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Abstract—We consider the sequential change-point detection
for asynchronous multi-sensors, where each sensor observe a
signal (due to change-point) at different times. We propose
an asynchronous Subspace-CUSUM procedure based on jointly
estimating the unknown signal waveform and the unknown
relative delays between sensors. Using the estimated delays, we
can align signals and use the subspace to combine multiple sensor
observations. We derive the optimal drift parameter for the
proposed procedure, and characterize the relationship between
the expected detection delay, average run length (of false alarms),
and the energy of the time-varying signal. We demonstrate the
good performance of the proposed procedure using simulation
and real data. We also demonstrate that the proposed procedure
outperforms the well-known “one-shot procedure” in detecting
weak and asynchronous signals.

I. INTRODUCTION

We consider detecting the emergence of a signal, which is
observed at multiple sensors with unknown and different de-
lays and amplitudes. Such problem arises frequently in sensor
network monitoring, where the sensors observe the sudden
occurrence of a signal at different times mostly due to prop-
agation delays, as illustrated in Fig. 1. The main application
of interest is seismic tremors detection [1]. Tremors are low
amplitude ambient vibrations of the ground caused by man-
made or atmospheric disturbances; detecting the underlying
tremors will enable geophysicists to build better predictive
models. Our goal is to detect the emergence of such occurrence
(change) by combining observations at multiple sensors.

Fig. 1. Illustration of a sensor network with a signal.

Classical sequential change-point detection [7] usually as-
sumes the change happens simultaneously at all or a subset
of sensors. The scenario we are proposing above, calls for
the development of new methods that can consider delay
estimation together with change-point detection. Change-point
detection with delays has also been considered in [4] using the
so-called one-shot scheme, where the fusion center declares

an alarm whenever one sensor detects a change. However,
the one-shot scheme relies only on local sensor information,
it does not take advantage of the multi-sensor observations
and the fact that the change occurs in all sensors but not at
the same time. Combining asynchronous sensor observations
can be beneficial for the detection problem when the relative
delays are small and when the signal is weak, as is the case
of seismic tremors. This is because combining observations
effectively boosts the SNR.

Even though in our work the time of change in sensors
appears to be different, there exists a deterministic difference
between change-times due to the location geometry of sensors
and the location where the tremor occurs. Consequently, our
approach will be similar to approaches where there is a simul-
taneous change in all sensors after, of course, compensating
for the fixed but unknown delays.

We propose an asynchronous Subspace-CUSUM procedure,
based on jointly estimating the unknown signal waveform and
the unknown relative delays. It is related to the Subspace-
CUSUM procedure in our prior work [2], [11]. We extend
the results therein for the asynchronous case, and develop an
optimal choice of the drift parameter, which is essential for
CUSUM type of procedures. Our theoretical analysis reveals
insights into the relationship between the average energy of the
time-varying signal and the expected detection delay. This may
potentially allow us to prove the asymptotic optimality of the
asynchronous Subspace-CUSUM, by extending the arguments
in [2]. We demonstrate the good performance of our procedure
using simulated examples and real seismic data. Our procedure
outperforms the one-shot scheme especially when the signal
amplitude is weak and the relative delays are not too large.

The rest of the paper is organized as follows. In section II,
we introduce the background of sequential subspace detection
and briefly summarize the Subspace-CUSUM procedure. In
section III, we first consider the case where the delays are
perfectly known and form the detection statistic. Next, we
propose a detector that combines sensor synchronization with
detection when the delays are unknown. The theoretical result
about how to properly select the drift parameter is discussed in
section IV. In section V we evaluate our method by applying
it to both simulated signals and real seismic data and observe
its performance under strong and weak signals.
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II. BACKGROUND: SUBSPACE-CUSUM PROCEDURE

We first introduce the Subspace-CUSUM procedure which
will be the basis of our subsequent discussion. Consider the
change-point detection problem where the covariance changes
from an identity matrix σ2Ik to a spiked matrix Σ = σ2Ik +
θuuᵀ, here k is the dimension, θ > 0 is the signal strength,
u ∈ Rk×1 represents a basis for the subspace with ‖u‖2 = 1,
and σ2 is the noise power. We can define the SNR as ρ =
θ/σ2. Assume the sequentially observed data are as follows

xt
iid∼ N (0, σ2Ik), t = 1, 2, . . . , τ,

xt
iid∼ N (0, σ2Ik + θuuᵀ), t = τ + 1, τ + 2, . . .

