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ABSTRACT

In multichannel sequential change detection, multiple sensors moni-
tor a system in which an abrupt change occurs at some unknown time
and is perceived by an unknown subset of sensors. The goal is to
detect this change quickly, while controlling the rate of false alarms.
In the traditional asymptotic analysis of this problem, the false alarm
rate goes to 0 while all other parameters remain fixed. We argue that
this framework is not very informative, as the corresponding asymp-
totic optimality property cannot differentiate between universal and
parsimonious rules. We propose an asymptotic framework in which
the number of sensors also goes to infinity, and we show that in this
context universal rules may fail to be asymptotically optimal when
the number of streams is not very small. On the other hand, parsimo-
nious rules are shown to be asymptotically optimal under reasonable
sparsity conditions.

Index Terms— Sequential Change Detection, CUSUM, Multi-
channel, Multisensor, Sparse.

1. INTRODUCTION

The problem of efficiently detecting changes in stochastic processes,
often referred to as sequential (or quickest) change detection, arises
in various branches of science and engineering [1, 2]. In this pa-
per, we consider an important case of this problem in which multiple
streams of data are collected in various sensors (channels), and an
unknown subset of the streams undergo a change in distribution at
some unknown point in time. The goal is to combine the informa-
tion from all sensors in order to quickly detect the change, while
controlling the rate of false alarms. This problem has been stud-
ied extensively when the change is perceived by exactly one sensor
whose identity is unknown [3, 4, 5, 6, 7]. More recently, the assump-
tion of a unique affected sensor has been removed and various works
have allowed for the change to affect an unknown subset of sensors
[8, 9, 10, 11, 12].
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A multichannel sequential change-detection rule is typically un-
derstood to be efficient when it achieves the performance of the or-
acle procedure that assumes knowledge of the true affected subset,
to a first-order term as the false alarm rate goes to 0, for any possi-
ble affected subset. It is well known that there are procedures that
are completely ignorant regarding the affected subset, yet still en-
joy asymptotic optimality [8, 11]. Therefore, the classical notion
of asymptotic optimality fails to distinguish between universal pro-
cedures that do not make any assumptions regarding the size or lo-
cation of the signal, and parsimonious procedures that utilize prior
information regarding the affected subset of sensors, and perform
better in practice, especially when the number of streams is large
[11].

Motivated by this observation, we propose a notion of asymp-
totic optimality in which the number of sensors goes to infinity as
the false alarm rate goes to zero. We focus in particular on the case
of sparse signal, where the maximum proportion of affected sensors
goes to 0. Our main contribution in this work is that we obtain suf-
ficient conditions for the asymptotic optimality in this novel sense
of existing multichannel detection rules [10, 11]. These conditions
allow us to distinguish parsimonious and universal procedures, es-
pecially when a large number of streams is monitored.

The rest of this paper is organized as follows: In Section 2 we
formulate the problem mathematically and we review various pro-
cedures that have been proposed in the literature. In Section 3 we
state our main result and discuss its ramifications. In Section 4 we
conclude and discuss extensions of this work.

2. PROBLEM FORMULATION

Suppose we collect data sequentially from K sensors. For each
k ∈ [K], let Xk ≡ {Xk

t , t = 1, 2 . . .} be the sequence of observa-
tions in the kth sensor, where [K] := {1, . . . ,K}. We assume that
the sequences X1, . . . , XK are independent, each Xk is a sequence
of independent random variables, and that there is an unknown, de-
terministic point in time ν ∈ {0, 1, . . .} at which the distribution
changes in an unknown subset of sensors, B ⊂ [K], i.e.,

Xk
t ∼ fk, k /∈ B, Xk

t ∼

{
fk, t ≤ ν
gk, t > ν,

k ∈ B, (1)



where t = 1, 2 . . .. Here, fk and gk are known densities with respect
to a σ-finite measure λk such that the Kullback-Leibler information
number,

Ik :=

∫
log

(
gk(x)

fk(x)

)
gk(x)λk(dx),

is positive and finite. We denote by PBν the underlying probability
measure when the change occurs at time ν in subset B, and by P∞
the corresponding measure when there is no change in any sensor.
The goal is to stop sampling as quickly as possible after the change
has occurred, based on the data from all sensors up to this time.
Therefore, a multichannel sequential change detection rule T is an
{Ft}-stopping time, where

Ft = σ(Xk
s : 1 ≤ s ≤ t, k ∈ [K]).

