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Abstract— We study the problem of detecting the emergence
of a dynamic anomaly in sensor networks. The generated
observations initially follow a pre-change distribution. At some
unknown time, an anomaly appears, affecting a different set
of nodes at each instant. The affected nodes generate data
according to a post-change distribution. It is assumed that the
trajectory of the anomaly is unknown. We propose a test that is
optimal with respect to a measure of the expected delay for the
worst-case trajectory. We compare the optimal test numerically
with a test that uses the knowledge of the path of the anomaly
and a heuristic test.

Index Terms— Sensor networks, dynamic anomaly, quickest
change detection, worst-path approach.

I. INTRODUCTION

Quickest change detection (QCD) theory has been widely
used as a tool to model and theoretically analyze detection
problems where the goal is to quickly detect events that
lead to a change in the distribution of sequentially observed
processes. A selection of applications that can be modeled
by this framework is given in [1]– [6]. In QCD, detection
problems of interest are framed in an optimization framework
where the goal is to design tests that minimize rigorously
defined detection delays, subject to false alarm (FA) con-
straints. In the classical QCD problem [7], [8] two standard
formulations are used i) the minimax setting [9]–– [11],
where the changepoint is considered to be deterministic but
unknown and the goal is to minimize a worst-case average
detection delay subject to a lower bound on the mean time to
false alarm; and ii) the Bayesian setting [12], [13], where the
changepoint is modeled as a random variable with a known
distribution, and the goal is to minimize the average detection
delay, subject to a bound on the probability of false alarm.

Timely detection of events of interest in sensor networks
has been a topic of detailed study in the QCD literature.
Significant work has been done in the case of detecting
anomalies that are static [4], [13]–[18]. By the word static
we refer to events that affect a fixed set of nodes after
the changepoint, which might be unknown. Problems of
detecting events that affect different sets of nodes as time
progresses have attracted less attention. Some works that may
be considered to fall in such a category include [19]–[23]. In
these works, the sensors affected by the anomaly have their
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data generating distributions altered at different time instants,
and this change in distribution is persistent at each node.

The crucial difference between these works and our work
is that in our setting the anomaly is assumed to be dynamic,
i.e., its effect may not be persistent in any specific node, but
it is persistent if we view the entire network as a whole. This
means that the anomaly is moving, implying that different
sets of sensors may be affected at different time instants.
This also implies that a sensor can change between the pre-
and post-change generating mode as time progresses. In this
work, we study the case of a dynamic anomaly of constant
size, i.e., affecting a fixed number of nodes which is known
to the decision maker. We study this QCD problem under
Lorden’s minimax framework [9]. To this end, we assume
that the identities of the anomalous nodes are unknown but
deterministic. To account for the lack of a specific model for
the trajectory of the anomaly we modify Lorden’s detection
delay to evaluate candidate detection procedures with respect
to the path of the anomaly that corresponds to the worst
delay. Our work is related to [24] and [25] where the
movement of the anomaly is modeled using a discrete time
Markov chain.

For the specific case of homogeneous sensors, i.e., when
the pre-change and post-change distributions are the same ac-
cross sensors, we establish that a Cumulative Sum (CuSum)
test that detects a transition to a post-change mixture model
that arises when the anomalous nodes are chosen uniformly
at random is exactly optimal with respect to Lorden’s [9]
delay-FA formulation when the delay considers the worst-
case anomaly path. Furthermore, we derive a first-order
asymptotic approximation of the detection delay as the mean
time to false alarm goes to infinity. Finally, we compare
our proposed procedure to a heuristic detection scheme
that is based on a detection statistic that grows after the
anomaly emerges, and to an oracle test that exploits complete
knowledge of the identities of the anomalous nodes.