(1)

where τ is the unknown change-point that we would like to
detect as quickly as possible. We assume that the subspace u
is unknown since it represents anomaly or new information.

The well-known cumulative sum (CUSUM) test [5], [6]
cumulates the log-likelihood ratio and declares an alarm
whenever the cumulation exceeds a threshold. For the data
model in (1), the log-likelihood ratio for each sample is derived
as the equation (7) in [11]:

log
f0(xt)

f∞(xt)
=

1

2σ2

ρ

1 + ρ

{
(uᵀxt)

2−σ2

(
1 +

1

ρ

)
log(1+ρ)

}
,

where f∞ and f0 denote the probability density function
before and after the change. Based on this, we can form the
CUSUM statistic as

St = (St−1)+ + (uᵀxt)
2 − σ2

(
1 +

1

ρ

)
log(1 + ρ),

where (x)+ = max{x, 0}. When u is unknown, in the
Subspace-CUSUM procedure, u is replaced with a sequential
estimate ût (will be explained later):

St = (St−1)+ + (ûᵀt xt)
2 − d. (2)

Following the analogy in [3], we require the drift d to satisfy

E∞[(ûᵀt xt)
2] < d < E0[(ûᵀt xt)

2], (3)

where E∞ and E0 denote the expectation under nominal and
alternative measure respectively.

The Subspace-CUSUM procedure can be defined through
the following stopping time

T = inf{t > 0 : St ≥ b}, (4)

where b is a pre-specified threshold set to control the false
alarm rate. This test is known to be asymptotically optimum
for the stationary case (constant θ) [2].

To obtain the estimate ût, we form the sample covariance
matrix using the observations {xt+1, . . . , xt+w} that lie in the
future of t,

Σt =
t+w∑
j=t+1

xjx
ᵀ
j , (5)

then the unit-norm singular vector corresponding to the largest
singular value of Σt can be viewed as an estimator for u at
time t. The usage of observations from the future is always
possible by properly delaying the data. In particular, if we stop

at time T = t, this implies that we used data from times up
to t+w and, consequently, t+w is the true time we stop and
not t. The main advantage of this idea is that it provides the
estimator ût that is independent of xt.

III. PROBLEM SETUP

In this section, we first consider the case when delays
are known, and show how the Subspace-CUSUM procedure
should be applied to detect the signal. When the delays are
unknown, we develop a method that simultaneously synchro-
nizes sensors by estimating their relative delays and detects
the change.

Consider k sensors as in Fig. 1. Suppose we have sequential
observations at each sensor, x1(t), x2(t), . . . , xk(t). Before
the emergence of the signal, the observations are noises that
are assumed to be i.i.d. normal random variables. We will
also assume that their powers are known which implies that,
without loss of generality, we can assume that these powers
are all equal to σ2 since this is always possible with proper
normalization. When a source signal s(t) occurs, the obser-
vations at different sensors will capture it but with different
delays and amplitudes. We assume the signal is causal, i.e.,
s(t) = 0,∀t < 0. Denote the time point of onset of the signal
in ith sensor as τi, and define the change-point as

τ = min
1≤i≤k

τi.

For the ith sensor, this means:

xi(t) = ei(t), t = 1, 2, . . . , τ,
xi(t) = αis(t− τi) + ei(t), t = τ + 1, τ + 2, . . . ,

(6)

where ei(t)
iid∼ N (0, σ2) are random noises, and αi is the

unknown amplitude of the change at the ith sensor. Assume
that the source signal s(t) is unknown. We also define the
relative delay between the ith and jth sensor as τij = τj − τi.
Note that the delays with respect to the source signal are
always nonnegative, but the relative delays can be either
positive or negative.

