w) = λσ2w and G(w) =

1 + E
[
V
(

w
1+wh2

1

)]
. The former is a line, whereas the latter

is in general a nonlinear function of w. We have the following
theorem regarding the structure of V (w) and G(w). Its proof



Fig. 1. The structures of the optimal cost function V (w) and the cost
functions F (w) and G(w).

is presented in [10, Appendix].

Theorem 1. The optimal cost V and the expected sampling
cost G, given in (23), are non-decreasing, concave and
bounded functions of w.

The cost functions F (w) and G(w) are continuous functions
as F is linear and G is concave. From (23) we have V (0) =
min{0, 1 + V (0)} = 0, hence G(0) = 1 + V (0) = 1. Then,
using Theorem 1 we show F (w) and G(w) in Fig. 1. The
optimal cost function V (w), being the minimum of F and
G [cf. (23)], is also shown in Fig. 1, justifying Theorem 1.
Note that as t increases w tends from infinity to zero. Hence,
we continue until the stopping cost F (wt) is lower than the
expected sampling cost G(wt), i.e., until wt ≤ C′′. In other
words, the stopping time in the scalar case of the unconditional
problem is given by

T = min

{
t ∈ N : ut ≥

1

C′′

}
, (24)

similar to the scalar case of the conditional problem [cf. (15)].
Note that the threshold C′′ is determined by the Lagrange
multiplier λ, which is selected so that E

[
σ2

uT

]
= C, i.e., the

variance of the estimator exactly hits the target accuracy level
C, [cf. (16)]. Accordingly, we have C′′ ≥ C/σ2 = C′ since
the upper bound σ2C′′ on the conditional variance σ2wT [cf.
(24)] is also an upper bound for the variance E[σ2wT ] = C.
This result implies that the stopping time of the unconditional
problem will be smaller than that of the conditional problem.

IV. DECENTRALIZED IMPLEMENTATION

In this section, we will develop asymptotically optimal
decentralized sequential estimators for the scalar case of the
conditional problem. Consider the problem of estimating a
non-random parameter, x ∈ R, at a central unit, i.e., the fusion
center (FC), via noisy observations collected at K distributed
nodes, i.e., sensors. Let ykt , t ∈ N, k = 1, . . . ,K , denote the
discrete-time noisy sample observed by the k-th sensor at time
t, given by

ykt = xhk
t + wk

t , (25)

where x is the constant parameter to be estimated, hk
t ∈ R is

the random channel gain and observed by the k-th sensor,
and wk

t ∼ N (0, σ2
k) is the Gaussian noise assumed to be

independent and identically distributed (i.i.d.) across time and
independent but not necessarily identically distributed across
sensors. Accordingly, given hk

t we have ykt ∼ N (xhk
t , σ

2
k),

i.e., ykt is conditionally Gaussian. Note that random hk
t cor-

responds to the fading channels. If sensors transmit their
observations in whole by using infinite number of bits, then
the FC will have access to all local observations {ykt }t,k 1,
which corresponds to the conventional centralized estimation
problem, as discussed in the previous section. However, in
practice, due to power and bandwith constraints, sensors
typically sample their observations and transmit only a few
bits per sample to the FC. In such decentralized setup, the
FC can only obtain a summary of local observations based on
which it performs estimation.

In the scalar case of the conditional problem, optimal
stopping time is given in (15) and from (3) we write the
optimal estimator as x̂T = vT

uT
where ut =

∑K
k=1 u

k
t =∑K

k=1

∑t
n=1(h

k
n)

2 and vt =
∑K

k=1 v
k
t =

∑K
k=1

∑t
n=1 h

k
ny

k
n

due to the independence among sensors. Each sensor k com-
putes (updates) its local processes uk

t and vkt after observing
ykt and hk

t at time t. However, the FC, which determines the
stopping time and computes the estimator, has no access to
the local processes. Hence, sensors should report both {uk

t }k
and {vkt }k to the FC.

Imitating the optimal centralized scheme we propose a de-
centralized scheme (T̃ , x̃T̃ ) based on level-triggered sampling.
We propose that each sensor k, via level-triggered sampling,
informs the FC whenever considerable change occurs in its
local processes uk

t and vkt . The level-triggered sampling is a
simple form of event-triggered sampling, in which sampling
(communication) times {tkn,u}n and {tkn,v}n 2 are not deter-
ministic, but rather dynamically determined by the random
processes uk

t and vkt , respectively, i.e.,

tkn,u � min{t > tkn−1,u : uk
t − uk

tkn−1,u
≥ ek}, (26)

tkn,v � min{t > tkn−1,v : vkt − vktkn−1,v
	∈ (−dk, dk)}, (27)

where n ∈ N, tk0,u = 0, tk0,v = 0. The threshold parameters
dk and ek are constants known by both sensor k and the FC.
Note that in (26) we use a single threshold different from (27)
since uk

t =
∑t

n=1(h
k
n)

2 is a nondecreasing process.
At each sampling time tkn,v, sensor k transmits rv bits,

bkn,1b
k
n,2 . . . b

k
n,rv , to the FC. The first bit, bkn,1, indicates

the threshold crossed (either dk or −dk) by the incremental
process δkn � vktkn,v

− vk
tkn−1,v

, i.e.,

bkn,1 = sign(δkn). (28)

The remaining (rv−1) bits, bkn,2 . . . b
k
n,rv , are used to quantize

the over(under)shoot qkn � |δkn| − dk into q̃kn. We assume that
the parameter to be estimated is bounded, i.e., |x| < X , and
so does the term hk

t y
k
t , i.e., |hk

t y
k
t | < φ < ∞, ∀k, t. At

each sampling time tkn,v, the overshoot value qkn cannot exceed

1The subscripts t and k in the set notation denote t ∈ N and k = 1, . . . ,K ,
respectively.