That is, the decision to stop and raise an alarm at time t is determined
by the observations in all sensors up to time t. Following Lorden’s
approach [13], we quantify the detection delay of an arbitrary de-
tection rule T when the change occurs in subset B ⊂ [K] with the
following criterion:

JB[T ] := sup
ν

essup EBν
[
(T − ν)+|Fν

]
,

where EBν is expectation under PBν . In other words, we consider
the worst-case scenario with respect to change-point ν and the ob-
servations from all sensors until the time of the change. Moreover,
we denote by Cγ the class of sequential change-detection rules for
which the expected time to false alarm is bounded below by γ, i.e.,
Cγ = {T : E∞[T ] ≥ γ}, where γ > 1 is a user-specified level
and E∞ refers to expectation under P∞. The problem then is to
minimize JB among detection rules in class Cγ for every possible
affected subset B.

2.1. Oracle rule

For each time t and sensor k we denote by Zkt the cumulative log-
likelihood ratio of the observations in sensor k up to time t, i.e.,

Zkt = Zkt−1 + `kt , `kt := log

(
gk(Xk

t )

fk(Xk
t )

)
. (2)

Let WB denote the Cumulative Sums (CUSUM) statistic [14] for
detecting a change in subset B ⊂ [K], which is defined by the fol-
lowing recursion

WBt :=

(
WBt−1 +

∑
k∈B

`kt

)+

, WB0 := 0,

whereWB0 := 0. Let SB(h) be the corresponding CUSUM stopping
time, i.e., the first time WB exceeds a fixed threshold h, i.e.,

SB(h) := inf
{
t ≥ 1 : WBt ≥ h

}
. (3)

It is well known that SB optimizes JB within the class of detec-
tion rules in Cγ whenever its threshold h satisfies the false alarm
constraint with equality [15]. Moreover, we have the following first-
order approximation to the optimal performance [13] as γ →∞:

inf
T∈Cγ

JB[T ] ∼ log γ∑
k∈B Ik

, (4)

where by xγ ∼ yγ we mean that xγ/yγ → 1 as γ →∞. Finally, if
the following second moment condition∫ (

log

(
gk(x)

fk(x)

))2

gk(x)λk(dx) <∞ (5)

is satisfied, from the exact optimality of the CUSUM test and re-
newal theory (see, e.g., [1]) it can be deduced that

inf
T∈Cγ

JB[T ] =
log γ∑
k∈B Ik

+ Θ(1), (6)

where Θ(1) is a bounded term as γ →∞.

2.2. Universal detection rules

A multichannel sequential change-detection rule is typically said to
be asymptotically optimal if it achieves the first-order asymptotic ap-
proximation to the optimal performance (4) for any possible affected
subset B as γ → ∞, while all other parameters of the problem re-
main fixed. It is well known that it is possible to design asymptoti-
cally optimal rules even when there is complete ignorance regarding
the affected subset. Indeed, this is the case for Sum-CUSUM, the
procedure that stops when the sum of all local CUSUM statistics is
above a positive threshold h > 0, i.e.,

Š(h) := inf

{
t ≥ 1 :

K∑
k=1

W k
t ≥ h

}
, (7)

which was suggested in [8]. Here, W k
t corresponds to the statistic

WBt with B = {k}. In fact, it has been shown that the optimal
performance can be achieved up to the second-order term (6) by the
following universal procedure

Ŝ(h) := inf

{
t ≥ 1 : max

0≤s≤t

K∑
k=1

(Zkt − Zks )+ ≥ h

}
, (8)

where x+ = max{x, 0}. We will refer to this procedure as GLR-
CUSUM, as it essentially performs a maximization at any given time
over the completely unknown affected subset of sensors [11]. The
same second-order asymptotic optimality property can be achieved
by the procedure

S̃p(h) := inf

{
t ≥ 1 : max

0≤s≤t

K∑
k=1

gp(Z
k
t − Zks ) ≥ h

}
, (9)

where gp(x) = log(1 − p + p exp{x}) [11]. We will refer to this
procedure as Mix-p-CUSUM, as it is motivated by a mixture model
according to which the change occurs with probability p in each
sensor [10, 11]. It is important to underline that, in this classical
framework, Mix-p-CUSUM is second-order asymptotically optimal
for any choice of p ∈ (0, 1), not only when p is the true proportion
of affected sensors [11].

