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Abstract—We consider the problem of parameter estimation
under a sequential framework. Specifically we assume that an
i.i.d. random process is observed sequentially with its common
pdf having a random parameter that must be estimated. We are
interested in designing a stopping time that will decide when is
the best moment to stop sampling the process and an estimator
that will use the acquired samples in order to provide the desired
estimate. We follow a semi-Bayesian approach where we assign
cost to the pair (estimate, true parameter) and our goal is to
minimize the average sample size guaranteeing at the same time
an average cost below some prescribed level. For our analysis we
adopt a conditional average cost which leads to a considerable
simplification in the sequential estimation problem, otherwise
known to be analytically intractable. We apply our results to a
number of examples and compare our method with the optimum
fixed sample size but also with existing sequential schemes.

Index Terms—Sequential estimation, Sequential Analysis.

I. INTRODUCTION

Parameter estimation is needed in numerous problems
across different scientific fields. In most applications, estima-
tion is primarily based on fixed sample size methodology.
However, when we are interested in obtaining a reliable
estimate as quickly as possible then it is necessary to resort
to sequential techniques. It is well known that in hypothesis
testing, sequential methods [1] enjoy significant reduction in
the number of samples required to reach a reliable decision
as compared to fixed sample size alternatives. Therefore, it
is only natural to expect that this important advantage will
carry over to estimation as well. Before addressing the problem
of sequential estimation let us first introduce some necessary
background knowledge regarding classical estimation.

We observe a collection of random variables {ξ1, . . . , ξt},
where t > 0 is an integer. For simplicity, we assume {ξt}
is i.i.d. with a common pdf f(ξ|θ) and parameter θ is con-
sidered random with a known prior pdf π(θ). Regarding the
process {ξt}, the samples are generated as follows: Nature
randomly selects the parameter θ following π(θ); then keeping
θ fixed, Nature generates the sequence {ξt} following f(ξ|θ).
It is therefore clear that the joint pdf of the set of samples
{ξ1, . . . , ξt} and θ has the following form

ft(ξ1, . . . , ξt, θ) = π(θ) · f(ξ1|θ) · · · f(ξt|θ). (1)

The joint pdf induces a probability measure which we denote
by P(·) while we reserve the symbol E[·] for the corresponding
expectation. If we also denote with Ft = σ{ξ1, . . . , ξt} the

sigma-algebra generated by the first t samples, then we can
write the conditional (posterior) pdf of θ given Ft as

ft(θ|Ft) =
π(θ)

∏t
j=1 f(ξj |θ)∫

π(θ)
∏t

j=1 f(ξj |θ) dθ
. (2)

Equations (1),(2) describe completely the statistical behavior
of our observations. The goal is, using the acquired samples,
to estimate the specific realization of θ that generates the data.

When we have a fixed sample size {ξ1, . . . , ξt}, then the
problem of optimum estimation is solved very efficiently
by following the Bayesian formulation [2, Pages 142–156].
Specifically let θ̂(ξ1, . . . , ξt) denote any nonlinear functions
of the observations which can serve as a potential estimator
of θ. Assume we are given a cost function C(θ̂, θ) and consider
the average cost E[C(θ̂, θ)], were averaging is with respect to
observations and θ. We are interested in finding the estimator
that minimizes this expression. In other words we would like
to perform the minimization inf θ̂ E[C(θ̂, θ)] which leads to the
classical Bayes estimator.

To find our estimator, we compute the conditional average
cost

E[C(θ̂, θ)|Ft] =

∫
C(θ̂, θ)ft(θ|Ft) dθ, (3)

where ft(θ|Ft) is defined in (2). Then, it is well known that
the optimum Bayes estimator satisfies

ϑ̂t = arg inf
θ̂
E[C(θ̂, θ)|Ft] (4)

and the corresponding minimum conditional average cost is
given by

Ct = inf
θ̂
E[C(θ̂, θ)|Ft] = E[C(ϑ̂t, θ)|Ft]. (5)

Both ϑ̂t and Ct are Ft-measurable since they are functions of
the available observations.

