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Abstract—We are interested in the sequential detection of a
change in the statistical behavior of a random process. Specifically
we consider changes that are not abrupt but exhibit a transitory
phase before reaching their steady-state behavior. Adopting
the classical worst-case conditional detection delay proposed
by Lorden as our performance measure and constraining the
average false-alarm period, we derive the sequential test that
optimizes, in the exact sense, the proposed criterion. The resulting
optimum rule resembles the well known CUSUM rule with the
corresponding test-statistic-update being not only a function of all
pre- and post-change pdfs but also of the false-alarm constraint.

Index Terms—Sequential detection of changes, Quickest detec-
tion, Sequential Analysis.

I. INTRODUCTION

In the quickest change detection literature, it is generally as-
sumed that changes are abrupt, implying that the pre- and post-
change statistical behavior of the observations is stationary.
Although this assumption covers most applications, there are
cases where it does not hold, because changes can be gradual.
Interestingly, even if the change is abrupt, it is possible, by
applying transformations, to end up with a change that is
transitory. For example consider observations {zt} satisfying
zt = vt+µ1{t>τ} where τ is the change-time; µ is a constant
mean; {vt} follows the simple first-order autoregressive model
vt = αvt−1 + wt and {wt} is an i.i.d. process with mean 0.
If we now apply the transformation ξt = zt − αzt−1 then

ξt =

 wt, t = 1, . . . , τ
wt + µ, t = τ

wt + (1− α)µ, t > τ + 1.

Consequently, we observe, that an abrupt change in the
original sequence {zt} corresponds to a transitory change in
the transformed sequence {ξt}, but with the latter enjoying
statistical independence of its samples, a property which
is always analytically desirable and the primary reason for
applying the specific data transformation. Clearly the duration
of the transition can become more pronounced if we increase
the order of the autoregressive model describing {vt}. As it
is mentioned in [1]–[4] there are interesting applications in
econometrics, statistical process control, and environmental
monitoring that can be modeled with changes exhibiting a
short post-change transitory phase before reaching statistical
stationarity.

Let us define our problem of interest more technically. We
assume that we observe, sequentially, a process {ξt} with
independent samples that can be described as follows:

ξt ∼

 f∞(ξ) for 0 < t ≤ τ
fi0(ξ) for t = τ + i; 1 ≤ i ≤ D
fss0 (ξ) for t > τ +D.

Specifically, we assume that there exists a change-time τ such
that the observations up to (and including) time τ are i.i.d.
following the nominal pdf f∞(ξ), while after τ +D they are
again i.i.d. following an alternative pdf fss0 (ξ). However, this
switching in pdf takes place gradually since at time τ + i,
where i = 1, . . . , D, the pdf fi0(ξ) is a function of the time
increment i.

We would like to emphasize that the problem we consider in
this work is not the same as the detection of a transient change
[5], [6]. The latter corresponds to the case where fss0 (ξ) =
f∞(ξ), namely the change in statistical behavior lasts D time
instances and after this time period the process returns to its
nominal behavior. Here, after the transient period the pdf fss0 (ξ)
becomes stationary but is different from the nominal f∞(ξ).

From a purely practical perspective, one might wonder
whether there is any essential reason for seeking optimum
schemes for transitory changes, especially when the corre-
sponding duration is short. Interestingly, the answer to this
question is positive. This fact can become quite apparent when
we consider applications in which, during the transitory phase,
observations tend to be strongly erratic before settling to their
steady-state distribution (see Fig. 1). By harvesting this short
but often powerful abnormal behavior it is possible to enjoy
non-negligible performance gains when adopting optimum

Fig. 1. Example of observations with strong transitory post-change statistical
behavior.



detection strategies.
Before concluding our introduction we need to mention the

work in [7], [8] that corresponds to the extremal version of
our formulation with D =∞ (no steady-state phase). In both
articles the authors consider as post-change model a regression
of the form ξt = wt+{µ+δ(t−τ)}1{t>τ} with µ, δ constants
and {wt} i.i.d. It is clear that ξt, after the change, and because
of the term δ(t − τ), can never reach stationarity. Unlike
[7], [8] where one can only establish first-order asymptotic
optimality, here, by bounding D, we will attempt to obtain
strictly optimum detection schemes.

