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Abstract—We consider the sequential change detection prob-

lem for Markovian processes. Adopting a Lorden-like criterion

where expected delays are replaced with detection probabilities

we end up with a well defined constrained optimization problem

which is possible to solve, exactly, in the Markovian case. The

optimum scheme turns out to be a modified version of the

Shewhart test (known to be optimum in the i.i.d. case) that

involves two unknown functions. These functions can be identified

by solving a system of two equation which is the result of applying

optimal stopping theory and the need for the optimum scheme

to be an equalizer rule.

I. INTRODUCTION

Suppose {⇠t}t�0 is a discrete-time observation sequence
that becomes available sequentially. Define {Ft}t�0 to be
the corresponding filtration with Ft = �{⇠0, . . . , ⇠t} the
�-algebra generated by the observations up to time t. Let
⌧ 2 {0, 1, . . .} denote a changetime and assume that the
observations follow the probability measure P1 up to and
including ⌧ , while after ⌧ the probability measure switches to
P0. If the change in statistics takes place at ⌧ = t then this
induces a probability measure which is denoted with Pt while
we use Et[·] for the corresponding expectation.

We are interested in detecting the occurrence of the change-
time ⌧ using a sequential strategy, in particular, a stopping time
T adapted to the filtration {Ft}. T will signal the change as
soon as possible avoiding, at the same time, making frequent
false alarms. The detection power of the stopping time T is
usually measured through the average detection delay. In [1]
the generic measure J (T ) = E⌧ [T � ⌧ |T > ⌧ ] is proposed
which, depending on the prior knowledge we have and the
model we adopt for the changetime ⌧ , it is possible to recover
all existing performance criteria encountered in the literature
as: the measure proposed by Shiryaev [2]; by Pollak [3] and,
finally, the criterion proposed by Lorden [4] which is the focus
of our work:

JL(T ) = sup

t�0
ess supEt[T � t|Ft, T > t]. (1)

As we can see Lorden’s measure considers the expected
detection delay conditioned on the worst possible data be-
fore the change (expressed through the “ess sup”) and the
worst possible deterministic changetime (expressed through
“supt�0”). In [1] it is shown that Lorden’s criterion can be
recovered from the generic measure J (T ) by considering ⌧
to be a stopping time (the last time instant under the nominal
regime) adapted to {Ft} and, then, following a worst-case
analysis with respect to ⌧ .

A. Criteria Based on Detection Probability

From (1) it is clear that T can take upon any integer value,
consequently, this quantity can become arbitrarily large. There
are important applications (see [5] and references therein)
where unbounded delays are meaningless (since they imply
that a catastrophic event may already have occurred) and
one would rather prefer to detect the change within a pre-
specified time window. In other words we would like to
have ⌧ < T  ⌧ + m, for given m � 1. Stopping within
the prescribed interval constitutes a desirable event while
T > ⌧ +m is not considered as successful detection.

Similarly to (1) we can now propose the following al-
ternative Lorden-like criterion (for Shiryaev- and Pollak-like
measures see [6], [7]):

JL(T ) = inf

t�0
ess inf Pt(t < T  t+m|Ft, T > t). (2)

Instead of the average detection delay, we focus on the worst-
case detection probability. Clearly, the goal here will be to
maximize the detection probability subject to a suitable false
alarm constraint.

The probability maximizing idea was first adopted by Bo-
jdecki [8] with the optimum stopping time T resulting from
the maximization of the probability P(|⌧ + 1 � T |  m).
The complete solution to this problem was offered for the
i.i.d. case, m = 0 and for the Bayesian formulation with
the changetime ⌧ following a geometric prior. The optimum
stopping time turned out to be the Shewhart test introduced
in [9]. We should mention that m = 0 corresponds to the
maximization of the probability of the event {T = ⌧ + 1},
namely that detection is achieved by using just the first
observation under the alternative regime. A point we need
to make is that Bojdecki, in his approach, did not attempt
to control false alarms in any sense. Following a similar
idea, in [10] this analysis was extended to cover dependent
observations, but no complete solution was offered.