A. Known Delays

To help build intuition, we first consider the ideal case where
the relative delays τij are known. Without loss of generality,
we assume τ1i ≥ 0,∀i. If this is the case we can construct the
time-shifted version of the observations

x̃i(t) = xi(t+ τ1i), i = 1, 2, . . . , k, (7)

and combine them to form a k-dimensional vector

x̃t =
[
x̃1(t) x̃2(t) · · · x̃k(t)

]ᵀ
. (8)

Note that when there is a signal, after the data transformation
in (7), we can show that the vectorized observations can be
written as

x̃t = s(t)
[
α1 α2 · · · αk

]ᵀ
+et, e(t) ∼ N (0, σ2Ik). (9)

Therefore the covariance structure of x̃t will undergo a similar
change as in the model in (1), namely, be the identity matrix
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σ2Ik before the emergence of the signal s(t), and become
the spiked model σ2Ik + θ(t)uuᵀ after. Here the subspace u,
represents the unknown normalized post-change amplitudes

u =
α

‖α‖
, (10)

where, for simplicity, we denote α = [α1, . . . , αk]ᵀ, and the
time-varying signal strength θ(t) is given by

θ(t) = s2(t)‖α‖2.

Note that (9) differs from the previous model (1) in that
θ(t) is now time-varying, since the signal s(t) changes with
time. However, the change-point detection is still to detect
the transition of the covariance matrix from an identity to a
spiked covariance matrix. So, we can still adapt the Subspace-
CUSUM in section II to be used in this case. We should add
that optimum detection schemes for time-varying models are
difficult to derive. For existing results please refer to [7].

Since the normalized post-change amplitude vector u is
unknown, we can estimate it by forming the sample covariance
matrix Σt introduced in (5) but with xt replaced by x̃t in
(8). If we apply the singular value decomposition on Σt then
the singular vector corresponding to the largest singular value
provides the desired estimate ût. Then, we plug ût back into
the detection statistic (2) and obtain

St = (St−1)+ + (ûᵀt x̃t)
2 − d, (11)

and the stopping time is defined as in (4). Of course, there
still remains the question of selecting the proper d. We defer
the discussion of this issue until Section IV.

B. Unknown Delays

In this section, we consider the case where delays are
unknown. Generally, the exact delay is not possible to obtain
beforehand since it depends on the location of the tremor
epicenter. Therefore, we need to come up with a method
that will achieve sensor synchronization in order to apply the
Subspace-CUSUM procedure. In fact, this will be performed
continuously and in a sequential manner in parallel with the
change-detection task.

We select one sensor as reference, and attempt to syn-
chronize all other sensors with respect to this sensor. Syn-
chronization can be implemented based on the maximum
likelihood approach to estimate the relative delay, on a sensor-
by-sensor basis or simultaneously for all sensors. Without loss
of generality, we regard the data of the first sensor x1(t) as
the reference and compute the relative delays with respect to
x1(t). Assume that we have available an upper bound τmax

on the unknown relative delays, so they are restricted in the
interval [−τmax, τmax].

For the ith sensor, the log-likelihood function of the obser-
vations {xi(t+ 1), . . . , xi(t+w)} after change can be written
as

`s,τi
(
xi(t+ 1), . . . , xi(t+ w)

)
=

αi
σ2

t+w∑
j=t+1

xi(j)s(j − τi)−
α2
i

2σ2

t+w∑
j=t+1

s2(j − τi)

− 1

2σ2

t+w∑
j=t+1

x2i (j)−
w

2
log(2πσ2).

Therefore for any given signal waveform s(t), the maximum
likelihood estimator of τi at ith sensor is given by

τ̂i = arg max
−τmax≤z≤τmax

∣∣∣∑t+w

j=t+1
xi(j)s(j − z)

∣∣∣. (12)

Based on the maximum likelihood estimator (12), we propose
Algorithm 1 which performs the joint estimation of signal
waveform and relative delay iteratively. Once we obtain the

Algorithm 1 Joint estimate of signal waveform and delay
Input: δ, nmax

1: Initialize: n← 1; ŝ(1) ← x1; τ̂ (0)1i =∞, τ̂ (1)1i = 0,∀i
2: while maxi≥2 |τ̂ (n)1i − τ̂

(n−1)
1i | ≥ δ and n ≤ nmax do

3: n← n+ 1
4: for i = 2, . . . , k do
5: τ̂

(n)
1i = arg max

−τmax≤z≤τmax

|
∑t+w
j=t+1 xi(j)ŝ

(n−1)(j − z)|

6: end for
7: Form sample vector (8) using delay estimate τ̂ (n)1i

8: Find û, the singular vector corresponding to the largest
singular value of the sample covariance matrix (5)

9: ŝ(n)(t)←
∑k
i=1 ûixi(t+ τ̂

(n)
1i )

10: end while

estimates of the delays we can then use (7) with τ1i replaced
by τ̂1i and then apply the Subspace-CUSUM as described
above with xt replaced by x̃t.