II. SEQUENTIAL ESTIMATION

Under a sequential setup, process {ξt} is acquired sequen-
tially. At each time t we observe the accumulated information
Ft which grows with time, thus generating the filtration {Ft}
and the sequence {ft(·)} of joint pdfs. We use the same
symbols P(·) and E[·] to denote the corresponding probability
measure and expectation. One would be interested in defining a
stopping time T which is adapted to {Ft} and a corresponding
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estimator θ̂T which is FT -measurable (uses the observations
that are available up to the time of stopping T ) in order to
provide an estimate of θ.

Since our goal is to limit the number of samples needed to
compute the estimate, we would like to find a pair (T, θ̂T ) that
minimizes the average number of samples E[T ] while, at the
same time, we control the average estimation cost. To be more
precise we would like to consider the following constrained
optimization problem for the determination of the optimum
pair

inf
T,θ̂T

E[T ], subject to: E[C(θ̂T , θ)] ≤ β, (6)

where β is a level selected by the Scientist. It has been
pointed out in the literature [3]–[6] that solving (6) presents
computational challenges and this problem is by no means
analytically tractable.

A. Alternative Optimization Problem
The analytical difficulties we mentioned before can in fact

be circumvented if we are willing to sacrifice part of our
performance. We therefore propose to replace the constraint
in (6) with the following conditional alternative

E[C(θ̂T , θ)|FT ] ≤ β̃.

If for example we select β̃ = β then the previous conditional
version assures validity of the unconditional constraint in
(6). The proposed modification in the constraint suggests a
corresponding optimization problem

inf
T,θ̂T

E[T ], subject to: E[C(θ̂T , θ)|FT ] ≤ β̃, (7)

as a replacement of the original one in (6). The formulation
of the parameter estimation problem with (7) is along the
same lines of the approaches adopted in [5], [6] for Gaussian
processes. We should also mention that similar ideas were
used for simultaneous detection and estimation for Gaussian
[7] and conditionally Gaussian [8] data.

Remark 1. Before continuing with the analysis and solution
of our optimization let us discuss the differences between the
two approaches depicted in (6) and (7). We observe that in
the first we can have realizations of the observation sequence
for which, at the time of stopping, the conditional average
cost will satisfy E[C(θ̂T , θ)|FT ] > β. Inequalities in the
“wrong” direction tend to require smaller sample sizes, thus
contributing towards the reduction of E[T ]. As we can see,
in (7) such inequalities are not permitted since we force
the conditional average cost to be always below β̃ for every
realization of the observations. Therefore if we select β̃ = β
we will end up with a scheme that satisfies the constraint in
(6) in the strict sense. For this reason we need to increase β̃
slightly and select β̃ > β in order to achieve exact equality.

Remark 2. We should emphasize that even with a value of β̃
selected so as to satisfy the constraint in (6) with equality, the
scheme we obtain by solving (7) is not the optimum for (6).
The expectation, however, is that the performance degradation

by solving (7) instead of (6) will not be overly dramatic. In any
case, as we mentioned, because of this performance sacrifice,
our estimation problem simplifies considerably allowing for
the development of an analytic solution.

The optimizations depicted in (6) and (7) require the defi-
nition of a pair (T, θ̂T ). In the sequel, using proper analysis,
we are going to design a candidate pair (T , θ̂T ) and then
we will demonstrate that it is in fact the one that solves the
optimization problem of interest, namely the problem in (7).
We begin the presentation of (T , θ̂T ) by first introducing our
estimator.

B. Candidate Estimator
Let us fix the stopping time T and attempt to find the

estimator θ̂T that minimizes the conditional average cost
E[C(θ̂T , θ)|FT ]. Assuming T stops a.s. we can write

E[C(θ̂T , θ)|FT ] = E

[ ∞∑

t=0

C(θ̂t, θ) {T=t}|Ft

]

=
∞∑

t=0

E
[
C(θ̂t, θ)|Ft

]
{T=t}

≥
∞∑

t=0

inf
θ̂
E
[
C(θ̂, θ)|Ft

]
{T=t}

=
∞∑

t=0

Ct {T=t} = CT .

