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Abstract—In the sequential change-point detection problem for
multi-stream data, it is assumed that there are M processes
in a system and at some unknown time, an occurring event
impacts one unknown local process in the sense of changing the
distribution of observations from that affected local process. In
this paper, we consider such problem under the sampling control
constraint, in which one is able to take observations from only
one of the local processes at each time step. Our objective is to
design an adaptive sampling policy and a stopping time policy
that is able to raise a correct alarm as quickly as possible subject
to the false alarm and sampling control constraint. We develop an
efficient sequential change-point detection algorithm under the
sampling control that turns out to be second-order asymptotically
optimal under the full data scenario. That is, with the sampling
rate that is only 1/M of the full data scenario, our proposed
algorithm has the same performance up to second-order as the
optimal procedure under the full data scenario.

Index Terms—Asymptotic optimality, change-point detection,
CUSUM, quickest detection.

I. INTRODUCTION

The sequential change-point detection problem for multi-
stream data under the sampling constraint has many important
real-world applications such as quality control, surveillance
or security. Under a general setting, there are M possible
data streams or resources available in a system, and at some
unknown time, an occurring event impacts one unknown
local process in the sense of changing the distribution of
observations from that affected local process. However, one is
only able to observe one of these M local streams at each time,
due to the sampling cost or data process/analysis capacity. The
objective is how to take observations adaptively and how to
use the observed data to raise a correct alarm as quickly as
possible once the change occurs subject to the false alarm
constraint.

When the full data is available without any sampling
control, this problem has been extensively studied in the
sequential change-point detection literature, see [5]. When
there is sampling control for monitoring multi-stream data,
research has been conducted in the context of sequential
hypothesis testing that does not involve change times, and
a pioneer work is Chernoff [2] for M = 2 processes when
the data are Bernoulli distributed. Also see a recent article
[1] that extends to a more complicated case with a general M
processes when the number of anomaly processes is unknown.
For the sequential change-point detection problem for multi-
stream data under sampling control, research is rather limited,

and the only exception is [4], which proposed an efficient
adaptive sampling strategy but did not provide any asymptotic
optimality theorems. Finally, in [9] a version of CUSUM
is proposed which is based on a time domain data-efficient
sampling technique of a single data stream.

In this paper, we develop an efficient sequential change-
point detection for multi-stream data with sampling control by
taking advantage of the fact that there is only one local process
affected by the occurring event. We propose to explore each
local process extensively to decide whether or not there is a
local change, and then switch to new processes only when
we are confident that the existing process does not involve
any local changes. It turns out that even with the sampling
rate of 1/M at each time step, our proposed algorithm has
the remarkable property of being second-order asymptotically
optimum. To the best of our knowledge, the second-order
asymptotic optimality under sampling control is the first of
its kind in the sequential change-point detection literature.

The remainder of the paper is organized as follows. In
Section II, we state the mathematical formulation of our
problem and provide some technical background. In Section
III, we present our proposed algorithm for the special case of
M = 2 processes and then prove its second-order asymptotic
optimality properties. In section IV, we extend our results
to the general M ≥ 2 case. Finally, numerical simulations
are presented in Section V to illustrate the usefulness of our
proposed algorithm. All technical proofs are postponed in the
appendix.

II. PROBLEM FORMULATION AND BACKGROUND

Suppose that there are M processes {Xi
t}, i = 1, . . . ,M

that are statistically independent. Initially, the system is under
control, and in each process the observations {Xi

t} are i.i.d.
with a density f(X). At some unknown time τ , the system
becomes out of control in the sense that one of its processes
switches to a new distribution g(X). Specifically, if the ith
data stream is affected, then

Xi
t ∼

{
f(X), if t ≤ τ ;
g(X), if t > τ . (1)

The question is then to detect the change-time τ as quickly as
possible once the change occurs.

Mathematically, a change-point detection procedure is de-
fined as a stopping time T, where {T = t} implies that
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one raises an alarm at time t based on the observations up
to time t. Following the classical minimax formulation for
sequential change-point detection proposed by Lorden [3], one
is interested in finding a stopping time T that minimizes the
worst-case detection delay

D(T ) = sup
t≥0

esssupEt[T − t|Ft, T > t] (2)

subject to the average run length to false-alarm constraint

E∞[T ] ≥ γ > 1. (3)

Here Et denotes expectation with respect to the measure
induced when the change occurs at τ = t and E∞ denotes
expectation with respect to the nominal measure (namely the
change occurs at infinity). In addition, Ft is the σ-algebra
generated by observed data/information up to time t.