Regarding the Shewhart test, one can find numerous opti-
mality properties in [6], [7] that follow the detection proba-
bility maximization idea applied to Pollak- and Lorden-like
measures combined with suitable false alarm constraints. In
the current work we intend to advance the analysis of [6]
to dependent data. More specifically the goal is to discover
the exact form of the optimum Shewhart test for Markovian
observations.
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B. Problem Formulation

Let us present the precise formulation of the problem of
interest by explicitly defining our performance measure and
the corresponding optimization problem that leads to the
optimum detector. Consider (2) with m = 1, namely

JL(T ) = inf

t�0
ess inf Pt(T = t+ 1|Ft, T > t), (3)

and the following max-min constrained optimization problem

sup

T
JL(T ) = sup

T
inf

t�0
ess inf Pt(T = t+ 1|Ft, T > t)

subject to: E1[T ] � � > 1.
(4)

As we can see the goal is to maximize the worst-case
conditional probability of detecting the change using only the
first sample under the alternative regime, while preventing the
average false alarm period of becoming smaller than some
prescribed value � > 1.

Solving the optimization problem depicted in (4) for the
i.i.d. case (before and after the change), it is shown in [6] that
this leads to the Shewhart test defined as follows

S = inf{t > 0 : L(⇠t) � ⌫}, (5)

where L(⇠t) = f0(⇠t)/f1(⇠t) denotes the likelihood ratio of
the current sample ⇠t with f1(⇠t), f0(⇠t) its pre- and post-
change pdf respectively. Parameter ⌫ > 0 is a constant
threshold selected to satisfy the false alarm constraint with
equality. Actually in [6] this optimality result is presented
under the more general setting of independent and non-
identically distributed observations, with the threshold of the
test required to be a time varying sequence {⌫t} which is
explicitly specified.

II. MARKOVIAN OBSERVATIONS

In this section we consider observations {⇠t} that are
Markov with the corresponding pre- and post-change condi-
tional pdfs denoted as f1(⇠t|⇠t�1) and f0(⇠t|⇠t�1). We will
also assume that at the time of change ⌧ we have a change
in the conditional pdf. In other words the pre-change data
influence the post-change observations. We should note that it
is possible to experience different forms of changepoint mech-
anisms where, for example, post-change data are independent
from their pre-change counterparts (see [1]). This case requires
completely different analysis from the one we present in this
work.

There is an additional detail that necessitates special at-
tention. In order to define our optimum stopping time using
a stationary rule we need to assume that we also observe
⇠0. Due to our assumption that ⌧ � 0 this implies that ⇠0
is necessarily under the nominal regime. Consequently this
sample cannot contribute to the detection of the change when
considered solely by itself. The previous assumption can be
easily relaxed to cover the normal situation where observations
start from ⇠1 with the first sample having two different pdfs
under the two measures. This, however, leads to a stopping
time with a stopping rule at time t = 1 that differs from the
rule applied for t > 1, thus complicating the analysis. For

this reason, and in order to facilitate the presentation of our
results, we decided to reserve the complete analysis for a future
(journal) version of this work which will be more detailed.

A. Candidate Shewhart Test

For t � 1 define the conditional likelihood ratio

L(⇠t, ⇠t�1) =
f0(⇠t|⇠t�1)

f1(⇠t|⇠t�1)
. (6)

The naive extension of the Shewhart test to the Markov case
would be the definition of the corresponding stopping time
similarly to (5) but with L(⇠t) replaced by its conditional
version defined in (6). Unfortunately, the resulting stopping
time lacks exact optimality properties and even if one can show
asymptotic optimality its actual performance will depend on
observation ⇠0 making such optimality nonuniform. Instead,
we propose an alternative version which we detail next and
prove its exact optimality, provided certain functions entering
in its definition are properly selected.

Let c(⇠), ⌫(⇠) be two functions with c(⇠) � 0 and ⌫(⇠) � 1,
and define the following version of the Shewhart stopping time

S = inf{t > 0 : c(⇠t�1)L(⇠t, ⇠t�1) � ⌫(⇠t)}. (7)

Actually this stopping time is equivalent to the original one
depicted in (5) but with the threshold being a separable
function of the current and the previous sample.

In order for (7) to correspond to a practically applicable
detection scheme, the two functions c(⇠), ⌫(⇠) need to be
explicitly specified. For this, of course, we need suitable
equations. By recalling the analysis for the independent but
non-identically distributed case from [6] we observe that it
is necessary for the optimum test to be an equilizer rule
over all changetime values. This means that ess inf Pt(S =

t + 1|Ft,S > t) must be constant over all t � 0. This
requirement translates into the following equation for the
stopping time defined in (7)

P0

�
c(⇠0)L(⇠1, ⇠0) � ⌫(⇠1)|⇠0

�
= �, 8⇠0, (8)

where � 2 (0, 1) some constant. Due to stationarity (8)
suggests that Pt(S = t + 1|Ft,S > t) = � for every t � 0

and ⇠t. Consequently

JL(S) = �. (9)

We note that (8) defines a mapping between ⌫(⇠) and c(⇠).
Indeed, if we fix the detection probability �, and select a
function ⌫(⇠) � 1 then, using (8) we can specify c(⇠) by
solving this equation for c(⇠0) for each value of ⇠0.