II. MAIN RESULTS

In this work we focus on the simplest case corresponding
to D = 1, namely, we consider a transitory period that
involves just a single sample. Even though this assumption
seems very restrictive the corresponding study reveals the main
analytical difficulties occuring in the problem of transitory
changes. We should also mention that there are significant
practical applications where the assumption of D = 1 can
be satisfied. A characteristic example is that of Line outage
detection in power systems (e.g. [9], [10]) where, after the
occurrence of a line outage, the observation vector from
the phasor measurement units (PMUs) exhibits a significant
change in mean for a very short time-period before settling
to its steady-state response. The latter resembles the nominal
zero-mean pre-change behavior but with a different covariance
matrix corresponding to the topology of the network after the
line outage. Because of the sampling rates used to monitor
the continuous-time PMU signals, we usually obtain only one
sample from the transitory phase. As it has been observed in
[9], [10] if we rely solely on the stationary post-change phase,
we are able to detect the change, but this comes at the expense
of an elevated detection delay compared to schemes that take
advantage of both, the transitory and steady-state phases.

Returning to our mathematic setup, as it is well known from
the sequential change detection literature, a sequential detector
is simply a stopping time T which is {Ft}-adapted with
Ft = σ{ξ1, . . . , ξt}. Regarding performance metrics for T ,
several criteria have been proposed which differ in the degree
of knowledge we have about the mechanism that imposes the
change (see [11] for an overview). In this work we focus on
the performance measure suggested by Lorden [12]

JL(T ) = sup
t≥0

ess supEt[T − t|T > t,Ft], (1)

where Et[·] denotes expectation with respect to the probability
measure induced, when the change takes place at τ = t. With
this definition E∞[·] refers to the expectation with respect
to the pre-change measure, while E0[·] denotes that with
respect to the post-change measure. We observe that in (1)
we consider the worst possible history before the change and
the worst possible change-time that maximize the average
detection delay (conditioned on the event that there is no false-
alarm before the change). In fact this criterion corresponds to
complete lack of knowledge of the mechanism that generates
the change [11].

Following [12] we can now optimize the stopping time T
by solving the following constrained optimization problem

inf
T
JL(T ), subject to: E∞[T ] ≥ γ > 1. (2)

More specifically we minimize the Lorden metric for the stop-
ping time T defined in (1), assuring, in parallel, an acceptable
false-alarm level by suitably constraining the corresponding
average false-alarm period.

It is clear that in order for the transitory phase to have
any essential effect in our analysis we need to adopt a non-
asymptotic formulation. This is because in asymptotic setups
detection delays tend to infinity. Indeed we recall that, in
the classical i.i.d. case, the average detection delay is of the
order of log γ (with γ → ∞ for the asymptotic analysis),
consequently events of finite duration become insignificant.

For the classical case of abrupt changes (D = 0), where
we have a single pre- and post-change distribution f∞(ξ) and
f0(ξ), we know [13] that the optimum detector according to
(2) is the CUSUM test defined through the CUSUM statistic

Rt = max{Rt−1, 1}Lt = Rt−1Lt + (1−Rt−1)+Lt

where x+ = max{x, 0}; Lt =
f0(ξt)

f∞(ξt)
; R0 = 0,

(3)

and the corresponding CUSUM stopping time

TC = inf{t > 0 : Rt ≥ ν}.

Threshold ν is selected so that the false-alarm constraint in
(2) is satisfied with equality.

The recursion in (3) requires only one likelihood ratio
since the post-change pdf is stationary. When, however, the
change is not abrupt and ftr0 (ξ) denotes the pdf during the
transitory phase while fss0 (ξ) during the steady-state, then for
each time instant t we have two possible likelihood ratios
Ltrt = ftr0 (ξt)/f∞(ξt), L

ss
t = fss0 (ξt)/f∞(ξt). To accommodate

this situation we need to modify the test statistic properly so
that it includes both possibilities. We therefore propose the
following candidate detection scheme

Rt = Rt−1L
ss
t + φ(Rt−1)L

tr
t , R0 = 0,

To = inf{t > 0 : Rt ≥ ν}.
(4)

Here, φ(R) ≥ 0 is no longer equal to (1 − R)+ as in the
classical CUSUM case. Actually, the main challenge in our
analysis is to properly define this function so as to ensure
optimality of (4) according to (2). As we discuss in the sequel,
the exact form of φ(R), unlike in the classical case, depends
not only on the three pdfs f∞(ξ), ftr0 (ξ), fss0 (ξ), but also on the
false-alarm parameter γ.