2.3. Incorporating prior information

It is natural and straightforward to modify the above rules in order
to incorporate prior information, such as that signal is present in at
most L sensors, where L is some integer between 1 and K. In this
context, Sum-CUSUM can be replaced by the first time the sum of



the L largest CUSUM statistics is above a positive threshold h > 0,
i.e.,

ŠL(h) := inf

{
t ≥ 1 :

L∑
k=1

W
(k)
t ≥ h

}
, (10)

where W (1)
t ≤ . . . ≤ W

(K)
t , a procedure to which we will refer as

Top-L-Sum-CUSUM [9]. Similarly, as it was shown in [11], GLR-
CUSUM can be modified as follows

ŜL(h) := inf

{
t ≥ 1 : max

0≤s≤t

L∑
k=1

(
Z

(k)
s:t

)+
≥ h

}
, (11)

where Zks:t = Zkt − Zks and Z(1)
s:t ≤ . . . ≤ Z

(K)
s:t . We will refer to

the latter scheme as Top-L-GLR-CUSUM.
Whenever the size of the affected subset is smaller or equal to L,

Top-L-Sum-CUSUM and Top-L-GLR-CUSUM preserve the asymp-
totic optimality properties of Sum-CUSUM and GLR-CUSUM re-
spectively, and perform better in practice [8, 10, 11]. Of course, this
is quite expected, since these procedures utilize information that the
universal procedures in (7)-(8) do not possess.

3. ASYMPTOTIC OPTIMALITY UNDER A SPARSE
SIGNAL

The discussion of the previous section suggests that the classical no-
tion of asymptotic optimality, either first-order or second-order, is
not informative enough to distinguish between universal procedures
and their parsimonious modifications when prior information about
the signal is available. In order to address this issue, we suggest a
novel definition of asymptotic optimality, according to which a mul-
tichannel sequential change-detection rule is asymptotically optimal
when it achieves the optimal performance, to a first-order approx-
imation, not only as the rate of false alarms goes to 0, but also as
the number of sensors goes to infinity. Furthermore, we focus on
the case of a sparse signal that L/K → 0, where L is the maximum
possible number of affected sensors.

Definition 1. We say that a multichannel sequential change-
detection rule T ∗ ∈ Cγ is asymptotically optimal in the case of
a sparse signal when for every B ⊂ [N ] such that |B| ≤ L we have

JB[T ∗] ∼ inf
T∈Cγ

JB[T ]

as γ →∞ and L/K → 0.

In the following theorem we obtain sufficient conditions for
(Top-L)-GLR-CUSUM and Mix-p-CUSUM to be asymptotically op-
timal in the above sense. We also provide a sketch of the proof,
which will be presented in full detail elsewhere.

Theorem 1. Suppose that condition (5) holds. As γ → ∞ and
L/K → 0

(i) GLR-CUSUM and Mix-p-CUSUM with fixed p ∈ (0, 1) are
both asymptotically optimal when K = o (log γ),

(ii) Top-L-Sum-CUSUM and Mix-p-CUSUM with p = L/K are
both asymptotically optimal when

L log(K/L) = o (log γ) .

Proof. The first step in this proof relies on the following non-
asymptotic lower bound on the optimal performance

inf
T∈Cγ

JB[T ] ≥ log γ∑
k∈B Ik

+ Θ(1), (12)

where Θ(1) is a bounded term as γ, |B| → ∞. For the GLR-
CUSUM we can show that if the threshold is selected such that the
false alarm constraint be satisfied with equality, then

JB[Ŝ] ≤ log γ + log |P|∑
k∈B Ik

+O(1), (13)

where O(1) is a bounded term as γ, L,K → ∞ and |P| is the
number of all subsets of [K], i.e., 2K . For Top-L-GLR-CUSUM we
have the same upper bound with the difference that |P| is now the
number of all subsets of [K] whose size is at most L, thus,

|P| =
L∑
j=1

(
K

j

)
∼ L log(K/L)

as L/K → 0. A comparison of (12) and (13) completes the proof
for GLR-CUSUM and Top-L-GLR-CUSUM.