II. PROBLEM MODEL

Consider a network of L nodes denoted by [L] ,
{1, . . . , L}. Define by {X[k]}∞k=1 the measurements that
are sampled from the sensors of the network, which become
available sequentially to the decision maker. Here, X[k] =
[X1[k], . . . , XL[k]]> denotes the observation vector at time
k, where X`[k] is the measurement obtained by sensor
` ∈ [L] at time k. Let X[k1, k2] = [X[k1], . . . ,X[k2]]>

denote the observations sampled from time instant k1 to
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k2 ≥ k1. At some unknown but deterministic changepoint
ν ≥ 1, a dynamic anomaly emerges in the network, affecting
a set of 1 ≤ m ≤ L nodes which may be different at
different time instants. The affected nodes generate data
according to a post-change probability density function (pdf).
We assume that m is known to the decision maker. We define
by S , {S[k]}∞k=1 the sequence characterizing the location
of the anomalous nodes. Here, S[k] is a vector containing
the m nodes which are anomalous at time k. Note that there
can be

(
L
m

)
different possible values for S[k]. We define the

set of these vector values by comb([L],m). For notational
convenience, S[k] is defined for all k ≥ 1 and not simply
for k ≥ ν.

Define by g(·) and f(·) the pre-change and post-change
pdfs at a sensor. By post-change (pre-change) pdf we mean
the pdf of a particular sensor’s observations when it is (not)
affected by the anomaly. For simplicity of the analysis, we
assume that the pre- and post-change pdfs are the same
for each sensor. Before the changepoint, it is assumed that
the observations are independent and identically distributed
(i.i.d.) across time and across sensors. As a result, we have
that for k < ν the joint pdf of X[k] is given by

g(X[k]) ,
L∏
`=1

g(X`[k]). (1)

After the changepoint, all the affected sensors follow the
post-change pdf and the observations are independent across
sensors and time, conditioned on S. Hence, we have that for
k ≥ ν the joint pdf of X[k] conditioned on S is given by

pS[k](X[k]) ,

 ∏
`∈S[k]

f(X`[k])

 ·
 ∏
`/∈S[k]

g(X`[k])

 ,

(2)

where for A ∈ comb([L],m), pA(·) denotes the joint pdf of
a vector measurement at a time instant when the underlying
distribution is the one induced when the anomalous nodes are
given by A. As a result, for fixed S we have the following
statistical model for the observations:

X[k] ∼
{
g(X[k]) 1 ≤ k < ν
pS[k](X[k]) k ≥ ν. (3)

In addition, for k2 ≥ k1 we have that

X[k1, k2]∼


k2∏
j=k1

g(X[j]) 1 ≤ k2 < ν(
ν−1∏
j=k1

g(X[j])

)
·

(
k2∏
j=ν

pS[j](X[j])

)
k2 ≥ ν.

(4)

Furthermore, the likelihood ratio between the hypothesis that
the change has occurred at ν with a trajectory described by
S, and that there is no anomaly is given by

ΓS(k, ν) ,
k∏
j=ν

 ∏
`∈S[j]

f(X`[j])

g(X`[j])

 . (5)

In this work, our goal is to design algorithms in the
form of stopping times that will detect the abrupt change
described in (3). Denote by Fk = σ(X[1], . . . ,X[k]) the σ-
algebra generated by X[1, k]. A stopping time τ , adapted to
the filtration {Fk}∞k=1, is a positive integer-valued random
variable such that for all k ≥ 1 we have that {τ ≤ k} ∈ Fk,
i.e., knowledge of X[1, k] is sufficient to decide whether
or not to stop at time k. Define by E∞[·] the expectation
when no anomaly is present. To quantify the frequency of
false alarm (FA) events we use the mean time to false alarm
(MTFA) denoted by E∞[τ ] for stopping time τ . Furthermore,
to account for the lack of a specific model for S, we use a
detection delay metric based on a modification of Lorden’s
delay [9]. Our detection delay evaluates the performance
of stopping times by considering the worst locations of the
anomalous nodes. In particular, denote by ES

