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Abstract—A stopping time τ is controlled by a process {Xt}
and we are interested in the detection of its onset using a
sequential scheme. The sequential detector is an alternative
stopping time T which is based on observations {ξt} that are
obtained sequentially. The occurrence of τ initiates a change in
the statistical behavior of the pair processes {(Xt, ξt)} for times
after τ with τ modeling the change-imposing mechanism. We
cast the detection problem as two possible constrained optimal
stopping problems. We provide the optimum detector for each
case when the pair process {(Xt, ξt)} is i.i.d. and τ corresponds
to the first entry time of Xt into some fixed and known set A.
The resulting optimum schemes accept an interesting form. In
particular one of the two detectors is reduced to the well known
Shiryaev test (with τ geometrically distributed) when the two
processes {Xt} and {ξt} are independent from each other.

Index Terms—Sequential detection, Optimal stopping.

I. INTRODUCTION

A stopping time τ is adapted to the filtration {Xt} gen-
erated by some process {Xt} with Xt = σ{Xs, s ≤ t}.
The stopping rule which gives rise to τ is assumed known
but {Xt} is not observed. Instead, we sequentially observe
an alternative process {ξt}t>0 which we like to use in order
to detect the occurrence of τ . The onset of τ at time t, that
is, τ = t creates a change in the statistical behavior of the
observed process {ξt} for times t+ 1, . . .. The process {Xt}
can also experience a change but this is not necessary.

We assume that the pair process {(Xs, ξs)}ts=0 is
i.i.d. before and after the change with known joint pdf
f∞(X, ξ), f0(X, ξ). A change at τ = t induces a probability
measure which we denote by Pt(·) while we reserve Et[·] for
the corresponding expectation. Clearly with this definition P∞
is the measure where all data are under the nominal statistic
while P0 under the alternative. Finally, we use P(·) and E[·]
for probability and expectation when we do not specify τ to
take upon some particular deterministic value.

Any sequential detector can be seen as a stopping time T
which, unlike τ , is adapted to the filtration {Ft} generated
by the observations {ξt}, namely, Ft = σ{ξs, 0 ≤ s ≤ t}
and F0 is a sigma-algebra which allows for randomizations
at time 0. To quantify the detection capability of the stopping
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time T we propose two possible performance measures

C (T ) = P(T = τ+|T ≥ τ) (1)
or D(T ) = E[T − τ+|T ≥ τ ]. (2)

With (1) we are interested in the probability of immediately
detecting (capturing) τ , while with (2) we quantify the ex-
pected detection delay. The first criterion should be applied to
cases where detection must be performed immediately. This
is for instance the case when the occurrence of τ signals
the arrival of an imminent catastrophic event. Therefore its
immediate detection, which is expressed through the event
{T = τ}, contributes towards maximizing the possibility
of mitigating the upcoming disaster. The second criterion
is more classical and considers the detection delay T − τ
as a figure of merit. Both measures are conditioned on the
event that we did not experience any false alarm before the
occurrence of τ . By excluding false alarms from our criterion
we quantify only successes. Failures, on the other hand, which
are equally important, will be quantified through the false-
alarm probability P(T < τ). An additional detail in both
metrics is the fact that when τ < 0 then the fastest we can
hope in detecting τ is at t = 0. This is the reason why we
consider the positive part τ+ in our criterion1.

Based on the performance metrics introduced in (1),(2)
we are now in a position to propose suitable optimization
problems whose solution will yield the optimum detector T
for each case. Specifically we are interested in solving the
following two constrained optimization problems

sup
T≥0

C (T ) = sup
T≥0

P(T = τ+|T ≥ τ), (3)

or inf
T≥0

D(T ) = inf
T≥0

E[T − τ+|T ≥ τ ], (4)

both subject to: P(T < τ) ≤ α. (5)

In other words we would like to design our stopping time T so
as to maximize the conditional capture probability or minimize
the conditional average detection delay with simultaneous
guarantee that the false-alarm probability will not exceed
some prescribed level α ∈ (0, 1). In the next section we
present a general analysis that will reduce (3) and (4) into
classical optimal stopping problems. Before continuing with
our analysis we need to make some useful remarks.

