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ABSTRACT

We consider the sequential change-point detection problem of
detecting changes that are characterized by a subspace struc-
ture. Such changes are frequent in high-dimensional stream-
ing data altering the form of the corresponding covariance
matrix. In this work we present a Subspace-CUSUM pro-
cedure and demonstrate its first-order asymptotic optimality
properties for the case where the subspace structure is un-
known and needs to be simultaneously estimated. To achieve
this goal we develop a suitable analytical methodology that
includes a proper parameter optimization for the proposed de-
tection scheme. Numerical simulations corroborate our theo-
retical findings.

1. INTRODUCTION
Detecting changes in the distribution of high-dimensional
streaming data is a fundamental problem in various appli-
cations such as swarm behavior monitoring [1], sensor net-
works, and seismic event detection. In various scenarios,
the change can be represented as a linear subspace which is
captured through a change in the covariance structure.

Given a sequence of samples x1, x2, . . . , xt, t = 1, 2, . . .,
where xt ∈ Rk and k is the signal dimension, there may be a
change-point time τ where the distribution of the data stream
changes. Our goal is to detect this change as quickly as possi-
ble using on-line techniques. We are particularly interested in
the structured change that occurs in the signal covariance. We
study two related settings, the emerging subspace: meaning
that the change is a subspace emerging from a noisy back-
ground, and the switching subspace: meaning that the change
is a switch in the direction of the subspace. The emerging
subspace problem can arise from coherent weak signal detec-
tion from seismic sensor arrays, and the switching subspace
detection can be used for principal component analysis for
streaming data. In these settings, the change can be shown to
be equivalent to a low-rank component added to the original
covariance matrix.

Classical approaches to covariance change detection usu-
ally consider generic settings without assuming any struc-
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ture. The CUSUM statistics can be derived if the pre-change
and post-change distributions are known. For the multivariate
case, the Hotelling T 2 control chart is the traditional way to
detect the covariance changes. The determinant of the sam-
ple covariance matrix was also used in [2] to detect change
of the determinant of the covariance matrix. A multivari-
ate CUSUM based on likelihood functions of multi-variate
Gaussian is studied in [3] but it only considers the covariance
change from Σ to cΣ for a constant c. Offline change detec-
tion of covariance change from Σ1 to Σ2 is studied in [4] us-
ing the Schwarz information criterion [5], where the change-
point location must satisfy certain regularity condition to en-
sure the existence of the maximum likelihood estimator. Re-
cently, [6] studies the hypothesis test to detect a shift in the
off-diagonal sub-matrix planted in the covariance matrix us-
ing the likelihood ratios.

In this paper, we propose the Subspace-CUSUM proce-
dure by combing the CUSUM statistic with subspace estima-
tion and proper parameter optimization. We prove that the
resulting detector is first-order asymptotically optimal in the
sense that the ratio of its expected detection delay with the
corresponding of the optimum CUSUM (that has complete
knowledge of the pre- and post-change statistics) tends to 1
as the average run length tends to infinity.

The rest of this paper is organized as follows. Section 2
details on the two problems of emerging and switching sub-
space. Section 3 presents the Subspace-CUSUM procedure.
Section 4 considers the asymptotic analysis of the proposed
scheme along with parameter optimization and proof of first-
order asymptotic optimality. Finally, in Section 5 we present
simulation results that corroborate our theoretical findings.

2. SUBSPACE CHANGE-POINT DETECTION
Both settings, emerging and switching subspace, can be
shown to be related to the so-called spiked covariance ma-
trix [7]. For simplicity, we consider the rank-one spiked
covariance matrix problem, which is given by

Σ = σ2Ik + θuuᵀ,

where Ik denotes an identity matrix of size k; θ the signal
strength; u ∈ Rk×1 represents a basis for the subspace ‖u‖ =
1 and σ2 the noise power. We can define the Signal-to-Noise
Ratio (SNR) as ρ = θ/σ2.



In the emerging subspace problem the sequentially ob-
served data are as follows

xt
iid∼ N (0, σ2Ik), t = 1, 2, . . . , τ,

xt
iid∼ N (0, σ2Ik + θuuᵀ), t = τ + 1, τ + 2, . . .

(1)

where τ is the unknown change-point that we would like to
detect as soon as possible. We assume that the subspace u is
unknown since it represents anomaly or new information.