ν [·] the expecta-
tion when the anomaly emerges at ν, and the identities of the
anomalous nodes are completely specified by the trajectory
process S. To evaluate our candidate detection procedures,
we use the following delay metric:

WADD(τ) = sup
S

sup
ν≥1

ess supES
ν [τ − ν + 1|τ ≥ ν,Fν−1] ,

(6)

where we use the convention that
ES
ν [τ − ν + 1|τ ≥ ν,Fν−1] , 1 when PS

ν (τ ≥ ν) = 0.
For γ > 0 a pre-determined constant, define the class of
stopping times

Cγ , {τ : E∞[τ ] ≥ γ}. (7)

Our goal is to solve the following optimization problem

min
τ

WADD(τ)

s.t. τ ∈ Cγ .
(8)

To proceed with our theoretical analysis, it is important
to introduce another observation model that arises when
the m anomalous nodes are chosen from comb([L],m)
uniformly at random at each time k ≥ ν. According to this
model, we have that the observations before the changepoint
are independent and identically distributed across time and
across sensors and are generated according to (1). After the
changepoint, the data are distributed i.i.d. according to the
mixture pdf that arises when the m anomalous nodes are
chosen uniformly at random. This joint pdf is given by

p(X[k]) ,
∑

A∈ comb([L],m)

1(
L
m

)pA(X[k]). (9)

As a result, the underlying statistical model when the anoma-
lous nodes are chosen uniformly at random is given by

X[k] ∼
{
g(X[k]) 1 ≤ k < ν
p(X[k]) k ≥ ν. (10)

and the likelihood rate between the hypotheses that a change
occurs at ν and that no change occurs is given by

L(k, ν) ,
k∏
j=ν

 ∑
A∈ comb([L],m)

1(
L
m

) ∏
`∈A

f(X`[j])

g(X`[j])

 . (11)



Note that the statistical model in (10) corresponds to an
instance of the classic QCD problem studied in [9]– [11].
For the underlying QCD problem arising from (10), define
the corresponding detection delay of stopping time τ by

WADD(τ) = sup
ν≥1

ess supEν [τ − ν + 1|τ ≥ ν,Fν−1] (12)

where Eν [·] denotes the expectation when the underlying
statistical model is that of (10) and the change happens at ν.
Here also, it is assumed that Eν [τ − ν+ 1|Fν−1, τ ≥ ν] , 1
when Pν(τ ≥ ν) = 0. Furthermore, define the Kullback-
Leibler (KL) number corresponding to the QCD problem of
(10) by

I , E1

[
log

p(X[1])

g(X[1])

]
. (13)

III. MIXTURE-CUSUM TEST

For γ > 0, define the following mixture-CuSum statistic:

W [k] , max
1≤j≤k

L(k, j), (14)

with the corresponding stopping time

τC = inf {k ≥ 1 : W [k] ≥ b} , (15)

where b is the threshold that guarantees that E∞[τC ] = γ.
It can be seen that the test statistic in (14) can be expressed
recursively as

W [k] = max{W [k − 1], 1}L(k, k), (16)

with W [0] , 0.

IV. MAIN RESULTS

Our main theoretical result in this work is to establish
the exact optimality of the mixture-CuSum (M-CuSum) test
introduced in eqs. (14)-(16) with respect to the QCD problem
defined in (3), (6), (8). In addition to the results, we also
present sketches of the proofs. We start by presenting a
universal lower bound on the detection delay of stopping
times.

Lemma 1: For any stopping time τ adapted to the filtra-
tion {Fk}∞k=1 and N > 0 define its truncated version by
τ (N) = min{τ,N}. If E∞[τ ] <∞ we have that

WADD(τ (N))

≥
sup

S[1,N−1]
E∞

[
τ(N)∑
j=1

j∑
ν=1

(1−W [ν − 1])+ΓS(j − 1, ν)

]

E∞

[
τ(N)∑
ν=1

(1−W [ν − 1])+

] .