Even though we will be able to establish existence of
φ(R), obtaining this function analytically, at least with the
adopted analysis, seems impossible. For this reason we will
develop techniques to determine it numerically and, if possible,
accurately. A property that contributes towards this goal is that
φ(R), as in the classical case where it is equal to (1 − R)+,
is supported on the finite interval [0, 1]. The latter allows for
the fine sampling of the function in the interval [0, 1] leading



to its efficient and accurate computation even with elementary
numerical techniques.

The next lemma introduces a number of functions that are
used to represent the average detection and false-alarm delay
for To. In fact the two average delays will be computed not
only for the initial value R0 = 0 but for any value R0 = R.

Lemma 1. Fix φ(R) ≥ 0 to be a function with support on
[0, 1] and let R1 be defined from (4) but with R0 = R. Define
the functions V∞(R), Ṽ0(R) and V0(R) using the following
equations

Ṽ0(R) = 1 + Ess
0 [Ṽ0(R1)1{R1<ν}|R0 = R] (5)

V0(R) = 1 + Etr
0 [Ṽ0(R1)1{R1<ν}|R0 = R] (6)

V∞(R) = 1 + E∞[V∞(R1)1{R1<ν}|R0 = R], (7)

where Ess
0 [·],Etr

0 [·] denote expectation with respect to the
steady-state and transitory pdf respectively and E∞[·] with
respect to the nominal pdf. Then

Et[To − t|To > t,Ft] = V0(Rt) (8)
E∞[To] = V∞(0). (9)

Proof: The proof is presented in the Appendix.
As we mentioned, our goal is to design φ(R) in such

a way that it yields the optimum version of To. The next
theorem identifies important conditions that this function needs
to satisfy.

Theorem 1. There exists function φ(R) ≥ 0 supported on
[0, 1] so that V0(R) defined through (5),(6) is constant for
R ∈ [0, 1] and strictly decreasing for R > 1.

Proof: This theorem is very technical and only the major
steps of the proof are highlighted in the Appendix.

From (8) in Lemma 1 we have that Et[To − t|To > t,Ft]
depends on the history Ft solely through Rt, this suggests

ess supEt[To − t|To > t,Ft] = sup
Rt

V0(Rt).

From Theorem 1 we have that V0(R) attains its maximum for
all R ∈ [0, 1] (without loss of generality we select the value
R = 0), consequently, supRt

V0(Rt) = V0(0). Combining the
two equalities yields ess supEt[To − t|To > t,Ft] = V0(0).
Since this is true for all t, it follows that our rule is an equalizer
over time, and as a consequence we have

JL(To) = V0(0). (10)

We should emphasize that although not apparent from our
notation, for fixed pdfs, the functions V∞(R), V0(R) also
depend on the threshold ν.

Our candidate stopping time To is nearly completely de-
fined. We only need to specify the exact value of the threshold
ν and relate it to the false-alarm parameter γ. Before address-
ing this issue in Lemma 2, we prove an intermediate optimality
result for To which we present with the next theorem.

Theorem 2. Fix ν > 0, and let φ(R) and To be the function
from Theorem 1 and the corresponding stopping time from (4).

Then for any stopping time T satisfying the constraint

E∞[T ] ≥ V∞(0) = E∞[To]

we also have that

JL(T ) ≥ V0(0) = JL(To).

Proof: Again only a sketch of the proof is presented in
the Appendix.

The immediate implication of Theorem 2 is that: if we fix
the threshold ν, design φ(R) according to Theorem 1, and
define the corresponding To according to (4), then To solves
the constrained optimization problem in (2) provided we select
the false-alarm parameter γ = V∞(0).

In order to completely establish our original optimality
claim about To we need to show that for any value of the
parameter γ > 1 there always exists a threshold ν > 0
that can meet the false-alarm constraint with equality, namely
V∞(0) = γ. This is the aim of the following lemma.

Lemma 2. For fixed pre- and post-change pdfs and for
φ(R) selected from Theorem 1, the corresponding function
V∞(0) is increasing with respect to the threshold ν satisfying:
limν→0 V∞(0) = 1 and limν→∞ V∞(0) = ∞. Furthermore,
if the two likelihood ratios Ltr1 , L

ss
1 contain no atoms under

f∞(ξ) then V∞(0) is continuous in ν.

Proof: The proof of this lemma is also very technical
and its details are omitted. A brief sketch can be found in the
Appendix.

An immediate consequence of Lemma 2 is the following
corollary that assures exact optimality of the proposed detector.