1This also allows to summarize the past of τ with the help of the probability
P(τ ≤ 0).



Remark 1. We must mention that the problem of delayed
detection of a stopping time also known as “tracking a
stopping time” was first considered in [1] and [2] for special
classes of continuous-time processes. Both articles provide
asymptotically optimum procedures with the corresponding
optimality being of first order. Here, we consider discrete-time
signals and we target exact optimality.

Remark 2. The proposed analysis can be seen as a different
formulation of the sequential change detection problem. In
particular we model the change-imposing mechanism as a
stopping time adapted to an information history which is
not necessarily the same with the history generated by the
observations (and used to detect the change). This idea was
introduced in [3] where a worst-case analysis regarding τ was
considered. In the current work we assume τ to be completely
known as far as the stopping rule and its statistical description
are concerned.

Remark 3. Our analysis, when applied to the i.i.d. case,
will give rise to results that are more general than the well
celebrated Shiryaev test [4]. Furthermore, our formulation
will also be able to provide a realistic mechanism capable
of delivering geometrically distributed change-times τ , which
is the model adopted by Shiryaev in his Bayesian formulation.

II. BACKGROUND ANALYSIS

Problems where we need to optimize stopping times are
usually solved by applying results from Optimal Stopping
Theory. To write (3) and (4) under a form which is suitable for
this theory we first need to make certain definitions. Regarding
our stopping time T we equip it with a randomization prob-
ability P(T = 0) which we apply at time 0. This is essential
for addressing the case τ ≤ 0. Specifically at time 0, with
probability 1 − P(T = 0) we decide to start sampling and
with probability P(T = 0) to stop at 0 without taking any
samples.

Let us now define an {Ft}-adapted process {πt} with
π0 = P(τ ≤ 0) and for t > 0 we have πt = P∞(τ = t|Ft).
In other words πt denotes the probability that τ = t, given
the observation history up to time t. Using {πt} we can
rewrite the two performance metrics in a way that can be
treated by Optimal Stopping Theory. We apply the following
manipulations:

C (T ) =
P(T = τ+)

P(T ≥ τ)

=
E[1{T=0}1{τ≤0} +

∑∞
t=1 1{T=t}1{τ=t}]

E[1{τ≤0} +
∑∞
t=1 1{T≥t}1{τ=t}]

=
E∞[1{T=0}P(τ ≤ 0) +

∑∞
t=1 1{T=t}P∞(τ = t|Ft)]

E∞[P(τ ≤ 0) +
∑∞
t=1 1{T≥t}P∞(τ = t|Ft)]

=
E∞[1{T=0}π0 +

∑∞
t=1 1{T=t}πt]

E∞[π0 +
∑∞
t=1 1{T≥t}πt]

=
E∞[πT ]

E∞[
∑T
t=0 πt]

, (6)

where 0
0 = 1 (to cover the case π0 = 0 and T = 0). In

(6), in the second equality, in order for the denominator to
take the specific form, we used the fact that T ≥ 0. Also
the third equality is obtained by using the tower property of
expectation and recalling that 1{T=t} is Ft-measurable, while
1{T≥t} is Ft−1 and therefore Ft-measurable. For the above
manipulations to be valid we also need to assume that P(τ <
∞) = P(T <∞) = 1. Regarding the assumption that τ stops
w.p.1, it is without loss of generality. Indeed if 0 < P(τ <
∞) < 1 we can simply rescale the probabilities {πt} using
P(τ < ∞) and obtain an alternative version of the stopping
time τ that stops w.p.1. This is the same as conditioning our
whole analysis on the event {τ <∞}, provided the latter has
nonzero probability. Note also that the event {τ =∞} is not
interesting since it results only in false alarms. Finally we note
that all expectations are with respect to the nominal measure
since by requiring immediate detection (capture) we do not
experience any data under the alternative regime. Such data,
however, will be required in the second metric.