(17)
Proof: By doing a change of measure [26] it can seen

that for any path S and for any ν ≥ 1 we have that almost

surely under P∞(·)

WADD(τ (N)) ≥ ES
ν

[
τ (N) − ν + 1|τ (N) ≥ ν,Fν−1

]
= ES

ν

 ∞∑
j=ν

1{τ(N)≥j}

∣∣∣∣τ (N) ≥ ν,Fν−1


= E∞

 ∞∑
j=ν

ΓS(j − 1, ν)1{τ(N)≥j}

∣∣∣∣τ (N) ≥ ν,Fν−1

 .
(18)

By multiplying both sides of the inequality (18) with
1{τ(N)≥ν}(1 − W [ν − 1])+, summing over ν, and taking
the expected value under E∞[·] we have that after using the
tower property of expectations the result follows.
Now we are ready to establish our first theorem that connects
the delay metrics introduced in (6) and (12).

Theorem 1: For any γ > 0 and for τC defined in Sec. III
we have that

WADD(τC) ≥ inf
τ∈Cγ

WADD(τ) ≥WADD(τC). (19)

Proof: By using the fact that for any set E =
{e1, . . . , eM} where 1 < M < ∞ and ej ≥ 0 for all
1 ≤ j ≤M we have that sup(E) ≥

∑M
j=1

ej
M , and by using

Lemma 1 after taking the limit as N → ∞ we can easily
establish that for any γ > 0 and b′ ≥ b such that b′ ≥ 1

inf
τ∈Cγ

WADD(τ) ≥
inf
τ∈Cγ

E∞

[
τ−1∑
j=0

min{max{W [j], 1}, b′}

]

sup
τ∈Cγ

E∞
[
τ−1∑
ν=0

(1−W [ν])+
] .

(20)

By using Theorem 1 of [11] and since W [j] < b ≤ b′ for
0 ≤ j < τC we can then easily show that

inf
τ∈Cγ

E∞

[
τ−1∑
j=0

min{max{W [j], 1}, b′}

]

sup
τ∈Cγ

E∞
[
τ−1∑
ν=0

(1−W [ν])+
]

=

E∞

[
τC−1∑
j=0

max{W [j], 1}

]

E∞
[
τC−1∑
ν=0

(1−W [ν])+
] = WADD(τC). (21)

Finally, from (20) and (21) the result is established.
To proceed with our analysis we investigate the relationship
between WADD(τC) and WADD(τC).

Theorem 2: For any γ > 0 and for τC defined in Sec. III
we have that

WADD(τC) = WADD(τC) (22)

Proof: Note that the observation model in (3) and the
M-CuSum test of Sec. III is symmetric with respect to the
different nodes of the network. This implies that the delay of
the M-CuSum test is independent of S. The equality in (22)



can then be easily established by induction and by a change
of measure argument similar to that in the proof of Lemma
1.
We now establish the optimality of our proposed test.

Theorem 3: For any γ > 0 and for τC defined in Sec. III
we have that

WADD(τC) = inf
τ∈Cγ

WADD(τ). (23)

Furthermore, we have that as γ →∞

WADD(τC) ∼ log γ

I
. (24)

Proof: The theorem follows directly from Theorems 1
and 2 and by the asymptotic approximation of the delay of
the CuSum test [9], [26].

V. HEURISTIC AND ORACLE TESTS

In this section, we design a heuristic test and an oracle test
that can be used as a comparison to our proposed detection
procedure described in (14) - (16).