We need one more equation to identify the two unknown
functions. Following similar methodology as in the case of the
usual Lorden measure, we recall from [6] that we upper bound
JL(T ) with a simpler expression (see Lemma 2) for which
we can easily apply Optimal Stopping. In order for the test
in (7) to solve the corresponding optimal stopping problem
defined for the upper bound it is necessary the two functions
to satisfy the following integral equation:

⌫(⇠0) = 1 + E1[⌫(⇠1) {c(⇠0)L(⇠1,⇠0)<⌫(⇠1)}|⇠0]. (10)
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Actually from (10) we can immediately deduce that

⌫(⇠0) = E1[S|⇠0]. (11)

Combining (8) and (10) defines a pair of equations with
unknowns the functions c(⇠), ⌫(⇠). The following theorem
states that a solution always exists.

Theorem 1. Fix � 2 (0, 1) and define the sequence of
functions {⌫n(⇠)}, {cn(⇠)} by applying the recursion

cn(⇠) = arg

�
c(⇠) : P0

�
c(⇠)L(⇠1, ⇠) � ⌫n(⇠1)|⇠0 = ⇠

�
= �

 
,

(12)
⌫n+1(⇠) = 1 + E1[⌫n(⇠1) {cn(⇠)L(⇠1,⇠)<⌫n(⇠1)}|⇠0 = ⇠],

(13)

which is initialized with ⌫0(⇠) = 1. Then the sequences
{⌫n(⇠)}, {cn(⇠)} converge to functions ⌫(⇠), c(⇠) respectively
that satisfy (8),(10).

Proof: The main steps of the proof are highlighted in the
Appendix.

As we can see the iterative method during the (n + 1)st
iteration has available ⌫n(⇠) and computes the function cn(⇠)
from (12) to make the Shewhart test an equalizer. Then uses
cn(⇠), ⌫n(⇠) to update ⌫n+1(⇠). Theorem 1 essentially claims
that, for fixed detection probability �, there exists a common
solution ⌫(⇠), c(⇠) to the two equations (8),(10). Even though
not clearly apparent, both functions ⌫(⇠), c(⇠) depend on the
value of the parameter �. In order to complete the definition
of our candidate stopping time we need to specify this last
quantity as well. If g(⇠) is the pdf of ⇠0 under the P1 measure
and we force our stopping time to satisfy the false alarm
constraint with equality then from (11) we obtain the following
equation relating the detection probability � to the average
false alarm period �

� = E1[S] = E1
⇥
E1[S|⇠0]

⇤
=

Z
⌫(⇠)g(⇠) d⇠, (14)

where we recall from Theorem 1 that ⌫(⇠) is a function that
depends on �. Regarding the solution of (14), we have the
following lemma.

Lemma 1. The average false alarm period E1[S] in
(14) is decreasing and continuous in � 2 (0, 1) with
lim�!1 E1[S] = 1 and lim�!0 E1[S] = 1. This suggest
that for any � > 1 there exists � 2 (0, 1) so that (14) is
satisfied.

Proof: A sketch of the proof can be found in the Ap-
pendix.

With Theorem 1 and Lemma 1 we have fully specified the
candidate stopping time S since we have completely identified
the two functions c(⇠), ⌫(⇠) and the detection probability �
corresponding to the average false alarm period �.

B. Max-Min Optimality

Our task in this section is to show that the candidate
stopping time S defined in (7) with c(⇠), ⌫(⇠),� obtained

through (8),(10),(14), is the one solving the max-min con-
strained optimization problem defined in (4). In order to be
able to prove this fact we need to find a suitable upper bound
for JL(T ). The following lemma provides the necessary
expression.

Lemma 2. Let c(⇠), ⌫(⇠) be two functions related through (8)
and S the corresponding Shewhart test. Then for any stopping
time T with E1[T ] < 1 we can write

JL(T ) 
E1[c(⇠T�1)L(⇠T , ⇠T�1)]

E1
⇥PT�1

t=0 c(⇠t)
⇤ , (15)

with equality when T = S .

Proof: A sketch of the main steps are presented in the
Appendix.

The next theorem and its corollary establish the optimality
of our candidate test.

Theorem 2. Let c(⇠), ⌫(⇠),� be the two function and the
detection probability corresponding to � through the system of
equations (8),(10),(14) and T any stopping time that satisfies
the false alarm constraint E1[T ] � �. Then for each such T
we have

E1[c(⇠T�1)L(⇠T , ⇠T�1)]

E1
⇥PT�1

t=0 c(⇠t)
⇤  �,

with equality when T = S .