Similarly we can analyze (2) and write

D(T ) =
E[(T − τ+)+]
P(T ≥ τ)

=
E[T1{τ≤0} +

∑∞
t=1(T − t)+1{τ=t}]

E[1{τ≤0} +
∑∞
t=1 1{T≥t}1{τ=t}]

=
E[
∑∞
s=0 1{T>s}1{τ≤0} +

∑∞
t=1

∑∞
s=t 1{T>s}1{τ=t}]

E[1{τ≤0} +
∑∞
t=1 1{T≥t}1{τ=t}]

=

∑∞
s=0 E0[1{T>s}]π0 +

∑∞
t=1

∑∞
s=t Et[1{T>s}1{τ=t}]

π0 +
∑∞
t=1 Et[1{T≥t}1{τ=t}]

,

(7)

We also note the following equality

E0[1{T>s}] = E∞[Ls11{T>s}] (8)

and for s ≥ t > 0

Et[1{T>s}1{τ=t}] = Et
[
1{T>s}Et[1{τ=t}|Fs]

]
= Et

[
1{T>s}E∞[1{τ=t}|Ft]

]
(9)

= E∞[Lst+1πt1{T>s}], (10)

where Lba denotes the likelihood ratio of the samples
{ξa, . . . , ξb} with Lba = 1 whenever b < a. The equality in
(9) is true due to our assumption that the pair process after
τ = t is independent from the process up to t. All previous
formulas are obtained by straightforward application of the
tower property of expectation and change of measures. Finally,
since {T ≥ t} is Ft−1-measurable it is also Ft-measurable,
then on {τ = t} this event is under the nominal probability
measure, consequently

Et[1{T≥t}1{τ=t}] = E∞
[
1{T≥t}E∞[1{τ=t}|Ft]

]
= E∞[πt1{T≥t}] = E∞[LTt+1πt1{T≥t}], (11)

with the last equality being true because E∞[LTt+1|Ft] = 1
due to Optional Sampling.



Substituting (8),(10),(11) in (7), interchanging the order of
the two summations and swapping the roles of s and t in the
numerator we obtain

D(T ) =
E∞[

∑T−1
t=0

∑T−1
s=t Lst+1πt]

E∞[
∑T
t=0 L

T
t+1πt]

=
E∞[

∑T−1
t=0

∑t
s=0 L

t
s+1πs]

E∞[
∑T
t=0 L

T
t+1πt]

. (12)

Finally, if we define the following statistic

Rt =
∑t
s=0 L

t
s+1πs (13)

then our criterion takes its final form

D(T ) =
E∞[

∑T−1
t=0 Rt]

E∞[RT ]
, (14)

where we define
∑b
a = 0 when b < a. Regarding the false

alarm constraint, from (6) and (14) we have that the denomi-
nator of our performance measures is equal to the complement
of the false-alarm probability. Hence the constraint can be
equivalently expressed as

E∞[
∑T
t=0 πt] = E∞[RT ] ≥ 1− α. (15)

Summarizing, we distinguish the following two constrained
optimization problems:
Problem 1:

sup
T≥0

C (T ) = sup
T≥0

E∞[πT ]

E∞[
∑T
t=0 πt]

subject to: E∞[
∑T
t=0 πt] ≥ 1− α, (16)

corresponding to the combination of (3) and (5); and
Problem 2:

inf
T≥0

D(T ) = inf
T≥0

E∞[
∑T−1
t=0 Rt]

E∞[RT ]

subject to: E∞[RT ] ≥ 1− α, (17)

corresponding to the combination of (4) and (5).
From this point on in order to simplify our presentation we

will make the assumption that π0 = P(τ ≤ 0) = 0. In other
words a change can occur after and including time 0. Under
this condition we have the following interesting lemma.

Lemma 1. The performance achieved by any stopping time
T that satisfies the false-alarm constraint in the strict sense
can be matched by an alternative stopping time that satisfies
the constraint with equality.

Proof: After distinguishing the cases P(T = 0) and
P(T > 0) it is easy to verify that both metrics C (T ) and
D(T ), when π0 = 0, are independent from the randomization
probability P(T = 0). Consequently, it is always possible to
properly modify the randomization probability P(T = 0) in
order to meet the constraint with equality without altering the
corresponding performance metric.