Now, when the threshold of the Mix-p-CUSUM is selected such
that the false alarm constraint be satisfied with equality, we have

JB[S̃p] ≤
log γ +KH(π, p)∑

k∈B Ik
+O(1), (14)

where π := L/K and

H(x, y) := −x log y − (1− x) log(1− y), x, y ∈ (0, 1).

When p is fixed, H(p, π) = O(1) for every L,K. However, when
we set p = L/K ≡ π, then H(π, π) becomes the entropy of a
Bernoulli random variable with parameter π, and KH(π, π) ∼
L log(K/L) as π ≡ L/K → 0. Comparing (14) with (12) com-
pletes the proof for Mix-p-CUSUM.

3.1. Discussion

Theorem 1 applies to two existing procedures in the literature,
Mix-p-CUSUM and (Top-L)-GLR-CUSUM, and suggests that their
asymptotic optimality under a sparse signal requires certain sparsity
conditions, contrary to the classical asymptotic framework where
(second-order) asymptotic optimality is always guaranteed.

Specifically, the asymptotic optimality of universal detection
rules, such as the GLR-CUSUM and Mix-p-CUSUM with fixed p,
is guaranteed when K = o (log γ). With a false alarm rate of the
order γ ≈ 105, this condition is satisfied with a very small number
of sensors, i.e., K � 10. On the other hand, parsimonious versions
of these procedures become asymptotically optimal under a much
more reasonable sparsity constraint. These results agree with our
intuition, as well as empirical findings, that universal rules become
less efficient in practice than parsimonious rules that utilize sparsity
information when the number of streams increases.

Another interesting observation is that while the asymptotic op-
timality of Mix-p-CUSUM cannot be achieved under a sparse signal
with an arbitrary, fixed p, at the same time it does not require p to
agree with the true proportion of signals. It suffices to select p equal
to the maximum proportion of signals, which is a much weaker and
easily satisfied requirement. This result suggests that Mix-p-CUSUM
will be robust with respect to p not only when the number of streams
is small [10, 11], but also with a larger number of streams.



Finally, we expect that Sum-CUSUM should also fail to be
asymptotically optimal in the sparse setup under consideration un-
less K is very small, and that the corresponding condition for
the parsimonious Top-L-Sum-CUSUM will be much weaker. The
determination of these conditions, and their comparison to the cor-
responding conditions of Theorem 1, will shed light to the perfor-
mance loss that is inflicted upon these procedures when the number
of sensors is not very small. This is a more complicated task that is
left for future work. It is worth emphasizing however that current
results, which assume a fixed number of sensors as the rate of false
alarms goes to zero, cannot provide an answer to this question.

4. CONCLUSIONS
One of the main goals of an asymptotic optimality property is to dis-
tinguish among competing procedures, when the optimal procedure
is either unknown or infeasible. In multichannel sequential change
detection, a procedure is typically called asymptotically optimal if
it achieves under every possible scenario regarding the affected sub-
set the same first-order asymptotic performance as the corresponding
oracle rule that assumes knowledge of the true affected subset. How-
ever, the optimal asymptotic performance in this classical definition
is typically considered as the rate of false alarms goes to 0, while
all parameters of the problem remain fixed. We argued that this is a
weak property that fails to distinguish between universal procedures
with no information regarding the signal and parsimonious proce-
dures that utilize such information, and therefore should be preferred
in practice. To remedy this problem, we proposed a stronger notion
of asymptotic optimality, in which the number of streams also goes
to infinity, and the maximum proportion of affected sensors goes to
0. In this regime, existing procedures in the literature, such as the
Top-L-GLR-CUSUM and Mix-p-CUSUM with L and p equal to the
maximum possible number and proportion of affected sensors re-
spectively, remain asymptotically optimal under reasonable sparsity
conditions.

While Sum-CUSUM and its parsimonious modifications are
attractive in practice due to to their recursive nature, their perfor-
mance loss may increase dramatically in a sparse setup, suggesting
the use of more statistically efficient procedures such as Top-L-
GLR-CUSUM and Mix-p-CUSUM. The exact implementation of
the latter requires storing a K-dimensional vector of log-likelihood
ratios for a random time-interval, whose expected length is finite,
but grows with the number of sensors [11]. Nevertheless, it is pos-
sible to design adaptive windows of deterministic length that can
make the above schemes computationally feasible in practice, while
preserving their powerful detection ability.
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