In the switching subspace problem the data satisfy

xt
iid∼ N (0, σ2Ik + θu1u

ᵀ
1), t = 1, 2, . . . , τ,

xt
iid∼ N (0, σ2Ik + θu2u

ᵀ
2), t = τ + 1, τ + 2, . . .

(2)

where u1 and u2 are the pre- and post-change subspaces. We
assume that u1 is completely known since it describes the sta-
tistical behavior under nominal conditions while u2 is consid-
ered unknown since, as before, it expresses an anomaly.

The switching subspace problem (2) can be easily reduced
into the emerging subspace problem (1). Indeed if we select
any orthonormal matrix Q ∈ R(k−1)×k that satisfies

Qu1 = 0, QQᵀ = Ik−1,

and project the observed data onto the space that is orthogonal
to u1 namely yt = Qxt ∈ Rk−1, then yt is a zero-mean ran-
dom vector with covariance matrix σ2Ik−1 before the change
and σ2Ik−1+ θ̃uuᵀ after the change where u = Qu2/‖Qu2‖,
and

θ̃ = θ ‖Qu2‖2 = θ[1− (uᵀ1u2)2].

The data in (2) under this transformation becomes

yt
iid∼ N (0, σ2Ik−1), t = 1, 2, . . . , τ,

yt
iid∼ N (0, σ2Ik−1 + θ̃uuᵀ), t = τ + 1, τ + 2, . . .

(3)

which is the emerging subspace problem in (1). We need how-
ever to emphasize that by projecting the observations onto a
lower dimensional space we lose information, suggesting that
the two versions of the problem are not equivalent. In partic-
ular the optimum detector for the transformed data in (3) and
the one of the original data in (2) do not coincide. This can
be easily verified by computing the corresponding CUSUM
tests and their (optimum) performance. Despite this differ-
ence, it is clear that with this result we are going to present
next, and by adopting the transformed version (3), we offer a
computationally simple method to solve the original problem
(2). Therefore, from now on, our analysis will focus solely on
detecting τ with the ccorresponding observations following
the model depicted in (1).

3. SUBSPACE CUSUM
The CUSUM test [8, 9], when the observations are i.i.d. be-
fore and after the change, is known to be exactly optimum
[10] in the sense that it solves a very well defined constrained

optimization problem introduced in [11]. If f∞(x), f0(x)
denote the pre- and post-change probability density function
(pdf) of the observations respectively then the CUSUM statis-
tic St and the corresponding CUSUM stopping time TC are
defined [10] as follows

St = (St−1)+ + log
f0(xt)

f∞(xt)
, TC = inf{t > 0 : St ≥ b},

(4)
where (x)+ = max{x, 0} and b denotes a constant threshold.
We must of course point out that application of CUSUM is
only possible if we have exact knowledge of the pre- and post-
change pdfs.

For the data model depicted in (1) the log-likelihood ratio
takes the special form

log
f0(xt)

f∞(xt)
=

1

2σ2

ρ

1 + ρ

{
(uᵀxt)

2−σ2

(
1 +

1

ρ

)
log(1+ρ)

}
.

The multiplicative factor ρ/[2σ2(1 + ρ)] > 0 can be omitted
since it only performs a constant scaling of the test statistic.
We can therefore define the CUSUM test statistic using the
following recursion

St = (St−1)+ + (uᵀxt)
2 − σ2

(
1 +

1

ρ

)
log(1 + ρ). (5)

Using a simple argument based on Jensen’s inequality, we can
claim that the increment in (5) has a negative average under
the nominal measure and a positive average under the alterna-
tive. Due to this property, the CUSUM statistic St oscillates
near 0 before the change, and increases with a linear trend
after the change.

Since in our case we assume that the vector u is unknown
we propose the following alternative to (5) with u replaced by
any estimate ût

St = (St−1)+ + (ûᵀt xt)
2 − d. (6)

Quantity d is a constant that we would like to select properly
so that the increment of St mimic the main property of the
increment of the CUSUM statistic St, that is, have a negative
mean under nominal and a positive mean under the alternative
probability measure. This will require

E∞[(ûᵀt xt)
2] < d < E0[(ûᵀt xt)

2]. (7)

The proposed CUSUM-like stopping time is then defined as

TC = inf{t > 0 : St ≥ b}. (8)

To be able to apply (6) we need to specify d and of course
the estimate ût. Regarding the latter we propose a sliding
window of size w and form the sample covariance matrix

Σt =
∑t+w
i=t+1 xix

ᵀ
i ,



using the observations {xt+1, . . . , xt+w} that lie in the future
of t. Then ût is simply the unit-norm eigenvector correspond-
ing to the largest eigenvalue of Σt. The usage of observations
from the future might seem somewhat awkward but it is al-
ways possible by properly delaying the data. The main ad-
vantage of this idea is that it provides estimates ût that are in-
dependent from xt. Of course employing observations from
times after t affects the actual performance of our scheme. In
particular, if with (8) we stop at time TC = t this implies that
we used data from times up to t+w and, consequently, t+w
is the true time we stop and not t.

