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Abstract—Opportunistic detection rules (ODRs) are variants
of fixed-sample-size detection rules in which the statistician is
allowed to make an early decision on the alternative hypothesis
opportunistically based on the sequentially observed samples.
From a sequential decision perspective, ODRs are also mixtures
of one-sided and truncated sequential detection rules. Several
key properties of ODRs are established in this paper, in both
the asymptotic regime in which the maximum sample size grows
without bound, and the finite regime in which the maximum
samples size is a fixed finite number. Furthermore, an extended
setup, in which the maximum sample size is a random variable
following a geometric distribution whose realization is not
revealed to the statistician until observing the last sample, is
studied.

I. INTRODUCTION AND BACKGROUND

Consider that an array of random variables Xi, i = 1, 2, . . .,
is drawn sequentially, in an independent and identically dis-
tributed (i.i.d.) manner, from one of two possible distributions
p0 and p1. A statistician sequentially observes the random
variables (called “samples” interchangeably throughout the
paper), and following a certain stopping rule, stops at some
point and makes a decision on which of the two possible
distributions the samples obey. The Wald-Wolfowitz theorem
(See, e.g., [1] [2, Sec. 7.6] [3, Thm. 4.7]) is fundamental,
asserting that the sequential probability ratio test (SPRT),
which sequentially compares the likelihood ratios Λk =∏k

i=1
p1(Xi)
p0(Xi)

, k = 1, 2, . . ., against two thresholds 0 < A ≤
1 ≤ B < ∞, and decides hypothesis H0 (i.e., X· obeys p0)
once Λk ≤ A and hypothesis H1 (i.e., X· obeys p1) once
Λk ≥ B, is optimal in the sense that, among all possible
stopping rules whose false alarm and miss probabilities are
no worse than those attained by the SPRT, the SPRT requires
the minimum expected stopping time under both hypotheses.
In many applications, it is imperative to attain a small

expected stopping time under H1 (the so-called alternative
hypothesis, which usually corresponds to an abnormal condi-
tion that requires immediate attention), but of less importance
to stop promptly under H0 (the so-called null hypothesis,
which usually corresponds to a normal condition). Under that
scenario, the following one-sided SPRT is often considered
[4]: Sequentially compare Λk =

∏k
i=1

p1(Xi)
p0(Xi)

, k = 1, 2, . . .,
against a threshold 1 < B < ∞, and decide hypothesis H1

once Λk ≥ B. The one-sided SPRT stops with probability no
greater than 1/B under H0, but stops with probability one
under H1. Furthermore, the one-sided SPRT is optimal in
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the sense that, among all possible stopping rules whose false
alarm probabilities are no worse than that attained by the
one-sided SPRT, the one-sided SPRT requires the minimum
expected stopping time under H1 [5, pp. 107-108].
Now, consider imposing a constraint on the maximum

number of observed samples; that is, a statistician may at
most observe N samples, where N may be a very large, but
finite, integer. Such a constraint is reasonable since in any
application it is impossible to spend an infinite amount of
time to make a decision. For two-sided problems, truncated
decision rules were considered in [6], [7] and references
therein. For one-sided problems, recently a truncated deci-
sion rule termed an opportunistic detection rule (ODR) was
considered in [8]: the statistician follows the one-sided SPRT
described above, but decides H0 if the one-sided SPRT has
not stopped before observing the last sample XN .
In this paper, we present results that generalize and im-

prove the ODR in [8], following two directions. In the first
direction, we continue to consider the asymptotic regime
with N growing without bound, and characterize the tradeoff
among the exponents of the error probabilities (i.e., false
alarm and miss probabilities) and the normalized expected
stopping time under the alternative hypothesis. As an extreme
case in the tradeoff, the asymptotic performance of the
optimal fixed-sample-size (FSS) decision rule, prescribed
by the Stein-Chernoff Lemma, i.e., an error exponent of
D(p0‖p1), is indeed achievable for any fixed target false
alarm probability, with asymptotically vanishing normalized
expected stopping time under H1. Note that the original
truncated one-sided SPRT ODR considered in [8], which has
a fixed threshold, achieves an exponent of only C(p0, p1),
the Chernoff information of (p0, p1). This comparison clearly
indicates that the truncated one-sided SPRT is a strictly
suboptimal ODR in an asymptotic sense. Furthermore, we
prove that the established achievable tradeoff among the ex-
ponents of the error probabilities and the normalized expected
stopping time under H1 is tight. A key idea of the proof
makes use of the converse for the channel capacity per unit
cost [9] [10].
In the second direction we turn to the finite regime,

