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Abstract—The problem studied is one of quickest detection
of an anomaly that emerges in a sensor network, and which
may move across the network after it emerges. Each sensor
in the network is characterized by a non-anomalous and an
anomalous data-generating distribution, and these distributions
could be different across the sensors. Initially, the observa-
tions at all the sensors are generated according to their cor-
responding non-anomalous distribution. After some unknown
but deterministic time instant, a dynamic anomaly emerges in
the network, affecting a different sensor as time progresses.
The observations generated by the affected sensor follow the
corresponding anomalous distribution. The goal is to detect the
onset of the dynamic anomaly as quickly as possible, subject
to constraints on the frequency of false alarms. This detection
problem is posed in a quickest change detection framework
where candidate stopping procedures are evaluated according
to a delay metric that considers the worst trajectory of the
dynamic anomaly. A detection rule is proposed and established
to be asymptotically optimal as the mean time to false alarm goes
to infinity. Finally, numerical results are provided to validate our
theoretical analysis.

I. INTRODUCTION

In quickest change detection (QCD) [1]–[3], the goal is to
design stopping procedures to detect a change in the distribu-
tion of sequentially observed processes as quickly as possible,
subject to false alarm (FA) constraints. In the classical single-
sensor QCD setting, observations are initially independent
and identically distributed (i.i.d.) according to a known non-
anomalous distribution. After some unknown time instant,
refered to as the changepoint, the observations are generated
i.i.d. according to a known anomalous distribution. This i.i.d.
model has been extensively studied in the QCD literature
under two standard formulations: i) the minimax setting [4]–
[7], where the changepoint is modeled as a deterministic but
unknown parameter and the goal is to minimize a worst-case
average detection delay subject to a lower bound on the mean
time to false alarm; and ii) the Bayesian setting [8], [9], where
the changepoint is assumed to be a random variable with a
known distribution, and the goal is to minimize the average
detection delay, subject to a bound on the probability of false
alarm.

The theory of QCD has been extensively used to tackle
sequential detection problems in the context of sensor net-
works. In such settings, different QCD problem instances arise
according to how the sensors are affected by the anomaly.
The simplest setting corresponds to the case where a fixed

set of sensors known to the decision maker is affected by
the anomaly. In this case, the algorithms proposed in [4]–
[9] can be directly applied. A more complicated problem
setting arises if we assume that the set of affected sensors
is unknown. This case has been extensivelly studied under
the minimax setting and algorithms that are asymptotically
optimal have been proposed [10]–[16]. A generalization of the
above settings that considers the case that sensors have their
data generating distributions altered at different time instants
can be tackled by using the detection procedures in [17]–[25].
Note that in all the aforementioned problem formulations, the
anomaly eventually affects a fixed set of nodes persistently.

In the dynamic anomaly setting, the anomaly affects dif-
ferent sets of node as time progresses, and it is assumed that
the identities of the affected sensor are unknown. In [26], [27]
the problem was studied under the assumption that the size
of the anomaly is fixed and the anomaly evolves according
to a discrete time Markov chain. In [28], the Markov chain
assumption was lifted, and a worst-path variation of Lorden’s
[4] detection delay metric was introduced to account for the
lack of a specific model for the evolution of the anomaly. A
mixture-Cumulative-Sum (CUSUM) test was shown to be ex-
actly optimal with respect to a trade-off formulation using this
worst-path delay metric, when the sensors are homogeneous,
i.e., when the data-generating distributions are the same across
sensors before and after the changepoint. In [29], the problem
of detecting a dynamic anomaly of growing size was studied
and an asymptotically optimal test was constructed for this
setting.

In this paper, we extend on the results of [28] to the
case of heterogeneous sensors, where the non-anomalous and
anomalous data generating distributions could be different
across the sensors. We focus on the case of an anomaly of
size one. The results can be extended to arbitrary anomaly
size but the analysis becomes more detailed. We show that
an appropriately weighted mixture-CUSUM test is asymptot-
ically optimum in this setting. We finish by comparing the
performance of our test to mixture-CUSUM tests that do not
use the optimal choice of weights via numerical simulations.

II. PROBLEM MODEL

Consider a sensor network comprised of L nodes, and let
[L] , {1, . . . , L}. Denote by {X[k]}∞k=1 the sequence of
observations that is sequentially sampled by the centralized
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decision maker. We define by X[k] = [X1[k], . . . , XL[k]]>

the observation vector at time k, where X`[k] denotes the
measurement obtained by sensor ` ∈ [L] at time k.