Because of Lemma 1 we are allowed to limit ourselves to
detectors that satisfy the constraint with equality suggesting

that the denominator in our metrics becomes constant and
equal to 1−α. Thus, we need only consider the optimization
of the corresponding numerators. Consequently Problem 1 in
(16) is equivalent to

sup
T≥0

E∞[πT ], subject to: E∞[
∑T
t=0 πt] = 1− α, (18)

while Problem 2 in (17) becomes

inf
T≥0

E∞[
∑T−1
t=0 Rt], subject to: E∞[RT ] = 1− α. (19)

We are now ready to introduce the final form of the optimiza-
tion problems we intend to solve.

Let λ be a Lagrange multiplier, then we define the following
criterions:

C̃ (T ) = E∞[πT + λ
∑T
t=0 πt]

D̃(T ) = E∞[λRT +
∑T−1
t=0 Rt],

leading to the corresponding unconstrained optimization prob-
lems that replace (18) and (19)

supT≥0 C̃ (T ) = supT≥0 E∞[(1 + λ)πT + λ
∑T−1
t=0 πt] (20)

infT≥0 D̃(T ) = infT≥0 E∞[λRT +
∑T−1
t=0 Rt]. (21)

Problems (20),(21) are under the standard form encountered
in Optimal Stopping Theory [5] with {πt}, {Rt} being {Ft}-
adapted. We can therefore directly apply the corresponding
optimality results.

A. Optimal Stopping

We consider the sequences {Ut} and {Vt} of optimal gains

Ut = supT≥t E∞[(1 + λ)πT + λ
∑T−1
j=t πj |Ft]

Vt = infT≥t E∞[λRT +
∑T−1
j=t Rj |Ft]

where {Ut}, {Vt} are {Ft}-adapted and for which we have
the following backward updating formulas for t = 0, 1, 2, . . . ,
due to Optimal Stopping Theory:

Ut = max{(1 + λ)πt, λπt + E∞[Ut+1|Ft]} (22)
Vt = min{λRt, Rt + E∞[Vt+1|Ft]}. (23)

Note that U0, V0 express the optimum gain for T ≥ 0.

B. Time of First Entry into a Known Set

In the next section we will analyze (22),(23) for the special
case where τ is the class of stopping times corresponding to
the time of first entry of Xt into some known set A, that is,
τ = inf{t > 0 : Xt ∈ A}. This suggests that for t > 0 we
have

πt = P∞(Xt ∈ A, Xt−1 ∈ Ac, . . . , X1 ∈ Ac, τ > 0|Ft)

= P∞(Xt ∈ A, Xt−1 ∈ Ac, . . . , X1 ∈ Ac|τ > 0,Ft)(1−π0)

where Ac denotes the complement of the set A. The probabil-
ity measure we use for the computation of πt is the nominal
since up to and including the change-time τ the processes
follow the pre-change measure.



Under the assumption that the pair process {(Xt, ξt)} is
i.i.d. before and after the change we conclude that

πt = ωt

t−1∏
j=0

(1− ωj) (24)

where ω0 = π0 = P(τ ≤ 0) and for t > 0 we have
ωt = P∞(Xt ∈ A|ξt). Clearly {ωt}t>0, under P∞, is an
i.i.d. sequence. Let us now apply this analysis for solving the
two optimization problems of interest.

III. OPTIMUM DETECTORS

We first consider (16) and attempt to solve it by obtaining
the solution of its unconstrained counterpart depicted in (20).
We will then continue with the solution of (17) by treating
(21).

A. Optimum Solution for Problem 1

Note that P∞(τ > t|Ft) =
∏t
j=1(1− ωj) consequently, if

we define the normalized gain Ut = Ut/P∞(τ > t|Ft) and
also use (24) then (22) is equivalent to

Ut = λ
ωt

1− ωt

+max

{
ωt

1− ωt
,E∞

[
(1− ωt+1)Ut+1

∣∣Ft

]}
, (25)

with the optimum terminal gain becoming U0 = U0P∞(τ >
0|F0) = U0(1 − π0) = U0. Due to stationarity if we select
Ut = U(ωt) it is straightforward to show that it is a solution
to the previous equation provided U(ω) is defined as

U(ω) = λ
ω

1− ω
+max

{
ω

1− ω
,C

}
= λ

ω

1− ω
+

ω

1− ω
1{ω≥ C

1+C }
+ C1{ω< C

1+C }
.