considering a Bayesian problem formulation. We seek to
characterize the optimal ODR that minimizes a Bayesian risk
over a finite horizon of fixed N . We show that the Bayesian
optimal ODR is a sequence of likelihood ratio threshold tests,
consistent with our prior experience in many other sequential
decision problems. The Bayesian optimal likelihood ratio
threshold tests have time-varying thresholds, which can be
conveniently computed through backward recursions. We
subsequently investigate an extended setup, in which the
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maximum sample size is no longer fixed, but is a random
variable following a geometric distribution whose realization
is revealed to the statistician only upon observing the last
sample. This setup is suitable for modeling scenarios in
which the observation process is subject to abrupt interrup-
tion, or in which an external controller (say a system operator
in a smart grid system [11]), in a unanticipated manner, issues
a command for prompt decision without further observation.
We establish that, interestingly, the Bayesian optimal ODR
in that setup is a sequence of likelihood ratio threshold
tests with two different thresholds: the first threshold (called
the “running threshold”), which is determined by solving a
stationary state equation, is used when future samples are
still available; the second threshold (called the “terminal
threshold”), which is simply the ratio between the priors
scaled by costs, is used when the statistician reaches the final
sample and thus has to make a decision.
The remaining part of this paper is organized as follows.

Section II presents results of the asymptotic analysis. Section
III presents the finite-horizon Bayesian risk minimization
problem and characterizes its solution. Section IV further
treats the Bayesian risk minimization problem under the
extended setup of random sample size. Finally, Section V
concludes this paper. All the technical derivations are omitted
and will be presented in a full version of this paper.

II. ASYMPTOTIC TRADEOFF BETWEEN DETECTION
PERFORMANCE AND STOPPING TIME

In general, an ODR is described by a stopping time T

adapted to the filtration generated by Xi, i = 1, 2, . . . , N ,
and a terminal decision rule D indicating which of H0

and H1 the statistician believes the observations obey. Note
that when T < N the decision is definitely H1, and the
terminal decision rule D is invoked only when T = N .
For a sequence of ODRs indexed by the maximum sample
size N = 1, 2, . . ., we have an asymptotic tradeoff among
three performance metrics: the exponential decay rate of
the false alarm probability, the exponential decay rate of
the miss probability, and the expected stopping time (nor-
malized by N ) under H1. Mathematically a performance
tuple (ΔFA,ΔM, η) is achievable if there exists a sequence
of ODRs indexed by N , such that lim infN→∞

− logPFA

N ≥
ΔFA, lim infN→∞

− logPM

N ≥ ΔM, and lim supN→∞

T
N ≤

η, where T = E1[T ] is the expected stopping time under H1.
Furthermore, we may call the closure of the union of

achievable tuples under all possible ODRs the ODR perfor-
mance region, which should depend solely upon (p0, p1). We
denote the ODR performance region by R(p0, p1), which is
a subset of [0,∞)× [0,∞)× [0, 1] ⊂ R

3.
The following main theorem of this section fully charac-

terizes R(p0, p1).
Theorem 1: The ODR performance region R(p0, p1) is

given as follows: for each 0 ≤ η ≤ 1,

ΔFA ≤ min

{
ηd1,

sup
α>0

{
α [d1 − ν(d0 + d1)]− logE0

[
e
α log

p1(X)

p0(X)

]}}
,

ΔM ≤
sup
α<0

{
α [d1 − ν(d0 + d1)]− logE1

[
e
α log

p1(X)

p0(X)

]}
, (1)
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Fig. 1. An illustration of (3).

for 0 ≤ ν ≤ 1, where d0 = D(p0‖p1) and d1 = D(p1‖p0).
Theorem 1 is proved in two parts. The achievability part

is established by constructing a specific form of ODRs that
asymptotically achieve the performance tuple described in
Theorem 1. The converse part is established by an argument
of contradiction, in which a key idea is information-theoretic,
basically asserting that, if the ODR performance region
R(p0, p1) can be outperformed, then one can achieve a rate
per unit cost higher than the capacity per unit cost [9] for
a certain stationary memoryless channel, an impossible task
even with feedback and variable-length coding [10].

A. Example: Gaussian Distributions with and without a Drift

To illustrate R(p0, p1), we present an example for the
following hypotheses:

H0 : p0 ∼ N(0, 1) versus H1 : p1 ∼ N(A, 1). (2)

In this case we have D(p0‖p1) = D(p1‖p0) = A2/2.
Then, applying Theorem 1, we can obtain the region(
ΔFA

A2/2 ,
ΔM

A2/2

)
for each 0 ≤ η ≤ 1, as (cf. Figure 1){

(x, y) :
√
x+

√
y ≤ 1, 0 ≤ x ≤ η, y ≥ 0

}
. (3)

The complete characterization of R(p0, p1) is given by the
following and is illustrated in Figure 2.