Define by g`(·) and f`(·) the non-anomalous and anomalous
probability density functions (pdfs), respectively, at sensor
`. Initially, the observed process is generated according to
the non-anomalous distribution at each sensor, until some
unknown but deterministic changepoint ν ≥ 0. In addition, it is
assumed that the observations are independent across sensors,
i.e., when k ≤ ν the joint pdf of X[k] is given by

g(X[k]) ,
L∏
`=1

g`(X`[k]). (1)

After the changepoint, the system enters an abnormal state
because of the emergence of a dynamic anomaly. As a result
one node, which may be different at each time instant, is
affected by the anomaly. While anomalous, the observations
at the sensor are generated according to the corresponding
anomalous pdf. Define the process S , {S[k]}∞k=1 where S[k]
contains the index of the node affected by the anomaly at time
k. For notational convenience, S[k] is defined for all k ≥ 1
and not simply for k > ν. When k > ν, we then have that the
joint pdf of X[k] conditioned on S is given by

pS[k](X[k]) , fS[k](XS[k][k]) ·

 ∏
`/∈S[k]

g`(X`[k])

 , (2)

where p`(·) for ` ∈ [L] denotes the joint pdf of a vector
observation at a time instant when the underlying distribution
is the one induced when node ` is the anomalous node.
As a result, conditioned on S we have that the X[k]’s are
independent conditioned on the changepoint, and

X[k] ∼
{
g(X[k]) 1 ≤ k ≤ ν
pS[k](X[k]) k > ν.

(3)

In this paper, our goal is to design detection procedures in
the form of stopping times [1]–[3] that detect the change in
distribution described in (3), while offering strong theoretical
guarantees. In particular, define by E∞[·] the expectation
when no anomaly is present. To quantify the frequency of
FA events we use the mean time to false alarm (MTFA),
denoted by E∞[τ ], for stopping time τ . Furthermore, since
the path of the anomaly S is assumed to be deterministic, we
use a modification of Lorden’s delay metric [4] to account
for the worst-path of the anomaly. In particular, define by
ESν [·] the expectation when changepoint is at time ν, and
the trajectory of the anomaly is completely specified by S.
Denote by Fk = σ(X[1], . . . ,X[k]) the σ-algebra generated
by X[1], . . . ,X[k]. For any stopping rule τ adapted to the
filtration F , {Fk}∞k=1, we define the detection delay

WADD(τ) = sup
S

sup
ν≥0

ess supESν [τ − ν|τ > ν,Fν ] , (4)

where the convention that ESν [τ − ν|τ > ν,Fν ] , 1 when
PSν (τ > ν) = 0 is used. For γ > 1 a pre-determined constant,
define the class of stopping times

Cγ , {τ : E∞[τ ] ≥ γ}. (5)

Our goal is to design τ to solve the following problem:

min
τ

WADD(τ)

s.t. τ ∈ Cγ .
(6)

In addition to the statistical model in (3), for the purposes
of performance analysis as we will see in Sections III, IV
and V, we also introduce the model that arises when the
anomalous node is chosen at random. In particular, define
the probability mass function (pmf) α = {α` : ` ∈ [L]} ∈ A
containing the probabilities that each of the different sensors
is chosen to be anomalous. Here, A denotes the simplex of all
probability vectors of dimension L. By placing the anomalous
node at random according to α at each time instant after the
changepoint, we have that the induced pdf is given by

pα(X[k]) ,
L∑
`=1

α`p`(X[k]). (7)

As a result, when the anomaly is placed at random according
to α we have the following observation model:

X[k] ∼
{
g(X[k]) 1 ≤ k ≤ ν
pα(X[k]) k > ν.

(8)

Note that in the observation model of (8), the non-anomalous
and anomalous pdfs are completely specified, and hence the
underlying QCD problem falls into the classical QCD setting
studied in [4]–[7]. For stopping time τ , define the detection
delay corresponding to the QCD problem defined in (8) by

WADDα(τ) = sup
ν≥0

ess supEαν [τ − ν|τ > ν,Fν ] (9)

where Eαν [·] denotes the expectation when the underlying
statistical model is that of (8) and the changepoint is ν. Here,
we also use the convention that Eαν [τ − ν|τ > ν,Fν ] , 1
when Pαν (τ > ν) = 0.