(8)

We note that the indicator function {T=t} can be moved out-
side the conditional expectation because it is Ft-measurable.
Furthermore using (4) and (5) for each deterministic value of t,
we lower bound the conditional average cost with its minimum
value Ct. It is also clear that the inequality in (8) becomes an
equality if we select θ̂t to be the optimum Bayes estimator ϑ̂t.

This result suggests that when we stop at T if we apply the
optimum Bayes estimator to the available data FT then the
conditional expected cost E[C(θ̂T , θ)|FT ] matches the lower
bound CT . Consequently, for any stopping time T , we propose
as candidate estimator the Bayes estimator ϑ̂T .

C. Candidate Stopping Time
Let us now turn to the definition of the candidate stopping

time. As observations accumulate, at each time instant t we can
compute the corresponding Bayes estimate ϑ̂t and the resulting
minimum conditional average cost Ct. The sequence {Ct} that
is generated by these sequential computations can serve to
define our candidate stopping time as follows

T = inf{t ≥ 0 : Ct ≤ β̃}. (9)

In other words we monitor the sequence of minimum condi-
tional average costs and the first time the value of Ct falls
below β̃ this is the time we stop.

Combining the two results it is clear that we propose the pair
(T , ϑ̂T ) for stopping and parameter estimation. More precisely
we suggest to stop at T defined in (9) and use the data obtained
up to the time of stopping to compute the Bayes estimate ϑ̂T .
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With the next theorem we show that this choice is optimum in
the sense that it solves the constrained optimization problem
defined in (7).

Theorem: Consider any competing pair (T, θ̂T ) which sat-
isfies the constraint E[C(θ̂T , θ)|FT ] ≤ β̃. Assuming that T , T
stop a.s., then for each realization of our observations we have
T ≤ T .

Proof: Since the pair (T, θ̂T ) satisfies the constraint in
(7) this means that

β̃ ≥ E[C(θ̂T , θ)|FT ] ≥ CT .

The first inequality is due to our assumption and the second
is a consequence of (8) where we fix T and minimize over
θ̂T . We can thus conclude that CT ≤ β̃. But this inequality
immediately implies T ≤ T . Indeed this is the case because T
is the first time instant for which Ct ≤ β̃. We have thus proved
that for each realization any competing stopping time T will
be no less than the candidate stopping time T . Clearly this
also implies that E[T ] ≤ E[T ]. This argument proves that the
proposed pair is the one solving the constrained optimization
problem depicted in (7).

We must point out that if the constraint is very mild, namely
β̃ is overly large, then our method can lead to a trivial optimum
pair (T, θ̂T ). Indeed it is possible to stop at T = 0 a.s. and
simply use the prior to provide the necessary estimate. This
can happen when C0 ≤ β̃, namely

C0 = inf
θ̂

∫
C(θ̂, θ)π(θ) dθ ≤ β̃,

leading to the deterministic estimate

ϑ̂0 = arg inf
θ̂

∫
C(θ̂, θ)π(θ) dθ.

Consequently, in order to avoid such a trivial outcome we must
select β̃ < C0.

Remark 3. We should emphasize that the desired problem to
solve is (6). It is because of its analytical intractability that
we resort to (7) which is possible to solve efficiently. When
however we study the performance of the scheme produced
by (7) we must test its behavior with respect to the constraint
in (6) and not the conditional version adopted in (7). In this
sense even though the pair (T , ϑ̂T ) is “optimum”, it should
not come as a surprise if its performance, in some cases, turns
out to be inferior to the fixed sample size estimator.

III. OPTIMIZING COVERAGE PROBABILITY

Major goal in parameter estimation is, of course, the design
of an estimator but also the selection of a sample size that can
assure that the estimate is within a prescribed (confidence)
interval around the correct value with some minimal guar-
anteed (coverage) probability. Specifically we would like to
find a sample size T , fixed or random (stopping time), and an
estimator θ̂T of θ assuring that P(|θ̂T−θ| ≤ h) ≥ α. Parameter
h > 0 denotes the half width of the confidence interval and

α ∈ (0, 1) the minimal level of the coverage probability. The
two quantities h,α are specified by the Scientist.