Corollary 1: For the hypotheses (2), the ODR perfor-
mance region R(p0, p1) is{(

ΔFA

A2/2
,
ΔM

A2/2
, η

)
= (x, y, z) :

√
x+

√
y ≤ 1, 0 ≤ x ≤ z, y ≥ 0, 0 ≤ z ≤ 1

}
. (4)

B. Stein-Chernoff Lemma Revisited

In this subsection, we focus on an extremal case of
Theorem 1, in which the false alarm probability is fixed
without decreasing toward zero exponentially, or, has an
exponent of zero. For this case, Theorem 1 specializes into
the following corollary.

Corollary 2: For an arbitrary fixed target false alarm prob-
ability P ∗

FA > 0, there exists a sequence of ODRs such that
the miss probability scales toward zero, as N grows without
bound, following

lim
N→∞

− logPM

N
= D(p0‖p1), (5)
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Fig. 2. An illustration of R(p0, p1) in (4).

and that the normalized expected stopping time under H1,
T/N , satisfies

lim
N→∞

T

N
= 0. (6)

The case of Corollary 2 has been treated in [8], but therein
the considered form of ODR is restricted to be a truncated
one-sided SPRT, which was shown to behave asymptotically
according to the following theorem.

Theorem 2: ([8, Thm. 1, Thm. 2]) For the truncated one-
sided SPRT ODR that attains an arbitrary fixed target false
alarm probability 0 < P ∗

FA ≤ P0[p1(X) ≥ p0(X)], the miss
probability scales toward zero as N grows without bound as

lim
N→∞

− logPM

N
= C(p0, p1), (7)

where C(p0, p1) is the Chernoff information of (p0, p1) (see
[12] and [13, Ch. 11.9])

C(p0, p1) = − inf
α∈(0,1)

log

(∫
X

pα0 (x)p
1−α
1 (x)dx

)
, (8)

and the normalized expected stopping time under H1, T/N ,
satisfies

lim
N→∞

T

N
= 0. (9)

Comparing Theorem 2 and Corollary 2, we can clearly
see that, at asymptotically diminishing sampling cost under
H1, there exists an ODR that outperforms the truncated one-
sided SPRT ODR in [8]. Furthermore, the exponent achieved
in Corollary 2, D(p0‖p1), is exactly that achieved by the
optimal FSS decision rule as indicated in the Stein-Chernoff
Lemma, but here the corresponding ODR is not FSS, requir-
ing asymptotically diminishing sampling cost under H1. So
in other words, the FSS sampling cost is not fundamental in
achieving the Stein-Chernoff Lemma, which appears to be a
new and somewhat surprising finding.

III. BAYESIAN OPTIMAL ODR: SOLUTION STRUCTURE
AND RECURSIONS

In the subsequent part of the paper, we depart from
asymptotic analysis and examine the finite regime, wherein
we consider Bayesian formulations of the ODR problem. In
order to make use of the optimal stopping theory, it turns out
to be convenient to formulate the problem in the following
way. Consider all stopping times that stop by N , TN , and

terminal decision rules D : XN 	→ {H0,H1}. Note that for
ODRs we need to consider only the terminal decision rule,
because whenever T < N the decision is bound to be H1.
The detection error events can thus be written as

False alarm: {T < N} ∪ {T = N,D = H1} w.r.t. p0
Miss: {T = N,D = H0} w.r.t. p1,

and the expected stopping time under H1 is T = E1[T ].
We thus formulate the the Bayesian risk as follows:

J = (1− π)c0PFA + πc1PM + cT

= (1− π)c0E0 [1(T < N) + 1(T = N)1(D = H1)]

+πc1E1 [1(T = N)1(D = H0)] + cE1[T ], (10)

where 0 ≤ π ≤ 1 is the prior probability of hypothesis H1,
and c0, c1, c > 0 are cost assignments. The problem we seek
to solve is then to choose a stopping time T and a terminal
decision rule D that minimize J, i.e.,

min
T∈TN ,D

J. (11)

The problem (11) can be cast and solved as a Markov
optimal stopping problem [3] [14]. For its solution, we have
the following main theorem of this section.

Theorem 3: The Bayesian optimal ODR that solves (11)
is a sequence of likelihood ratio threshold tests, with time-
varying thresholds.
The thresholds τk are the solutions of

cλ+ E0[hk+1(λL)] = (1− π)c0, (12)

for k = 1, 2, . . . , N−1, where the functions {hk} satisfy the
following backward recursion relationship:

hk−1(λ) = min{(1− π)c0, cλ+ E0[hk(λL)]}, (13)

for k = N,N − 1, . . . , 2, where L = p1(X)/p0(X) with
X following p0, and hN(λ) = min{(1 − π)c0, πc1λ}; the
terminal threshold τN is simply (1−π)c0

πc1
.