III. UNIVERSAL LOWER BOUND ON THE WADD

We begin our analysis by deriving an asymptotic lower
bound on WADD for any τ satisfying the false alarm con-
straint E∞[τ ] ≥ γ. For fixed α, define the Kullback-Leibler
(KL) number corresponding to the statistical model in (8) by

Iα , Eα0
[
log

pα(X[1])

g(X[1])

]
. (10)

We then have the following asymptotic lower bound:

Theorem 1. Let α∗ , arg min
α∈A

Iα be the pmf that minimizes

the KL number defined in (10). We then have that

inf
τ∈Cγ

WADD(τ) ≥ log γ

Iα∗
(1 + o(1)) (11)

as γ →∞.
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Proof. By following a similar analysis to that in Theorem 1
of [28], it can be shown that for any α ∈ A and γ > 1

inf
τ∈Cγ

WADD(τ) ≥ inf
τ∈Cγ

WADDα(τ). (12)

Since (12) holds for all α it also holds for α∗, hence

inf
τ∈Cγ

WADD(τ) ≥ inf
τ∈Cγ

WADDα∗(τ) ∼ log γ

Iα∗
(13)

where f(x) ∼ g(x) is used to denote that g(x) = f(x)(1 +
o(1)) as x → ∞, and the asymptotic approximation follows
from the asymptotic analysis of the CUSUM test [4], [7].

IV. MINIMIZING THE KULLBACK-LEIBLER NUMBER

In this section, we study the minimization of Iα. We show
that α∗ is an interior point of A and establish an important
property of the likelihood ratio corresponding to (8) that is
going to be crucial in deriving our asymptotically optimal
stopping procedure.

Theorem 2. Let α∗ be defined as in Theorem 1. We then have
that α∗ is an interior point of A and that

Ep`
[
log

(
pα∗(X)

g(X)

)]
= Ep`′

[
log

(
pα∗(X)

g(X)

)]
(14)

for all `, `′ ∈ [L], where Ep` [·] denotes the expectation when
` is anomalous.

Proof. Define β = [β1, . . . , βL−1]
> where α` , β` for

` ∈ [L− 1]. The constrained optimization of Iα can then be
equivalently replaced by

inf
β

q(β)

s.t. β` ≥ 0, ∀ ` ∈ [L− 1]
L−1∑
`=1

β` ≤ 1,

(15)

where

q(β) ,
∫
RL

((
1−

L−1∑
`=1

β`

)
pL(x) +

L−1∑
`=1

β`p`(x)

)

log


((

1−
L−1∑̀
=1

β`

)
pL(x) +

L−1∑̀
=1

β`p`(x)

)
g(x)

 dx. (16)

We then have that for all ` ∈ [L− 1]

∂q(β)

∂β`

∣∣∣∣
β∗

= Ep`
[
log

(
pα∗(X)

g(X)

)]
− EpL

[
log

(
pα∗(X)

g(X)

)]
. (17)

Assume that β∗, the solution of (15), is not an interior point
solution. Without loss of generality, this implies that β∗ =
[β∗1 , . . . , β

∗
η , 0, . . . , 0]>, where η ∈ [L − 2] and 0 < β∗` < 1

for all ` ∈ [η] or β∗ = [0 · · · 0]. For the first case, we have
that for ` ∈ [η],

∂q(β)

∂β`

∣∣∣∣
β∗

= 0, (18)

which implies that for all ` ∈ [η]

Ep`
[
log

(
pα∗(X)

g(X)

)]
= EpL

[
log

(
pα∗(X)

g(X)

)]
, J. (19)

Furthermore, we have that since α∗` = 0 for η < ` < L

J =

 η∑
j=1

β∗j +

1−
η∑
j=1

β∗j

 J =

 η∑
j=1

α∗j + α∗L

 J

=
L∑
j=1

α∗jEpj
[
log

(
pα∗(X)

g(X)

)]
= Epα∗

[
log

(
pα∗(X)

g(X)

)]
= Iα∗ > 0. (20)

In addition, for η < ` < L, we have that

Ep`
[
log

(
pα∗(X)

g(X)

)]

= Ep`

log

 η∑
j=1

α∗j
fj(Xj)

gj(Xj)
+ α∗L

fL(XL)

gL(XL)


= Eg

log

 η∑
j=1

α∗j
fj(Xj)

gj(Xj)
+ α∗L

fL(XL)

gL(XL)


= Eg

[
log

(
pα∗(X)

g(X)

)]
< 0. (21)

We then have that from eqs. (17), (19) - (21)

∂q(β)