Constant C, from (25), must satisfy C = E∞[(1−ω1)U(ω1)].
From Optimal Stopping Theory we also have that for t > 0
the stopping time

Tν = inf{t > 0 : ωt ≥ ν}
= inf{t > 0 : P∞(Xt ∈ A|ξt) ≥ ν} (26)

with ν = C
1+C can attain the optimum performance for T >

0. According to our definition however we need to include
randomization at T = 0. The final optimum capture time To
is given by the next theorem.

Theorem 1. We distinguish two different forms of the optimum
capture time To:

i) 1 − P∞(X1 ∈ A) ≤ α < 1: Then To is a suitable
randomization between 0 and 1.

ii) α < 1 − P∞(X1 ∈ A): Then To = Tν with properly
selected threshold ν and no randomization at t = 0.

Proof: For Case i) consider Tν with ν = 0 this means
that T0 will necessarily stop at time 1. We can then see that
stopping at 0 produces the same gain as stopping at time 1.

We are therefore allowed to use randomization between the
two possibilities without altering the final optimum gain. To
find the proper randomization probability we need to satisfy
the false-alarm constraint with equality. As we can verify, this
is possible if we select

P(To = 0) = 1− (1− α)
E∞[ω1]

,

which, according to our assumption and after observing that
E∞[ω1] = P∞(X1 ∈ A), is a legitimate probability with value
in the interval (0, 1).

For Case ii) we select the threshold ν ∈ (0, 1) consequently
C = ν

1−ν > 0. This implies that stopping at 0 produces less
gain than using Sν suggesting that we must select To = Tν
and never stop at 0. Again to find the proper threshold we
need the false-alarm constraint to be satisfied with equality,
that is

P∞(ω1 ≥ ν) + E∞[ω11{ω1<ν}] =
E∞[ω1]

1− α
.

A solution ν ∈ (0, 1) always exists since for ν = 0 the left
hand side is equal to 1 and thus strictly larger than the right,
while for ν = 1 the left becomes E∞[ω1] which is smaller than
the right. Evoking continuity arguments we prove existence of
ν ∈ (0, 1).

In both cases if we solve the equation C = E∞[(1 −
ω1)U(ω1)] we compute the Lagrange multiplier λ required
in (25) to produce the specific optimum solution.

B. Optimum Solution for Problem 2

As in the previous problem in (23) we define the normalized
gain Vt = Vt/P∞(τ > t) and the normalized test statistic
Rt = Rt/P∞(τ > t), then (23) is equivalent to

Vt = min {λRt,Rt + E∞ [(1− ωt+1)Vt+1|Ft]} . (27)

For the original optimum gain we have V0 = V0(1−π0) = V0.
Regarding {Rt} we can see that it satisfies the following time
update for t > 0

Rt =
Rt−1`t + ωt

1− ωt
, R0 = 0, (28)

with `t =
f0(ξt)
f∞(ξt)

the likelihood ratio of ξt. This implies that
{Rt}t≥0 is first order Markov. Due to this Markovian nature,
we can search for solutions in (27) that are of the form Vt =
V(Rt), where V(R) satisfies the equation

V(R) =

min

{
λR,R+ E∞

[
(1− ω1)V

(
R`1 + ω1

1− ω1

)]}
, (29)

and, we recall, that ω1 = P∞(X1 ∈ A|ξ1). Our optimality
result is given in the following theorem.

Theorem 2. We distinguish two different forms of the optimum
capture time To:

i) 1 − P∞(X1 ∈ A) ≤ α < 1: Then To is a suitable
randomization between 0 and 1.



ii) α < 1− P∞(X1 ∈ A): Then

To = inf{t > 0 : Rt ≥ ν}, (30)

with the threshold ν > 0 selected to satisfy the false-
alarm constraint with equality.

Proof: Case i) is similar to Theorem 1. For Case ii) to
prove that the optimum To is as in (30) we consider λ < 0
and we first show that the recursion

Vn(R) =

min

{
λR,R+ E∞

[
(1− ω1)Vn−1

(
R`1 + ω1

1− ω1

)]}
, (31)

with V0(R) = 0 converges to a function V(R). In particular
we show that for all n we have the following properties:
a) Vn(R) ≥ Vn+1(R); b) Vn(R) ≥ λ(R + 1) and c) Vn(R)
is concave. All three properties are valid for n = 0. If we
assume that they are true for n = k then it is straightforward
to show that they are also true for n = k + 1. Consequently
they hold for all n.