Corollary. The stopping time To introduced in (4) with φ(R)
defined from Theorem 1 and the threshold ν selected to satisfy
the false-alarm constraint with equality, that is, V∞(0) = γ,
is optimum according to (2).

With the available results the proof is straightforward:
Lemma 2, using continuity arguments, guarantees existence
of ν such that V∞(0) = γ, while Theorem 2 establishes
optimality of To according to Lorden’s min-max constrained
optimization depicted in (2).

III. NUMERICAL COMPUTATIONS

In our analysis in the previous section we emphasized that
the most crucial issue in this problem is the computation of
the function φ(R) which can only be obtained numerically.
To develop a numerical method we could follow the iterative
logic employed in the Appendix (in “Proof of Theorem 1”) for
the existence of this function. Unfortunately the convergence
speed of the resulting scheme tends to be very low. This is
mainly due to the convergence of the solution of the integral
equation in (11), which is particularly slow when we employ
large threshold values ν.

If φ(k)(R) is the estimate of φ(R) during the kth iteration,
we can increase the convergence speed considerably by finding
the solution to the integral equation in (5) directly and not
iteratively as in (11). This can be achieved by sampling the



range of R and then transforming the integral equation into a
system of linear equations that can be solved numerically using
classical (non-iterative) solvers thus generating the sampled
version of Ṽ0(R). This estimate can then be used in (12) to
solve the first order differential equation using simple finite
differences. The latter provides the update of the estimate of
φ(R) for the next iteration. As we mentioned, this idea has
a positive impact on convergence, speeding up computations
considerably.

To illustrate the proposed numerical technique we apply it
to a Gaussian process {ξt} that has mean equal to 0 before
the change, while after the change the mean equals 1 for
just one sample (transitory phase) and stabilizes to the value
2 for all subsequent samples. All three Gaussian pdfs have
variance equal to 1. Clearly this is not a case where one expects
drastic differences between φ(R) and the classical version
(1−R)+. But even with this simple example one can test if our
analysis is of any practical importance by examining whether
the optimum φ(R) can diverge from the classical version.

Fig. 2. In red the optimum function φ(R) for the Gaussian case with mean
µ switching from 0 to 1 (transitory value) and then to 2 (steady-state value),
for two different values of the false-alarm parameter γ = 10, 55. In solid
black the classical version (1−R)+.

Fig. 2 depicts the resulting optimum function φ(R) for
values of the false-alarm parameter γ = 10, 55. We can
see that in the first case, φ(R) is very close to a linear
function. When, however, we employ the larger value for γ,
the resulting optimum φ(R) is clearly nonlinear as can be
noted by comparing it against the dashed black straight line.
Therefore one can expect that in examples where the transitory
behavior is more extreme, the nonlinear form of φ(R) will be
more pronounced making it very different from the classical
case depicted in solid black.

In the future (extended) version of our work we will target
the analysis of a model that is inspired by the power system
line outage detection problem described in Section II. This
involves a nominal Gaussian pdf with mean 0 and variance
1, a transitory Gaussian pdf with mean µ � 1 and variance
1 and, finally, a steady-state Gaussian pdf with mean 0 and
variance σ2 > 1. We anticipate that in this example the usage

of the optimum detector will result in significant performance
gains compared to alternative detection structures that ignore
the transitory phase.
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APPENDIX

Proof of Lemma 1. The functions Ṽ0(R), V∞(R) are defined
through the integral equations (5),(7). Existence of the solu-
tions is guaranteed through classical integral equation theory
and can be established using iterative solvers. In fact we can
demonstrate that the sequence of functions that is generated
is increasing for every fixed R and also bounded from above,
therefore the pointwise (in R) limit is assured. Continuity can
also be established by assuming that the two likelihood ratios
exhibit no atoms with respect to ftr0 (ξ), fss0 (ξ) and f∞(ξ). The
steps required are standard.

Once we establish existence of Ṽ0(R) the existence of
V0(R) is also guaranteed since it involves a simple expectation
of Ṽ0(R), as we can verify from (6)

To show (8), due to stationarity, we can limit ourselves to
t = 0 and assume that R0 = R < ν. We can then write

E0[To] = E0

[ ∞∑
s=0

1{To>s}
∣∣F0

]

= 1 + Etr
0

[
Ess
0

[ ∞∑
s=1

1{To>s}
∣∣F1

] ∣∣F0

]
.