∂β`

∣∣∣∣
β∗
< 0 (22)

for all η < ` < L, which leads to a contradiction, since (22)
cannot hold at the minimum. As a result, β∗ cannot be of
the form β∗ = [β∗1 , . . . , β

∗
η , 0, . . . , 0]>, with 0 < β∗` < 1 for

` ∈ [η]. Now assume that β∗ = [0 · · · 0]>. This implies that
for all ` ∈ [L− 1]

∂q(β)

∂β`

∣∣∣∣
β∗

= EgL
[
log

(
fL(XL)

gL(XL)

)]
− EfL

[
log

(
fL(XL)

gL(XL)

)]
< 0, (23)

which also leads to a contradiction. As a result, β∗ has to be
an interior point solution, which also implies that α∗ is an
interior point of A. We then have that for all ` ∈ [L− 1]

∂q(β)

∂β`

∣∣∣∣
β∗

= 0 (24)

which implies that for all ` ∈ [L− 1]

Ep`
[
log

(
pα∗(X)

g(X)

)]
= EpL

[
log

(
pα∗(X)

g(X)

)]
(25)

establishing the theorem.
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V. ASYMPTOTICALLY OPTIMAL TEST

Define the test statistic of the mixture-CUSUM test [28]
corresponding to the QCD problem of (8), (9) when α = α∗

by

W [k] , max
1≤i≤k

k∑
j=i

Z[j] (26)

where

Z[j] , log
pα∗(X[j])

g(X[j])
(27)

the log-likelihood ratio at time j and

τC = inf {k ≥ 1 : W [k] ≥ b} (28)

the corresponding stopping time. The test statistic in (26) can
be expressed recursively as

W [k] = (W [k − 1])
+

+ Z[k] (29)

where W [0] , 0 and (x)+ = max{x, 0}.
The intuition behind the test is based on using Theorem 2

to design an equalizer rule with respect to the placement of
the anomaly. In particular, from Theorem 2, the expected drift
of the statistic in (26) is independent of S.

Next, we use Theorems 1 and 2 to establish that the
test defined in eqs. (26) - (29) is asymptotically optimal. In
particular, we have the following theorem.

Theorem 3. Consider the mixture-CUSUM test defined in (26)
- (29). Assume that

max
j∈[L]

Epj

[(
log

pα∗(X)

g(X)

)2
]
<∞ (30)

By choosing b = log γ we have that as γ →∞

inf
τ∈Cγ

WADD(τ) ∼WADD(τC) ∼ log γ

Iα∗
. (31)

Proof. We begin by upper bounding the delay of the test for
threshold b by following the proof technique in [7]. Due to
the structure of the test we have that

WADD(τC) = sup
S

ES0 [τC ]. (32)

Let 0 < ε < Iα∗ and nb = b
Iα∗−ε

. Then for any path S =
{S[k]}∞k=1 from the sum-integral inequality we have that

sup
S

ES0
[
τC
nb

]
= sup

S

∞∫
0

PS0
(
τC
nb

> x

)
dx

≤ sup
S

∞∑
ζ=0

PS0 (τC > ζnb) = 1 + sup
S

∞∑
ζ=1

PS0 (τC > ζnb).

(33)

Then, we have that for any path S = {S[k]}∞k=1, ζ ≥ 1,

PS0 (τC > ζnb) = PS0
(

max
1≤k≤ζnb

W [k] < b

)

= PS0

 max
1≤k≤ζnb

max
1≤i≤k

k∑
j=i

Z[j] < b


≤ PS0

 max
1≤i≤mnb

mnb∑
j=i

Z[j] < b, ∀m ∈ [ζ]


≤ PS0

 mnb∑
j=(m−1)nb+1

Z[j] < b, ∀m ∈ [ζ]



= PS0


mnb∑

j=(m−1)nb+1

Z[j]

nb
< Iα∗ − ε, ∀m ∈ [ζ]



=

ζ∏
m=1

PS0


mnb∑

j=(m−1)nb+1

Z[j]

nb
< Iα∗ − ε

 , (34)

where the last equality follows due to independence of the
observations over time. Note that then for any b > 0 we have
that

sup
S

∞∑
ζ=1

PS0 (τC > ζnb) = sup
S

lim
ξ→∞

ξ∑
ζ=1

PS0 (τC > ζnb)

≤ lim
ξ→∞

sup
S

ξ∑
ζ=1

PS0 (τC > ζnb) ≤ lim
ξ→∞

ξ∑
ζ=1

sup
S

PS0 (τC > ζnb)