Define by J , D(f‖g) the KL divergence between f(·)
and g(·). Note that for all S we have that

E∞

[
L∑
`=1

log
f(X`[k])

g(X`[k])
+ (L−m)J

]
= −mJ < 0

ES
1

[
L∑
`=1

log
f(X`[k])

g(X`[k])
+ (L−m)J

]
= mJ > 0,

This suggests that the following naive-CuSum (N-CuSum)
test may be a candidate test for detecting the distribution
change described in (3). In particular, consider the test
described by the following recursion:

WN [k + 1] ,

(
WN [k] +

L∑
`=1

log
f(X`[k + 1])

g(X`[k + 1])
+ (L−m)J

)+

(25)

with WN [0] , 0 and corresponding stopping time

τN = inf {k ≥ 1 : WN [k] ≥ b} .

Although the N-CuSum test can be employed to detect the
anomaly because of having a positive expected drift, it does
not necessarily solve the QCD problem in (3), (6), (8).

We also compare our proposed M-CuSum procedure to
an oracle-CuSum (O-CuSum) test, which is a CuSum test
that exploits the knowledge of the location of the anomalous
modes. That is, to define this test we assume that at time
k we do not know whether a change has occured, but we
know which set of sensors would be affected if an anomaly
had already emerged in the network. In particular, consider
the statistic calculated by using the following recursion:

WO[k + 1]=

WO[k] + log

 ∏
`∈S[k+1]

f(X`[k + 1])

g(X`[k + 1])

+

(26)

with WO[0] , 0 and with corresponding stopping time

τO = inf {k ≥ 1 : WO[k] ≥ b} . (27)

Since this O-CuSum test uses the knowledge of the location
of the anomalous nodes, it is expected to perform better than
our proposed test. However, such a test is not tractable since
in practice such location information will not be available to
the decision maker.

VI. SIMULATION RESULTS

In this section, we conduct numerical simulations for the
studied dynamic anomaly QCD problem for the case of
m = 1 and when g = N (0, 1) and f = N (1, 1). We
consider different values of network size L, and compare all
the algorithms discussed in this paper. We also investigate
how network size affects the performance of our proposed
test for a fixed anomaly size. In particular, in Figs. 1, 2 and
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Fig. 1. WADD versus MTFA for L = 5, m = 1.
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Fig. 2. WADD versus MTFA for L = 10, m = 1.

3 we compare the M-CuSum test, the N-CuSum test and the
O-CuSum test for m = 1 and network sizes L = 5, L = 10
and L = 20. Note that due to the symmetry of the M-CuSum
and the N-CuSum test, WADD is equal to the delay for any
arbitrary path of the anomaly. By looking at Figs. 1, 2 and
3 we note that the M-CuSum test outperforms the heuristic
N-CuSum test, which is expected since the M-CuSum test is
optimal with respect to (8). In addition, we note that the O-
CuSum test performs better than the other detection schemes,
since it uses the knowledge of the path of the anomaly. We
also note that as L increases the performance gap between
the O-CuSum test and the M-CuSum test increases. This
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Fig. 3. WADD versus MTFA for L = 20, m = 1.
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Fig. 4. WADD versus MTFA for the M-CuSum when m = 1 and for
different L values.

is expected since as the network size increases the noise
that is introduced in the M-CuSum test due to nodes that
are not anomalous also increases. This is not the case for
the O-CuSum test, since this scheme inherently assumes
complete knowledge of the anomalous nodes. Finally, in Fig.
4, we compare the performance of the optimal M-CuSum
test for m = 1 and for different values of L. We note that
as L increases our proposed test performs worse, which is
expected since the algorithm is affected by more noise from
non-anomalous nodes for larger network sizes.

VII. CONCLUSION

In this paper, we introduced the problem of detecting
a dynamic anomaly, i.e., an anomaly that may affect a
sensor network without affecting each node of the network
persistently. We studied this detection problem within the
framework of quickest change detection (QCD) theory. We
established that a Cumulative Sum test can be used to exactly
solve the resulting QCD problem when the detection delay
of candidate stopping procedures is evaluated according to
the worst-path of the anomaly for the case of homogeneous
sensors. Some potential directions of future interest include
generalizing to the case of non-homogeneous sensors, and to
the case of anomalies that grow in size.
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