Discussion: Note that the sequence of thresholds, {τk},
is generally time-varying, due to the finiteness of N . For
sufficiently large N , however, the backward recursion (13)
becomes asymptotically stationary, and thus the thresholds
{τk} become approximately constant except for those k’s
close to N . Furthermore, the thresholds {τk} can be com-
puted offline, for some sufficiently large N , and in practice
when the maximum sample size N ′ is smaller than N , only
the last N ′ thresholds are used in the corresponding ODR.
The following algorithm implements the Bayesian optimal

ODR under maximum sample size N :

Bayesian Optimal ODR under Maximum Sample Size N

Initial parameters: Hypotheses p0, p1 and prior π, maxi-
mum sample size N , cost assignments c0, c1, c.
Set: A sequence of thresholds {τk}Nk=1 computed via (12)
and τN = (1−π)c0

πc1
.

Algorithm:
initialize n = 1;
while n ≤ N
do compute Λn;
if Λn ≥ τn

terminate returning H1;
else n = n+ 1;
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end if
end while
terminate returning H0;

We illustrate the numerical behavior of the optimal ODR
by the case study of testing the hypotheses

H0 : p0 ∼ N(0, 1) versus H1 : p1 ∼ N(A, 1), (14)

In the presented numerical examples (Figure 3), we set A =
1, π = 1/2, c = 1, N = 50, and let c0 = c1 be 2, 10, and 20
respectively. In the plots we display the thresholds {τn}Nn=1,
computed from the preceding algorithm for the Bayesian
optimal ODR. From the plots, we observe that the backward
recursion quickly leads to stationary thresholds, within ten
samples (returning from n = N ). However, depending upon
the values of the tuning parameters (here the effective ones
are c0 = c1), the evolution trend of the thresholds may differ
considerably. In the plots, when c0 = c1 = 2 the sequence
{τn} increases with n, when c0 = c1 = 20 it decreases
with n, and when c0 = c1 = 10 there further exists a slight
“overshoot” behavior. Intuitively, for small c0 and c1, the
importance of reducing the expected stopping time under H1

outweighs that of decreasing the decision error probabilities,
and hence it is reasonable to promote early stopping by using
lower decision thresholds for early samples; on the contrary,
for large c0 and c1, the priority is on decreasing the decision
error probabilities, and hence it is reasonable to set relatively
high decision thresholds for early samples, in order to avoid
premature error-prone decisions.

IV. BAYESIAN OPTIMAL ODR FOR RANDOM MAXIMUM
SAMPLE SIZE

In this section, we consider an extended setup, in which the
maximum sample size is no longer fixed, but a random vari-
able. To motivate this setup, imagine the scenario in which
an automated surveillance system keeps monitoring a process
and possibly issues a detection of some exceptional condition,
and meanwhile a human operator, in a unanticipated manner,
may interrupt the system at some random time, asking for a
prompt decision without further monitoring.
Specifically, along with the i.i.d. random variable sequence

Xi, i = 1, 2, . . ., following p0 and p1 with prior probabilities
1−π and π respectively, we introduce an additional random

variable N, which is independent of X1,X2, . . ., and follows
a geometric distribution with parameter 0 < ε < 1, i.e.,
Pr[N = n] = (1 − ε)n−1ε, n = 1, 2, . . . We view N as
the maximum sample size. In the model considered herein,
the realization of N is not revealed to the statistician until
observing XN: of course if the statistician has already made
his opportunistic detection before observing XN, there is no
need to know about N any more; otherwise if the statistician
has reached XN without a detection yet, then he is required
to make his decision immediately with the first N samples
at hand, without observing any extra samples.
Due to its geometric distribution, N can be conveniently

interpreted as the first time an i.i.d. sequence of Bernoulli
trials (with success probability ε) returns success. So alterna-
tivelyN is a stopping time defined as N = min{n : Zn = 1},
where Zn is an i.i.d. sequence of Bernoulli random variables
with Pr[Z1 = 1] = ε and Pr[Z1 = 0] = 1− ε. Therefore, for
any stopping time T ′ that is adapted to the filtration generated
by X1,X2, . . ., if we define T = min{T ′,N}, then T is
a stopping time adapted to the product filtration generated
by (X1,Z1), (X2,Z2), . . . With a thus induced T and an
arbitrarily given terminal decision rule D, the statistician
declares H1 if either {T < N} or {T = N, D = H1} occurs,
and declares H0 if {T = N, D = H0} occurs.
Similar to the problem framework in Section III, we define

the Bayesian risk as

J = (1− π)c0PFA + πc1PM + cE1[T ], (15)

where c0, c1, c > 0 are cost assignments, and the problem is
to choose T and D to minimize J. Note that here the stopping
time is not bounded since N can be arbitrarily large.
After some manipulation, we find that the Bayesian risk