To show existence of the limit V(R) = limn→∞ Vn(R) we
note that for each fixed R we have from property a) that the
sequence {Vn(R)} is decreasing in n and from property b)
that it is lower bounded by λ(R+1), consequently {Vn(R)}
has a pointwise limit V(R) in n. Since the function Vn(R), for
each n, is lower bounded by λ(R+1) the same holds true for
the limit V(R). Also from property c) we have Vn(R) to be
concave for each n. Due to the “min” in recursion (31) we can
show that this property is inherited by the limit, meaning that
V(R) is concave and therefore continuous. Summarizing: there
exists a function V(R) that satisfies (29) which is continuous,
concave, and bounded from below by λ(R+ 1).

The properties we just mentioned allow us to conclude that
the function Ṽ(R) = R+E∞[(1−ω1)V(R`1+ω1

1−ω1
)] is concave

(therefore continuous) and lower bounded by (1 + λ)R + λ.
Fig. 1 captures these facts and can help us understand why the
two functions λR and Ṽ(R) can intersect only at the single
point R = ν. Indeed since the lower bound (1 + λ)R + λ
intersects λR and because Ṽ(0) = E∞[(1 − ω1)V( ω1

1−ω1
)] <

0 due to V(R) ≤ 0, we have that Ṽ(R) will also intersect
λR at some point. Function Ṽ(R) cannot intersect λR in

Fig. 1. Typical form of λR (red), the function Ṽ(R) = R + E∞[(1 −
ω1)V(R`1+ω1

1−ω1
)] (green) and its lower bound (1 + λ)R + λ (black). The

optimum (normalized) cost is V(R) = min{λR, Ṽ(R)}.

more than one points because due to its concavity this would
require Ṽ(R) to have an asymptote for R → ∞ with slope
that is steeper than λ. But if this were true, Ṽ(R) would have
necessarily intersected the line (1 + λ)R+ λ as well. This is
a contradiction since this line is a lower bound to Ṽ(R).

From the previous discussion we conclude that there is only
one point of intersection which we denote with ν. This means
that for R < ν we have λR > Ṽ(R) while for R ≥ ν the
inequality changes direction. From Optimal Stopping Theory
[5] we then know that the optimum stopping time is given by
(30). Furthermore we can also show that there exists ν > 0
so that To meets the false-alarm constraint with equality.

C. Case {Xt} Independent from {ξt}
If we make the additional assumption that the two processes

{Xt}, {ξt} are independent from each other, then the detector
can be simplified and reduced to the well known Shiryaev test
[4]. Indeed, note that ωt = P∞(Xt ∈ A|ξt) = P∞(Xt ∈
A) = ω, where ω ∈ (0, 1) is a constant. Therefore, we
conclude that for t > 0

πt = P(τ = t|Ft) = P(τ = t) = (1− π0)ω(1− ω)t−1

and P(τ ≤ 0) = π0, which is the (zero modified) geometric
prior adopted by Shiryaev [4] for the changetime τ . Further-
more the test becomes

To = inf{t > 0 : Rt ≥ ν} = inf{t > 0 : R̃t ≥ ν̃}
where R̃t = (ω−1− 1)Rt− 1 and ν̃ = (ω−1− 1)ν− 1. From
(28) we can see that S̃t can be updated using

R̃t = (R̃t−1 + 1)
`t

1− ω
, (32)

which is the well known updating formula for the statistic of
the Shiryaev test.

Remark 4. From our previous analysis we conclude that
Shiryaev’s formulation can be regarded as a particular set-
ting of our model corresponding to the case where the two
processes {Xt} and {ξt} are independent from each other and
each process is i.i.d. before and after the change. Furthermore,
we note that the first entry of the hidden process {Xt} into
the known set A, can be regarded as a mechanism capable of
generating the required (zero modified) geometric prior which
is a key assumption in Shiryaev’s setup.
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