≤ lim
ξ→∞

ξ∑
ζ=1

sup
S


ζ∏

m=1

PS0


mnb∑

j=(m−1)nb+1

Z[j]

nb
< Iα∗ − ε




≤ lim
ξ→∞

ξ∑
ζ=1

ζ∏
m=1

sup
S

PS0


mnb∑

j=(m−1)nb+1

Z[j]

nb
< Iα∗ − ε




= lim
ξ→∞

ξ∑
ζ=1

sup
S

PS0


nb∑
j=1

Z[j]

nb
< Iα∗ − ε



ζ

. (35)

Note that for any path S we also have that

PS0


nb∑
j=1

Z[j]

nb
< Iα∗ − ε

 ≤ PS0


∣∣∣∣∣
nb∑
j=1

Z[j]

nb
− Iα∗

∣∣∣∣∣ > ε

 .

(36)
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In addition, from Theorem 2 we have that

ES0


nb∑
j=1

Z[j]

nb

 =

nb∑
j=1

EpS[j]

[
Z[j]

nb

]
= Iα∗ . (37)

Define

σ̄2 , max
j ∈ [L]

Varpj

[
log

pα∗(X)

g(X)

]
. (38)

From eq. (30), we have that σ̄2 < ∞. Then, by Chebychev’s
inequality

PS0


∣∣∣∣∣
nb∑
j=1

Z[j]

nb
− Iα∗

∣∣∣∣∣ > ε

 ≤ VarS0


nb∑
j=1

Z[j]

nb

 1

ε2

=
1

ε2n2b

nb∑
j=1

VarpS[j]
(Z[j]) ≤

∑nb
j=1 σ̄

2

n2bε
2

=
σ̄2

nbε2
. (39)

By using (33), (35) and (39) we then have that

sup
S

ES0
[
τC
nb

]
≤ 1 + lim

ξ→∞

ξ∑
ζ=1

[
σ̄2

nbε2

]ζ
. (40)

Let 0 < δ < 1. Since nb is increasing with b, we have that
for all b > B, where B large enough

sup
S

ES0
[
τC
nb

]
≤ 1 + lim

ξ→∞

ξ∑
ζ=1

δζ =

∞∑
ζ=0

δζ =
1

1− δ
(41)

which implies that for all b > B

sup
S

ES0 [τC ] ≤ b

(Iα∗ − ε)(1− δ)
. (42)

Since (42) holds for all ε > 0 we have that

sup
S

ES0 [τC ] ≤ b

Iα∗(1− δ)
. (43)

Finally, since δ → 0 as b→∞

WADD(τC) = sup
S

ES0 [τC ] ≤ b

Iα∗
(1 + o(1)) (44)

as b → ∞. By combining Theorem 1 with (44), and since
E∞[τC ] ≥ γ is implied when b = log γ for the CUSUM test
[4]–[7], the theorem is established.

VI. NUMERICAL RESULTS

In this section, we conduct numerical simulations for the
studied dynamic anomaly QCD problem for the case of L =
10 and when g` = N (0, 1) for all ` ∈ [L], and f` = N (µ`, 1)
with µ = [1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9]> denoting
the vector of the means of the anomalous pdf. We compare
three versions of the test introduced in eqs. (26) - (29): the
first version (“Uniform slopes” in Fig. 1) uses the optimal
weights α∗ to achieve a uniform average statistic drift (which
is approximately equal to 0.178) among anomaly placements;
the second and third versions (“Non-uniform slopes 1” and

“Non-uniform slopes 2” in Fig. 1) use arbitrary choices of
weights that only guarantee that the expected drift of the
statistic is positive for any placement of the anomaly. In Fig. 1,
we see that the mixture-CUSUM test using the optimal weights
α∗ outperforms the other two implementations. It should
be noted that the WADD in this simulation is calculated
approximately, since the worst path of the anomaly cannot be
specified analytically. However, as the MTFA becomes large,
WADD can be approximated by placing the anomaly at only
the node that corresponds to the worst post-change expected
drift. For the case of “Non-uniform slopes 1” this corresponds
to placing the anomaly at sensor 2, and for the case of “Non-
uniform slopes 2” at sensor 5. For the optimal weight choice,
the placement of the anomaly does not affect the delay for
large MTFA, since the expected drift does not depend on the
trajectory of the anomaly.
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Fig. 1. WADD versus MTFA for test using α∗ and tests not using α∗ when
L = 10.
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