(15) is equivalent to the following form:

J = E0

[
(1− ε)T g(ΛT ) +

T−1∑
n=0

(1 − ε)nc(Λn)

]
, (16)

where

g(λ) = (1 − π)c0 +
ε

1− ε
min{(1− π)c0, πc1λ}, (17)

and c(λ) = cλ, for λ ≥ 0. This is exactly the form that has
been treated in [14, 2.14], considering both an instantaneous
reward at the stopping time and accumulated sampling costs,
with everything discounted by an exponential factor (1− ε)k

at time k.
From [14, Thm. 23], we have that the Bayesian optimal

stopping time is given by

T = min{n ≥ 1 : V (Λn) = g(Λn)}, (18)

where V (·) is the solution of
V (λ) = min{g(λ), (1− ε)E0[V (λL)] + c(λ)}, (19)

with L = p1(X)/p0(X), X following p0. Furthermore, V (·)
may be computed as V (λ) = limn→∞ Qng(λ), with the
operator Q defined by

Qf(λ) = min{f(λ), (1− ε)E0[f(λL)] + c(λ)}. (20)

The following algorithm implements the Bayesian optimal
ODR under a geometrically distributed maximum sample
size:
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Bayesian Optimal ODR under Geometrically
Distributed Maximum Sample Size

Initial parameters: Hypotheses p0, p1 and prior π, mean
sample size 1/ε, cost assignments c0, c1, c.
Set: A “running” threshold τr as the value of λ at the
intersection of g(λ) and (1 − ε)E0[V (λL)] + c(λ), and a
“terminal” threshold τt equal to (1−π)c0

πc1
.

Algorithm:
initialize n = 1;
while N has not been revealed
do compute Λn;
if Λn ≥ τr
terminate returning H1;

else n = n+ 1;
end if

end while
if ΛN ≥ τt terminate returning H1;
else terminate returning H0;
end if

For the optimal ODR, an interesting property is that it is a
two-threshold scheme: the “running” threshold τr, which is
determined by solving the stationary state equation (19), is
used to compare with the likelihood ratio sequence before
N, i.e., when future samples are still available; and the
“terminal” threshold τt, which is simply the ratio between the
priors scaled by costs, is used only at the end, i.e., when the
statistician is informed that the final sample has been reached
and a decision is required immediately. Such a two-threshold
scheme is very different from the conventional one-sided and
two-sided SPRTs, in which the thresholds are fixed constants
throughout.
We use the same case study as that considered in Section

III to illustrate the numerical behavior of the optimal ODR
under random maximum sample size. Again we set A = 1,
π = 1/2, and c = 1. For the geometric distribution of N,
we set ε = 0.05, so that the mean maximum sample size is
20. Note that g(λ) is a piecewise linear function of λ with
one switching point exactly at λ = τt; so depending on at
which segment the curve (1− ε)E0[V (λL)] + c(λ) intersects
g(λ), there are two possible situations: τr ≥ τt, and τr < τt.
In Figure 4 we plot the trend of τr as c0 = c1 increases
from 0.2 to 16. We observe that τr increases with c0 and c1,
crossing the level of τt. Interestingly, the growth trend of τr
is virtually linear with c0 and c1.

V. CONCLUSION
In this paper, we have formulated the general ODR

framework and treated several of its key characteristics, in
both asymptotic and finite regimes. An interesting problem
beyond the scope of this paper concerns the asymptotic
analysis of the Bayesian optimal ODR. In such problems
in the sequential analysis literature, one usually proceeds
by letting the sampling cost c decrease toward zero in the
Bayesian risk; see, e.g., [15, Sec. 13]. For our setup, in
order to make the problem meaningful, we may need to tune
the growth of the maximum sample size N (or the mean
maximum sample size 1/ε in the random sample size case in
Section IV) accordingly, say, followingO(1/c). The interplay
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Fig. 4. The running threshold τr versus c0 and c1. The dash-dot line
indicates the terminal threshold τt.

between the sampling cost and the maximum sample size
thus may exhibit interesting behaviors. Another interesting
direction is to develop the ODR framework for continuous-
time stochastic processes.
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