This problem can be effectively treated using the general
framework we introduced in the previous section by selecting
C(θ̂, θ) = 1 − {|θ̂−θ|≤h} and β = 1 − α. The conditional
average cost function, using (3), can be written as

P(|θ̂t − θ| > h|Ft) = 1−
∫ θ̂t+h

θ̂t−h
ft(θ|Ft) dθ,

where in the integration one should take into account the
(essential) support of θ as it is dictated by the prior π(θ)
(for example if θ ≥ 0 a.s. then the lower integration boundary
must be replaced by (θ̂t − h)+). The Bayes estimator and the
corresponding minimum conditional average cost are given by

ϑ̂t = arg sup
θ̂

∫ θ̂+h

θ̂−h
ft(θ|Ft) dθ, (10)

Ct = 1−
∫ ϑ̂t+h

ϑ̂t−h
ft(θ|Ft) dθ. (11)

As we will have the chance to verify from the examples
that follow, working directly with the coverage probability
most often results in estimators and conditional costs that
do not have analytic expressions and need to be computed
numerically.

Next we present three classical parameter estimation exam-
ples where we compute their estimators and stopping times and
compare their performances with fixed sample size methods
and existing sequential techniques.

A. Mean of a Gaussian
Let us begin by considering the classical problem of es-

timating the unknown mean of a Gaussian random variable.
Suppose our observations {ξt} are ξt ∼ N (θ,σ2) and for the
prior of the mean we have θ ∼ N (µ,σ2

θ), where µ,σ2,σ2
θ are

known. The first step in our analysis consists in computing the
posterior pdf ft(θ|Ft). By using (2) it is a simple exercise to
verify that

ft(θ|Ft) = N
(
µt,σ

2
t

)

where

µt =
σ2
θ

∑t
j=1 ξj + µσ2

σ2
θt+ σ2

; σ2
t =

σ2
θσ

2

σ2
θt+ σ2

.

From (10),(11) the Bayesian estimator can be found as follows

ϑ̂t = arg sup
θ̂

{
Φ
(h+ θ̂ − µt

σt

)
− Φ

(−h+ θ̂ − µt

σt

)}
= µt,

where Φ(·) denotes the standard Gaussian cdf and

Ct = 2Φ
(
− h

σt

)
.

Since Ct is purely deterministic it is clear that the resulting
stopping time T in (9) will be deterministic as well. Actually
for this case we can even solve the original optimization
problem (6) and the resulting optimum stopping time is still
deterministic [3].
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Remark 4. With this simple example we realize that se-
quential estimation does not necessarily enjoy similar char-
acteristics as sequential hypothesis testing (in fact this is the
reason we included this case). We recall that in hypothesis
testing when deciding between N (0, 1) and N (µ, 1), optimum
sequential techniques require, on average, four times less sam-
ples than optimum fixed sample size tests [2, Page 109]. When,
however, we estimate the mean of a Gaussian random variable,
as we have seen, there is absolutely no gain. Fortunately this
conclusion is not universal and in the next two examples we
will experience gains that are worth reporting.

B. Bernoulli Trials
Methods that estimate proportions accompanied by confi-

dence intervals are being used in many applications as polls;
surveys; determination of fractions of people, animals or goods
having certain traits/characteristics; etc. In these problems
minimizing the number of samples that are necessary to
assure estimates of a given quality is, clearly, of paramount
importance. The simplest and most common model used to
describe the corresponding data is Bernoulli binary sequences,
which is also the model we adopt here.

In the literature there are various fixed sample size estima-
tors [9], [10] addressing the question of proportion estimation,
but we can also find sequential methods involving stopping
times. In particular in [3] the optimization problem defined in
(6) for this specific example is treated under an asymptotic
regime, while in [11], [12] stopping rules are proposed and
numerically compared without being supported by any form
of optimality.

Let us analyze this estimation problem using the method-
ology we introduced in the previous section. Consider an
i.i.d. process {ξt} with binary samples ξt ∈ {0, 1} and
P(ξt = 1) = θ ∈ [0, 1]. Probability θ is the parameter to
be estimated for which we assume to have a symmetric prior
Beta(θ, a, a) with known parameter a > 0. Due to the limits
of θ we additionally need to assume that 0 < h < 0.5.