2The subscript n in the set notation denotes n ∈ N.



the magnitude of the last sample in the incremental process
δkn =

∑tkn,v

n=tkn−1,v+1
hk
ny

k
n, i.e., 0 ≤ qkn < φ. Hence, the interval

[0, φ) is uniformly divided into 2rv−1 subintervals. The FC,
upon receiving the bits bkn,1b

k
n,2 . . . b

k
n,rv from the sensor k at

time tkn,v, recovers the quantized value of δkn by computing

δ̃kn � bkn,1(dk + q̃kn). (29)

Then, it sequentially sums up {δ̃kn}n,k, at the sampling (com-
munication) times {tkn,v}n,k to obtain an approximation ṽt to
vt, i.e.,

ṽt �
K∑

k=1

Nk
t∑

n=1

δ̃kn =

K∑
k=1

ṽkt , (30)

where Nk
t is the number of messages that the FC receives

from the sensor k about vkt up to time t. During the times
the FC receives no message, i.e., t 	∈ {tkn,v}n,k, ṽt is kept
constant.

At each sampling time tkn,u, sensor k transmits ru bits to
the FC, all of which are used to quantize the overshoot pkn �
ηkn − ek into p̃kn, where we defined the incremental process
ηkn � uk

tkn,u
− uk

tkn−1,u
. In this case, we do not need to allocate

a sign bit. Assume (hk
t )

2 < θ < ∞, ∀k, t, hence we have
0 ≤ pkn < θ, and the interval [0, θ) is uniformly partitioned
into 2ru subintervals. In other words, each sensor k determines
the index of pkn, and then transmits it to the FC using ru bits.
The FC, upon receiving the ru bits at time tkn,u, similar to
(29) computes

η̃kn � ek + p̃kn. (31)

Then, similar to (30) it also computes

ũt �
K∑

k=1

Mk
t∑

n=1

η̃kn =

K∑
k=1

ũk
t , (32)

where Mk
t is the number of messages that the FC receives

from sensor k about uk
t up to time t.

The scheme is terminated at the stopping time, T̃ [cf. (15)],
given by

T̃ = min

{
t ∈ N : ũt ≥

1

C′

}
, (33)

and the following estimator

x̃T̃ =
ṽT̃
ũT̃

, (34)

is computed. The following theorem presents the sufficient
conditions under which the proposed estimator, based on level-
triggered sampling, is asymptotically unbiased, consistent and
asymptotically optimal. Its proof can be found in [9, Appen-
dices J & K]. In the theorem,

p→ and d→ denote convergence in
probability and convergence in distribution, respectively, and
uT̃ /σ

2 is the Fisher information at the stopping time.

Theorem 2. Consider the decentralized sequential estimator
given in (33) and (34). As C′ → 0, the estimator is asymptot-
ically unbiased, i.e., E[x̃T̃ − x|H T̃ ] → 0, and consistent, that

is, x̃T̃
p→ x, if dk → ∞, and ek → ∞ at slower rates than

1/C′, i.e., dk = o(1/C′) and ek = o(1/C′), ∀k. Moreover, as
C′ → 0, it is asymptotically optimal, i.e.,

√
uT̃ /σ

2(x̃T̃ −x)
d→

N (0, 1), if dk = o(
√
1/C′), rv = ω(log(

√
1/C′/dk)),

ek = o(
√

1/C′), and ru = ω(log(
√
1/C′/ek)), ∀k.

From Theorem 2 we see that the proposed decentralized
estimator asymptotically unbiased and consistent with appro-
priate thresholds and constant number of bits ru and rv . Note
that it is desired to have the thresholds dk → ∞ and ek → ∞
as fast as possible to attain asymptotically low communication
rates. It is also desired to have the number of bits ru and
rv as small as possible to lower the bandwith consumption.
For asymptotic optimality, even though the rates of ru and ru
are lower bounded by log(

√
1/C′/ek) and log(

√
1/C′/dk),

respectively, in practice they can be very slow, i.e., close to
zero, if dk and ek tend to infinity as fast as possible, i.e., close
to
√
1/C′, as desired in practice.

In [9], the proposed estimator, based on level-triggered
sampling, was shown, both analytically and numerically, to
outperform the decentralized sequential estimator based on
the conventional uniform-in-time sampling. In the uniform-
sampling-based-estimator, the sampling times {tkn,u}n and
{tkn,v}n are, as opposed to (26) and (27), deterministic with
periods Tu and Tv, respectively, and the incremental processes
δkn and ηkn are quantized using ru and rv bits, respectively.

V. CONCLUSION

Optimal sequential estimators were derived for conditional
and unconditional formulations of the problem. A decentral-
ized sequential estimator based on level-triggered sampling
was proposed. Sufficient conditions for asymptotic optimality,
asymptotically unbiasedness and consistency were presented.
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