The independence between ût and xt allows for the sim-
ple computation of the two expectations in (7). However, for
this computation to be possible, especially under the alterna-
tive regime, it is necessary to be able to describe the statistical
behavior of our estimate ût. We will assume that the window
size w is sufficiently large so that Central Limit Theorem type
approximations are possible for ût and we will consider that
ût is actually Gaussian with mean u (the correct vector) and
(error) covariance matrix that can be specified, analytically,
of being size 1/w [12, 13]. Explicit formulas will be given in
the Appendix.
Lemma 1. Adopting the Gaussian approximation for ût we
have the following two mean values under the pre- and post-
change regime:

E∞[(ûᵀt xt)
2] = σ2,

E0[(ûᵀt xt)
2] = σ2(1 + ρ)

[
1− k − 1

wρ

]
.

Proof. The proof is given in the Appendix.

Lemma 1 also suggests that the window size w and the
drift d must satisfy

σ2 < d < σ2(1 + ρ)

(
1− k − 1

wρ

)
. (9)

Necessary condition for this to be true is thatw > (k−1)(1+
ρ)/ρ2. Actually this constraint is required for the Gaussian
approximation to make sense. But in order for the approxi-
mation to be efficient we, in fact, need w to be significantly
larger than the lower bound. We can see that when the SNR
is high (ρ � 1) then with relatively small window size we
can obtain efficient estimates. When on the other hand SNR
is low (ρ � 1) then far larger window sizes are necessary to
guarantee validity of the Gaussian approximation.

4. ASYMPTOTIC ANALYSIS
In this section we will provide performance estimates for the
optimum CUSUM test (that has all the information regarding
the data) and the Subspace-CUSUM test proposed in the pre-
vious section. This will allow for the optimum design of the
two parameters w, d and for demonstrating that the resulting
detector is asymptotically optimum.

In sequential change detection there are two quantities
that play vital role in the performance of a detector: a) the
average run length (ARL) and b) the expected detection de-
lay (EDD). ARL measures the average period between false
alarms while EDD the (worst-case) average detection delay.
It is known that CUSUM minimizes the latter while keeps the
former above a prescribed level. Let us first compute these
two quantities for the case of CUSUM given in (4).
4.1. Asymptotic performance
From [?, Pages 396–397] we have that the test depicted in (4)
has the following performance

E∞[TC] =
eb

K

(
1 + o(1)

)
, E0[TC] =

b

I0

(
1 + o(1)

)
, (10)

where b is the constant threshold; K is of the order of a con-
stant with its exact value being unimportant for the asymptotic
analysis; finally I0 is the Kullback-Leibler information num-
ber I0 = E0{log [f0(x)/f∞(x)]}. We recall that the worst-
case average detection delay in CUSUM is equal to E0[TC].
This is the reason we consider the computation of this quan-
tity. If now, we impose the constraint that the ARL is equal to
γ > 1 and for the asymptotic analysis that γ → ∞, then we
can compute the threshold b that can achieve this false alarm
performance namely b = (log γ)

(
1 + o(1)

)
. Substituting this

value of the threshold in EDD we obtain

E0[TC] =
log γ

I0

(
1 + o(1)

)
. (11)

Applying this formula in our problem we end up with the fol-
lowing optimum performance

E0[TC] =
2 log γ

ρ− log(1 + ρ)

(
1 + o(1)

)
. (12)

For the performance computation of Subspace-CUSUM,
since the increment (ûᵀt x)2 − d in (6) is not a log-likelihood,
we cannot use (11) directly. To compute the ARL of TC we
first find δ∞ > 0 from the solution of the equation

E∞[eδ∞[(ûᵀ
t xt)