IV. THEORETICAL ANALYSIS

Our previously introduced condition (3) for the drift pa-
rameter is necessary to guarantee that Subspace-CUSUM will
behave similarly as the regular CUSUM. In other words, the
increment will have a negative mean under the nominal model
resulting in multiple restarts while under the alternative regime
the increment will be positive on average leading the statistic
St to exceed the threshold. The aforementioned property is
crucial and it ensures that the detection delay is proportional
to the threshold while the expected duration between false
alarms is an exponential function of the threshold.

When the post-change statistical behavior is not stationary,
(3) is no longer applicable and we need to consider time as an
additional source of variability. Since in our problem s(t) is
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time-varying, the expectation over s(t) must be replaced with
the average over time. Specifically we have

lim
W→∞

1

W

W−1∑
j=0

E∞[(ûᵀt+jxt+j)
2] < d

< lim
W→∞

1

W

W−1∑
j=0

E0[(ûᵀt+jxt+j)
2]. (13)

In other words we assume that (3) is valid on average over
time. Let us now see how this translates in our specific
problem. We first make the following assumption.

Assumption 1. There exists a positive constant E0 such that
the following limit is valid

lim
W→∞

1

W

W∑
i=1

s2(i) = E0 > 0. (14)

Quantity E0 denotes the average energy of the signal s(t).

To compute the expectations of (ûᵀt x̃t)
2, especially under

the alternative regime, it is necessary to be able to describe
the statistical behavior of our estimate ût. We will assume that
the window size w is sufficiently large so that Central Limit
Theorem type approximations are possible. Explicit formulas
are given in the following Lemma.

Lemma 1. If Assumption 1 is true, and ei(t)
iid∼ N (0, σ2), we

have that under the pre-change regime,

E∞
[
(ûᵀt x̃t)

2
]

= σ2,

and under the post-change regime:

E0

[
(ûᵀt x̃t)

2
]

= σ2

[
1 +

s2(t)ρ

E0

(
1− 1 + ρ

wρ2
(k − 1)

)]
,

where
ρ =

E0

σ2
‖α‖2,

can be viewed as the average SNR over time.

Proof. The proof is given in the Appendix.

Using Lemma 1 and (13) we can immediately deduce that
the drift d must satisfy

σ2 < d < σ2

[
1 + ρ

(
1− 1 + ρ

wρ2
(k − 1)

)]
,

which is similar to the stationary condition imposed in [2] but
with the average energy E0 replacing the constant energy of
the stationary version.

V. NUMERICAL RESULTS

A. Simulation

In this section, we perform simulations to compare the
performance of our subspace-based test with the one-shot
scheme proposed in [4]. We adopt the same setting as in
[4], where the distribution of the data stream at each sensor
changes from N (0, σ2) to N (µ, σ2) asynchronously. Indeed

this is a special case of the model (6) by letting the signal
s(t) = 1, and the amplitude αi = µ for all sensors. In the
numerical experiments, the noise level σ2 = 1, the number of
sensors k = 50, the maximal relative delay τmax is set to 20,
and the window size w is set to 20.
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Fig. 2. Comparison of Average detection delay as a function of Average run
length for Subspace-CUSUM and One-shot detection scheme.

In Fig. 2 we compare the average detection delay of the
one-shot scheme (blue line) and our subspace-based test (red
line) as a function of the average run length, which is the
average period between false alarms. Fig. 2 shows the results
for (a) µ = 0.1 and (b) µ = 0.25, respectively. Our method
can detect the weak signal with much smaller delays compared
with the one-shot scheme. When µ is relatively large, the one-
shot scheme outperform our method for small average run
length values. However the proposed method performs better
when the average run length increases. This suggests that
combing multi-sensor observations can improve performance
significantly.