It is well known that the stationary part involving identically
distributed samples is related to the function Ṽ0(R) defined in
(5). More precisely

Ess
0

[ ∞∑
s=1

1{To>s}
∣∣F1

]
= Ṽ0(R1)1{To>1}.

When this expression is substituted in the previous equation
we obtain

E0[To] = 1 + Etr
0 [Ṽ0(R1)1{To>1}|F0]

= 1 + Etr
0 [Ṽ0(R1)1{R1<ν}|F0] = V0(R),

which proves (8). Equation (9) involves only identically dis-
tributed samples, and it is therefore known to be valid.
Proof of Theorem 1. Existence of φ(R) will be established
by proposing an iterative computation of this function. Specif-
ically we will compute a sequence of functions φ(k)(R),
Ṽ

(k)
0 (R), V (k)

0 (R) that converge to the desired ones. We start
by setting φ(0)(R) = (1 − R)+ and Ṽ

(0)
0 (R) = 1. Consider

now that we are in the kth iteration having available φ(k−1)(R)
and Ṽ

(k−1)
0 (R). Then, according to (5) in Lemma 1, we can

apply the following update

Ṽ
(k)
0 (R) = 1 + Ess

0 [Ṽ
(k−1)
0 (R1)1{R1<ν}] (11)



with R1 = RLss1 + φ(k−1)(R)Ltr1 (i.e. we replace R0 with R
in (4)).

We can now use Ṽ (k)
0 (R) in (6) to update the estimate of

φ(R) and compute φ(k)(R). We recall that φ(R) is supported
on [0, 1] and it must be such that the resulting V0(R) function
is constant in the same interval. We will therefore impose the
same condition on V

(k)
0 (R) by properly designing φ(k)(R).

This suggests that if we differentiate V
(k)
0 (R) with respect

to R we must obtain 0 for R ∈ [0, 1]. This means that for
R ∈ [0, 1]

0 =
dV

(k)
0 (R)

dR
=

d

dR
Etr
0 [Ṽ

(k)
0 (R1)1{R1<ν}]

= Etr
0

[
∂R1 Ṽ

(k)
0 (R1)

{
Lss1 +

dφ(k)(R)

dR
Ltr1

}
1{R1<ν}

]
;

from which we obtain the following first order differential
equation

dφ(k)(R)

dR
= −

Etr
0 [∂R1

Ṽ
(k)
0 (R1)L

ss
1 1{R1<ν}]

Etr
0 [∂R1

Ṽ
(k)
0 (R1)Ltr1 1{R1<ν}]

; φ(k)(1) = 0,

(12)
that needs to be solved starting from R = 1 with φ(k)(1) = 0
and going backwards towards R = 0. The boundary condition
at R = 1 is required to secure continuity for φ(R) at this
point (recall that the support of φ(R) is [0, 1] suggesting that
φ(R) = 0 for R > 1).

One can show that this iteration converges confirming the
existence of the desired φ(R) and of the corresponding V0(R)
enjoying the required properties.
Proof of Theorem 2. Let φ(R) and ν be the function and the
threshold needed by To to satisfy the false-alarm constraint
with equality and the requirements of Theorem 1. Using ideas
similar to the ones introduced in [13], we can prove optimality
of To in three major steps. The first consists in showing that for
any stopping time T with finite E∞[T ] (actually it is sufficient
to limit ourselves to such stopping times) we have

JL(T ) ≥
E∞
[∑T−1

t=0 Rt
]

E∞
[∑T−1

t=0 φ(Rt)
] = J̃L(T ).

The second step, which is simple due to the special form of
φ(R) and V0(R) (namely that φ(R) has support on those
values of R where V0(R) attains its maximum), consists in
showing that for To it is true that JL(To) = J̃L(To). Finally
the third step is concerned with the minimization of J̃L(T )

instead of the original JL(T ). In particular we can show that
among all stopping times that satisfy the false-alarm constraint,
the expression J̃L(T ) is minimized by To.

With these facts at hand we can now establish optimality of
To with respect to the original measure. Indeed note that

JL(To) ≥ inf
T
JL(T ) ≥ inf

T
J̃L(T ) = J̃L(To) = JL(To)

from which we can conclude that infT JL(T ) = JL(To) and
prove optimality of To.
Proof of Lemma 2. For fixed pre- and post-change pdfs the
function φ(R) depends on ν. Using the iterative solution
introduced in the proof of Theorem 2, we can show that in
each iteration the corresponding function φ(k)(R) has the
mentioned properties, which are retained in the limit.
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