2−d]] = 1 (13)

and then we note that δ∞[(ûᵀt x)2 − d] is the log-likelihood
ratio between the two pdfs f̃0 = exp{δ∞[(ûᵀt x)2 − d]}f∞
and f∞. This allows us to compute the threshold b asymp-
totically as b = (log γ)

(
1 + o(1)

)
/δ∞ after assuming that

w = o(log γ). Similarly we can find a δ0 > 0 and define
f̃∞ = exp{−δ0[(ûᵀt xt)

2−d]}f0 so that δ0[(ûᵀt xt)
2−d] is the

log-likelihood ratio between f0 and f̃∞ leading to E0[TC] =
b
(
1 + o(1)

)
/(E0[(ûᵀt xt)

2] − d) with the dependence on δ0
being in the o(1) term. Substituting b we obtain

E0[TC] =
log γ

δ∞
(
E0[(ûᵀt xt)

2]− d
)(1 + o(1)

)
+ w, (14)

where the last term w is added because we use data from the
future of t as we explained before. Parameter δ∞, defined in



(13), is directly related to d. We show in the Appendix that d
can be expressed in terms of δ∞ as follows

d = − 1

2δ∞
log(1− 2σ2δ∞). (15)

After using Lemma 1 and (15) we obtain the following ex-
pression for the EDD:

E0[TC] = log γ(1+o(1))

σ2δ∞(1+ρ)(1− k−1
wρ )+ 1

2 log(1−2σ2δ∞)
+ w. (16)

4.2. Parameter optimization and asymptotic optimality
Note that in the previous equation we have two parameters
δ∞ and w and the goal is to select them so as to minimize the
EDD. Therefore if we first fix the window sizew we can mini-
mize over δ∞ (which is equivalent to minimizing with respect
to the drift d). We observe that the denominator is a concave
function of δ∞ therefore it exhibits a single maximum. The
optimum δ∞ can be computed by taking the derivative and
equating to 0 which leads to a particular δ∞. Substituting this
optimal value we obtain the following minimum EDD:

E0[TC] = 2 log γ(1+o(1))

(1+ρ)(1− k−1
wρ )−1−log[(1+ρ)(1− k−1

wρ )]
+ w. (17)

Equ. (17) involves only the target ARL level γ and the win-
dow size w. If we keep w constant it is easy to verify that the
ratio of the EDD of the proposed scheme over the EDD of the
optimum CUSUM tends, as γ → ∞, to a quantity which is
strictly greater than 1. In order to make this ratio tend to 1
and therefore establish asymptotic optimality we need to se-
lect the window size w as a function of γ. Actually we can
perform this selection optimally by minimizing (17) with re-
spect to w for given γ. The following proposition identifies
the optimum window size.

Proposition 1. For each ARL level γ, the optimal window
size that minimizes the corresponding EDD is given by

w∗ =
√

log γ ·
√

2(k−1)
ρ−log(1+ρ)

(
1 + o(1)

)
,

resulting in an optimal drift

d∗ =
σ2(1+ρ)(1− k−1

w∗ρ )
(1+ρ)(1− k−1

w∗ρ )−1
log
[
(1 + ρ)

(
1− k−1

w∗ρ

)]
.

Using these optimal parameter values it is straightforward
to establish that the corresponding Subspace-CUSUM is first-
order asymptotically optimum. This is summarized in our
next theorem.

Theorem 1. As the ARL level γ → ∞, the corresponding
EDD of the Subspace-CUSUM procedure TC with the two pa-
rameters d and w optimized as above satisfies

lim
γ→∞

E0[TC]

E0[TC]
= 1. (18)

Proof. As we pointed out, the proof is straightforward. In-
deed if we substitute the optimum d and w and then take the
ratio with respect to the optimum CUSUM performance de-
picted in (12) we obtain

E0[TC]

E0[TC]
= 1 +

√
k − 1

2 log γ
+ o(1)→ 1,

which proves the desired limit. Even though the ratio tends to
1, we note that E0[TC]− E0[TC] = Θ(

√
log γ)→∞. This is

corroborated by our simulations (see Fig. 1, red curve).

5. NUMERICAL EXAMPLES
We present simulations to illustrate the satisfactory perfor-
mance of Subspace-CUSUM. For comparison, we consider
two other detection procedures: one uses the largest eigen-
value of the sample covariance matrix Σt as the test statistic
while the other is the exact CUSUM assuming all parameters
are known (ideal but unrealistic case).