B. Seismic Data

In this example, we consider the seismic tremor signal
detection problem. The tremor signals are useful for geophys-
ical study and prediction of potential earthquakes. Usually,
the tremor signals are very weak to detect using data at any
individual sensor; therefore, network detection methods have
been developed which essentially use covariance information
of the data [8]. This network-based detection problem can
also be solved by our Subspace-CUSUM scheme discussed
in III-B. Note that the tremor signal is abrupt but transient,
therefore the detection statistic will decrease when the tremor
disappears, and increase again when a new signal appears.

The seismic dataset we use is the records at Parkfield,
California from 2am to 4am on 12/23/2004, which consist
of 13 seismic sensors that simultaneously record a continuous
stream of signals. The sampling frequency of the raw data
is 250Hz. In the data preprocessing step, we normalize the
observations at each sensor by subtracting the average value
and dividing the maximal absolute value. The raw data after
preprocessing is shown in Fig. 3. From the published catalog
(1), we see three small earthquakes as shown in table I. There
are also many low-frequency tremor records, mainly at time
2:34 ∼ 2:35, 2:42 ∼ 2:53, 3:24, 3:26, and 3:39.

1Northern California Earthquake Data Center: http://www.ncedc.org/ncedc/
catalog-search.html
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Fig. 3. Raw data from 13 sensors.

TABLE I
EARTHQUAKE CATALOG AT PARKFIELD DURING 2004/12/23 02-04 UT.

Date Time Lat Lon Mag Event ID
2004/12/23 02:09:54.01 35.4593 -120.7500 1.47 21429343
2004/12/23 02:35:23.70 36.0368 -120.6088 1.10 30229299
2004/12/23 03:46:09.23 35.9290 -120.4797 1.47 21429365

In this example, we assume that the maximum delay
τmax = 100 (namely, 0.4 sec). The window size w = 200,
which corresponds to 0.8 sec. We use the data within the
first 500 sec (pre-change period) to set the drift parameter d
numerically, which is 1.5 times the mean value of (ûᵀt xt)

2. We
computed the Subspace-CUSUM statistic in (11), as shown
in Fig. 4. It can be seen that the three main peaks are at
603.6 sec, 2127.0 sec, 6370.0 sec respectively, which is quite
close to the true earthquake time (recall that these times
594.0 sec, 2123.7 sec, and 6369.2 sec). There are some small
and continuous peaks within the time period 2500 sec ∼
3200 sec, which match the tremor catalog of 2:42 ∼ 2:53.
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Fig. 4. Left: the increment (ûᵀ
t x̃t)2. Right: the Subspace-CUSUM detection

statistics St over time.

VI. CONCLUSION

We study the sequential asynchronous multi-sensor change-
point detection. In the proposed asynchronous Subspace-
CUSUM algorithm, observations at different sensors are syn-
chronized and combined together to construct the detection
statistic. We derive the optimal drift parameter for the pro-
posed procedure, and characterize the relationship between
the expected detection delay, average run length, and the
energy of the time-varying signal. The good performance of
the proposed procedure is presented using simulated signals
and real seismic data. We also demonstrate that the proposed
procedure outperforms the one-shot procedure in detecting
weak and asynchronous signals.
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APPENDIX

Proof of Lemma 1. We follow the proof of Lemma 1 in [2],
the only difference being that the SNR is now time varying.
Based on Assumption 1, as w → ∞, the average SNR over
time equals to ρ.

Similar to [2], let ωt denotes the un-normalized eigenvector
and vt = ωt − u denotes the estimation error. Using Central
Limit Theorem arguments [9], [10], we end up with

E0[(ûᵀt xt)
2] = σ2 + s2(t)‖α‖2E0[(ûᵀt u)2]

= σ2 + s2(t)‖α‖2E0

[
1

1 + ‖vt‖2

]
≈ σ2 + s2(t)‖α‖2E0[1− ‖vt‖2]

= σ2 + s2(t)‖α‖2
(

1− 1 + ρ

wρ2
(k − 1)

)
.

For the approximate equality we used the fact that to a first
order approximation we can write 1/(1 + ‖vt‖2) ≈ 1−‖vt‖2
because ‖vt‖2 is of the order of 1/w while the approximation
error is of higher order. This completes the proof.
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