If we call St = ξ1+· · ·+ξt then the conditional pdf ft(θ|Ft)
satisfies

ft(θ|Ft) =
θa+St−1(1− θ)a+t−St−1

B(a+ St, a+ t− St)
(12)

which is Beta(θ, a+St, a+t−St) distributed. Since 0 ≤ θ ≤ 1
if we apply (10) we can write

E[C(θ̂, θ)|Ft] = 1−Beta cdf
(
min{1, θ̂+h}, a+St, a+t−St

)

+ Beta cdf
(
(θ̂ − h)+, a+ St, a+ t− St

)
.

For St = 1 − a the previous expressions is minimized by
ϑ̂t = h and for St = a+ t− 1 with ϑ̂t = 1−h. For any other
value of St finding the Bayes estimator requires the numerical
solution of the equation

ϑ̂t = arg

⎧
⎨

⎩θ̂ :

(
θ̂ − h

θ̂ + h

)a+St−1

=

(
1− h− θ̂

1 + h− θ̂

)a+t−St−1
⎫
⎬

⎭

with h ≤ θ̂ ≤ 1− h.

Fig. 1. Average number of samples as a function of coverage probability
for the Beta distribution when h = 0.1 and a = 0.5.

Fig. 2. Average number of samples as a function of coverage probability
for the Beta distribution when h = 0.1 and a = 1.

Fig. 1 depicts the relative performance of the proposed and
the fixed sample size (FSS) method and in Fig. 2 we also
include the sequential method of [12] whose parameters are
tuned for best performance (this is the reason why we have
only three points). Graphs are the result of averages of 100000
realizations. As we can see, the proposed method outperforms
the fixed sample size and the estimator in [12]. We also
observe that, as the coverage probability approaches 1 we
enjoy bigger gains in sample size, but the reward is by no
means near the levels we experience in hypothesis testing.

C. Exponential Distribution
In the third example we consider samples that are distributed

according to the one sided exponential distribution. In partic-
ular we assume that their density is

f(ξ|θ) = θe−θξ, θ > 0, ξ ≥ 0,

while the prior is also exponential of the form

π(θ) = ae−aθ, a > 0,
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where a is considered known. If we now compute the condi-
tional pdf of θ given Ft then

ft(θ|Ft) =
St+1
t

t!
θte−Stθ, where St = a+

∑t
j=1 ξj ,

which is Gamma(θ, t+ 1, S−1
t ) distributed. From (10)

ϑ̂t =
h

tanh(hSt
t )

and applying (11)

Ct = 1− Gamma cdf
(
ϑ̂t + h, t+ 1, S−1

t

)

+ Gamma cdf
(
ϑ̂t − h, t+ 1, S−1

t

)
.

It is interesting to note that the Bayesian estimator is not
consistent since, using the LLN, we have St

t → 1
θ a.s. and

lim
t→∞

ϑ̂t =
h

tanh(hθ )
̸= θ.

Fig. 3. Average number of samples as a function of coverage probability
for the exponential distribution when h = 0.1 and a = 1.

Fig. 4. Average number of samples as a function of coverage probability
for the exponential distribution when h = 0.1 and a = 5.

We can show that this limiting value has, in fact, error which
is within the pre-specified confidence interval since

∣∣∣
h

tanh(hθ )
− θ

∣∣∣ ≤ h.

From Fig. 3 and 4 we see that, for coverage values larger
than 0.9 (which is the practically interesting range), with the
proposed method we can enjoy substantial gains as compared
to the fixed sample size estimator. In particular, if the coverage
probability is close to 0.99 the number of samples required
by the proposed scheme is at least four times smaller than in
the fixed sample size case. On the other hand, for coverage
probabilities below 0.9 the fixed sample size prevails.

IV. CONCLUSION

In the examples we presented, the performance of the
proposed scheme was not always better than the fixed sample
size estimator (although for high coverage probabilities it
persistently outperformed it, and some times even consider-
ably). This is because our method is not the solution of the
optimization in (6). We are currently working towards the
development of the exact solution of (6), but only for certain
special cases (since the general problem is intractable) that are
also of wide interest as, for example, percentage estimation.
In fact we anticipate that the results obtained in this work will
play a vital role in developing the corresponding long sought,
strictly optimum sequential estimation scheme.
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