The threshold for each detection procedure is determined
through Monte-Carlo simulation so they all have the same
ARL. Fig. 1 depicts the EDD versus ARL with the latter un-
der a logarithmic scale. Parameters are selected as follows:
k = 5, θ = 1, σ2 = 1 and window length w = 20. Ex-
act CUSUM (black) is compared against Subspace-CUSUM
(green) and largest eigenvalue scheme (blue). We see that
Subspace-CUSUM has much smaller EDD than the largest
eigenvalue procedure while Subspace-CUSUM with opti-
mized window size w (red) is uniformly more efficient. We
also consider EDD versus ARL for different w and with
numerically optimized w so as to minimize the detection de-
lay for each ARL level. The results appear in Fig. 2, which
demonstrate that indeed the optimal w increases with ARL.

Fig. 1. Comparison of the largest eigenvalue procedure and
CUSUM procedures.

Fig. 2. Left: Minimal EDD (red) among window sizesw from
1 to 50; Right: Corresponding optimal window size w.
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A. APPENDIX

Proof of Lemma 1. Using the independence between ût and
xt we can write

E[(ûᵀt xt)
2] = E

[
ûᵀt E[xtx

ᵀ
t ]ût

]
. (19)

Consequently, under the nominal regime

E∞[(ûᵀt xt)
2] = E∞[ûᵀt σ

2Ikût
]

= σ2,

with the last equality being true because ût is of unit norm.
Under the alternative regime we are going to use Central

Limit Theorem arguments [12,13] that describe the statistical
behavior of the estimator. We have that

√
w(ωt − u)→ N

(
0,

1 + ρ

ρ2
(Ik − uuᵀ)

)
where the limit is in distribution as w → ∞ and ωt denotes
the un-normalized eigenvector. For largew we can write ωt =
u+ vt where

vt ∼ N
(

0,
1 + ρ

wρ2
(Ik − uuᵀ)

)
.

Our estimator ût is related to ωt through the normalization
process ût = ωt/‖ωt‖, and if we use this in (19) after recall-
ing that under the alternative E0[xtx

ᵀ
t ] = σ2(Ik + ρuuᵀ) and

using repeatedly the fact that u and vt are orthogonal, we have

E0[(ûᵀt xt)
2] = σ2E0

[
ûᵀt (Ik + ρuuᵀ)ût

]
= σ2(1 + ρE0[(ûᵀt u)2]) = σ2

(
1 + ρE0

[
1

1 + ‖vt‖2

])
≈ σ2

(
1 + ρE0

[
1− ‖vt‖2

])
= σ2(1 + ρ)

(
1− k − 1

wρ

)
.

For the approximate equality we used the fact that to a first
order approximation we can write 1/(1+‖vt‖2) ≈ 1−‖vt‖2
because ‖vt‖2 is of the order of 1/w while the approximation
error is of higher order. This completes the proof.

Proof of Proposition 1. Let us first evaluate the expectation
in (13) to demonstrate the relationship between δ∞ and d de-
picted in (15). Using standard computations involving Gaus-
sian random vectors we can write

E∞[eδ∞[(ûᵀ
t xt)

2−d]] = e−δ∞dE∞
[
E∞[eδ∞(ûᵀ

t xt)
2

|ût]
]

= e−δ∞dE∞

[∫
eδ∞x

ᵀ
t (ûtû

ᵀ
t )xt · e

−xᵀ
t xt/(2σ

2)√
(2π)kσ2k

dxt

]

=
e−δ∞d√

1− 2σ2δ∞
.

To compute the integral we used the standard technique of
“completing the square” in the exponent and with proper nor-
malization generate an alternative Gaussian pdf which inte-
grates to 1. The interesting observation is that the result of
the integration does not actually depend on ût.

If we use the optimum value for d in terms of δ∞ then as
we argued in the text we obtain for EDD the expression ap-
pearing in (16). We can now fix w and optimize EDD with re-
spect to δ∞. This is a straightforward process since it amounts
in maximizing the denominator. Taking the derivative and
equating to 0 yields the optimum δ∞

δ∗∞ =
1

2σ2

1− 1

(1 + ρ)
(

1− k−1
wρ

)
 .

Substituting this value in (16) produces (17).
The next step consists in minimizing (17) with respect to

w. Again taking the derivative and equating to 0 we can show
that the optimum window size is thew∗ depicted in the propo-
sition.
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