Proof: The main steps of the proof are highlighted in the
Appendix.

Corollary: Let c(⇠), ⌫(⇠),� be as in the previous theorem and
S the corresponding version of the Shewhart test depicted in
(7). Then S solves the max-min problem defined in (4).

Proof: Combining Lemma 2, Theorem 2 and (9), the
optimality of the proposed version of the Shewhart test is
straightforward. Indeed we can immediately deduce that

� = JL(S)  sup

T
JL(T )  �

with the supremum taken over all stopping times satisfying
the false alarm constraint. This suggests that supT JL(T ) =
� = JL(S) and therefore establishes optimality of S .

Remark. It is interesting to note that the Shewhart test,
defined in (5) for i.i.d. observations, enjoys several optimality
properties. In particular, as we mentioned, it is optimum under
the Lorden-like measure defined in (3), but also under Pollak-
and Shiryaev-like alternatives (see [6], [7]). When however we
consider Markovian observations this general optimality result
is no longer valid. The optimum test we offer in the present
analysis turns out to be optimum only under the Lorden-
like measure and not under the other alternative performance
criteria.

III. NUMERICAL EXAMPLES

Undoubtly AR(1) can be regarded as one of the most pop-
ular Markovian models. For this reason it will be adopted for
our numerical examples. Specifically we consider a nonlinear,
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conditionally Gaussian AR(1) process {⇠t} where the pre-
change model is ⇠t = wt while the post-change satisfies
⇠t = ↵(⇠t�1) + wt with {wt} an i.i.d. zero-mean Gaussian
noise sequence of unit variance and ↵(⇠) a scalar nonlinearity.

For the likelihood ratio L(⇠t, ⇠t�1) we have L(⇠t, ⇠t�1) =

exp

�
� 0.5↵2

(⇠t�1) + ↵(⇠t�1)⇠t
�
. Furthermore if we call

c̃(⇠) = log c(⇠)�0.5↵2
(⇠), ⌫̃(⇠) = log ⌫(⇠) then the proposed

Shewhart test is equivalent to

S = inf

�
t > 0 : c̃(⇠t�1) + ↵(⇠t�1)⇠t � ⌫̃(⇠t)

 

while the naive version of the Shewhart test takes the form

T = inf

�
t > 0 : �0.5↵2

(⇠t�1) + ↵(⇠t�1)⇠t � ⌫̃
 

where ⌫̃ = log ⌫ is a constant threshold. Comparing the two
detection schemes, we realize that the optimum test, replaces
�0.5↵2

(⇠) with the function c̃(⇠) and instead of the constant
⌫̃ uses the function ⌫̃(⇠).

Let us now examine the form of the optimum functions
c̃(⇠), ⌫̃(⇠) when we consider a linear AR(1) model with
↵(⇠) = 0.5⇠ and an average false alarm period equal to
� = 100. Applying the iterations proposed in (12) and (13)
and using numerical techniques similar to the ones developed
in [11], [12], we can compute the functions c̃(⇠), ⌫̃(⇠). Their
form appears in Fig. 1(a) and (b) (in red) respectively. In the
same figures we can see the corresponding functions for the
naive implementation of the Shewhart rule (in blue) namely

(a)

(b)

Fig. 1. For ↵(⇠) = 0.5⇠. Optimum Shewhart test in red: function c̃(⇠) in
(a), and ⌫̃(⇠) in (b). Naive Shewhart test in blue: function �↵2(⇠)/2 in (a),
and threshold ⌫̃ in (b).

�0.5↵2
(⇠) = �0.125⇠2 and ⌫̃ = 1.1. The threshold ⌫̃ was

selected so that the naive test satisfies the false alarm constraint
with equality.

From the two figures we observe that c̃(⇠) diverges sig-
nificantly from �0.5↵2

(⇠). More importantly, this divergence
translates into a substantial performance difference between
the two tests. Specifically the (worst-case) detection probabil-
ity for the optimum is � = 0.022 while in the naive it becomes
0! Indeed for the latter we observe that

ess inf Pt(T = t+ 1|Ft, T > t)

= inf

⇠t�1

Pt

�
�0.125⇠2t�1 + 0.5⇠t�1⇠t > ⌫̃|⇠t�1

�

which is equal to 0 when ⇠t�1 = 0 and ⌫̃ > 0. In other
words when the observation right before the change is 0, then
it is impossible to detect the change just with the first sample
under the alternative regime. On the other hand, with the
optimum detector we have a guaranteed performance which is
independent from the value of the sample before the change.
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APPENDIX

Proof of Theorem 1. By applying the recursion, in order
to show existence of the limiting function ⌫(⇠) we observe
first that ⌫1(⇠) � 1 = ⌫0(⇠). Using induction we can then
show that ⌫n(⇠) � ⌫n�1(⇠). Consequently for each fixed ⇠
{⌫n(⇠)} is a monotonically increasing sequence of n. Again,
using induction we can show that ⌫n(⇠)  b(⇠), where b(⇠)
properly selected function independent from n. Since {⌫n(⇠)}
is monotone and bounded, for each ⇠, there is a limit ⌫(⇠).
This also implies that {cn(⇠)} converges to some c(⇠) which
satisfies (8) and the pair c(⇠), ⌫(⇠) satisfies (10).
Proof of Lemma 1. Let us make explicit the dependence of
the functions ⌫n(⇠) on � by denoting them as ⌫n(⇠,�). We
can show by induction that each function ⌫n(⇠,�), for each
fixed ⇠ is decreasing with respect to �. Consequently, the
same property passes also to the limiting function ⌫(⇠,�).
Furthermore we can show, again by induction, that ⌫n(⇠,�)�
⌫n(⇠,� + ✏)  D(�)✏ where D(�) properly selected constant
(dependent on �) and ✏ > 0 sufficiently small quantity. This
observation also implies that E1[⌫(⇠0,�)] is continuous in
�. As � ! 0 we can see that the corresponding functions
⌫n(⇠,�) ! 1 while as � ! 1 we have ⌫n(⇠,�) ! 1. These
properties pass also to the limit ⌫(⇠0,�) and, therefore, to the
expectation E1[⌫(⇠0,�)]. Since the latter is continuous in �
taking values in the interval [1,1) we conclude that there
exists a �⇤ for which E1[⌫(⇠0,�⇤)] = �.
Proof of Lemma 2. From its definition JL(T ), for every t �
0, satisfies

JL(T )  Pt(T = t+ 1|Ft, T > t)

= E1[L(⇠t+1, ⇠t) {T=t+1}|Ft, T > t]
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where we have used the fact that {T = t + 1} is Ft+1-
measurable and applied a change of measures. Consider
c(⇠) � 0, multiplying both sides with c(⇠t) {T>t} which is
nonnegative; recalling that {T > t} is Ft-measurable; taking
expectation with respect to P1; and summing over all t � 0

we obtain

JL(T )
1X

t=0

E1[c(⇠t) {T>t}] = JL(T )E1

"
T�1X

t=0

c(⇠t)

#


1X

t=0

E1[c(⇠t)L(⇠t+1, ⇠t) {T=t+1} {T>t}]

=

1X

t=0

E1[c(⇠t)L(⇠t+1, ⇠t) {T=t+1}]

= E1[c(⇠T�1)L(⇠T , ⇠T�1)],

which validates the correctness of the upper bound. When c(⇠)
is selected as the solution of (8) we have equality when T = S
because S is an equalizer and JL(S) = � = Pt(S = t +
1|Ft,S > t) for all t � 0.
Proof of Theorem 2. To show the desired inequality we use
similar arguments as in [6] and show that it is sufficient to
limit ourselves to stopping times T that satisfy the false alarm
constraint with equality. Note that for the upper bound it is
sufficient to demonstrate

E1

"
c(⇠T�1)L(⇠T , ⇠T�1)�

T�1X

t=0

�c(⇠t)

#
 0,

which, if we add the false alarm constraint in the form of
equality, it becomes equivalent to

E1

"
c(⇠T�1)L(⇠T , ⇠T�1) +

T�1X

t=0

�
1� �c(⇠t)

�
#
 �.

To prove validity of the previous inequality we can now
assume that T is unconstrained. Applying optimal stopping
and using ideas from [6] we can actually show that the left
hand side is maximized when T = S which suggests that

E1

"
c(⇠T�1)L(⇠T , ⇠T�1) +

T�1X

t=0

�
1� �c(⇠t)

�
#

 E1

"
c(⇠S�1)L(⇠S , ⇠S�1) +

S�1X

t=0

�
1� �c(⇠t)

�
#

= E1

"
c(⇠S�1)L(⇠S , ⇠S�1)� �

S�1X

t=0

c(⇠t)

#
+ E1[S]

= E1[S] = �.

For the second last equality we used from Lemma 2 the fact
that S attains the upper bound and finally that S was designed
to satisfy the false alarm constraint with equality.
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