If we observe the full data vector Xt = [X1
t , · · · , XM

t ] at
each time instant t, the problem is completely solved under
two different scenarios. The first is when we know exactly
which local stream is affected by the change, say, the ith local
stream. In this case, the optimal procedure is the well-known
CUSUM test

Ti = Ti(A) = inf{t > 0 :W i
t ≥ A}, (4)

where W i
t is the CUSUM statistic defined recursively by

W i
t = max{W i

t−1, 0}+ log
g(Xi

t)

f(Xi
t)
, (5)

for t ≥ 1 and W i
0 = 0 (see [7]). The second scenario with full

data is when we do not know which local stream is affected
by the change. In this case, an efficient approach is to monitor
each local stream individually and raise a global alarm if any
local CUSUM procedure Ti raises a local alarm. This yields
a full-sampling mechanism that can be denoted as

Tfull = Tfull(A) = min{T1, · · · ,TM}
= inf{t > 0 : max{W 1

t , · · · ,WM
t } ≥ A}.

(6)

Note that different values of the threshold A are needed in
order for Ti(A) in (4) and Tfull(A) in (6) to satisfy the
same false alarm constraint (3). It turns out that the family of
stopping times Tfull in (6) has the same detection delay (up to
second-order) as each optimal procedure Ti in (4) subject to
the false alarm constraint (3) and, consequently, it is second-
order asymptotically optimal (see [5]).

In this paper, we investigate the above sequential change-
point detection problem following a different strategy for the
sampling control constraint. To be more specific, at each time
step, we are allowed to take observations from exactly one of
the M processes. Define the index variable Rit = 1 if the ith
process is sampled at time t and Rit = 0 otherwise. Then the
sampling control constraint requires that

R1
t + · · ·+RMt = 1 for all time steps t = 1, 2, · · · (7)

Under the sampling control scenario, the observation Xi
t is

observable if and only if Rit = 1. Moreover, a statistical
procedure should be defined as a stopping time T with respect

to the observed data only. This can be thought of as a sparse
quantized version of the full raw data.

The sequential change-point detection problem under the
sampling control consists in designing the sampling policies
Rt = [R1

t , · · · , RMt ] at each time step t and a corresponding
stopping time T that minimizes the detection delay D(T ) in
(2) subject to two constraints: one is the false alarm constraint
in (3) and the other is the sampling constraint in (7). A new
challenge arises due to the fact that we need to adaptively
select which local process to sample at each time instant based
on the previous observations.

Note that it is highly non-trivial to develop an efficient se-
quential change-point detection procedure under the sampling
control in (7). For instance, a naive idea would be to adopt a
block sampling policy where one splits the time domain into
blocks with each block consisting of M time steps, and then
one samples each local process from the first process to the
last process within each block. That is, the naive sampling
policy can be defined as Rit = 1 if and only if t modM = i
for all i = 1, · · · ,M and for all time steps t = 1, 2, · · · . It
is not difficult to show that the detection delay of this naive
block sampling mechanism will be MD(Tfull), i.e., a factor
of M times larger than the detection delay of the full sampling
policy.

While one might expect that the sampling control constraint
in (7) will lead to a larger detection delay, there is no reason
to be by a factor of M as in the naive block sampling policy.
Next we propose an efficient sequential change-point detection
procedure under the sampling control in (7) that has the
same asymptotic properties up to second-order as the optimal
procedure Ti in (4) or the full-sampling procedure Tfull in (6),
subject to the false alarm constraint in (3). Our results show
that the sampling control constraint in (7) has little impact on
information bounds of the detection delay whenever only one
local process can provide information to the occurring event.

III. MAIN RESULTS WHEN M = 2

To highlight our main ideas, in this section, we investigate
the simple scenario of M = 2 processes. In the next section
these results are extended to cover the general case of M
processes. Our current section is divided into two parts: in the
first we present our candidate algorithm under the sampling
control in (7) for M = 2, and in the second we establish its
second-order asymptotic optimality properties.

A. Proposed algorithm

At a high level, our algorithm consists in exploring the fact
that there is only one local process affected by the occurring
event. Thus we propose to sample a local process extensively
until we are confident to decide whether or not there is a local
change. If there is a local change, then we stop and raise a
global alarm. If there is no local change, then we switch to
sample the next local process until we are confident to decide
whether or not there is a local change. We repeat these steps
until we raise a global alarm.

1137

Authorized licensed use limited to: University of Patras. Downloaded on January 07,2021 at 10:17:03 UTC from IEEE Xplore.  Restrictions apply. 



Below we present two equivalent ways to define our pro-
posed algorithm and its corresponding stopping time T =
T(A). The first form follows the SPRT (Sequential Probability
Ratio Test) representation of the optimal CUSUM procedure
for Ti in (4), and allows us to derive the statistical properties
of our proposed algorithm. The second is inspired by the full-
sampling procedure Tfull in (6), which allows us to easily
implement our proposed algorithm.

Let us begin with the SPRT-based definition of our al-
gorithm for monitoring M = 2 processes. Without loss of
generality, at time t = 1, we start sampling from the first
process. Then we keep on sampling the first process until the
log-likelihood ratio statistic S1

t =
∑t
l=1 log

g(X1
l )

f(X1
l )
6∈ (0, A). In

other words, we sample the first process until the SPRT stops
at time

τ1 = inf{t > 0 : S1
t 6∈ (0, A)}. (8)

When S1
τ1 ≥ A we declare that the first process has a local

alarm, and thus we raise a global alarm at time T = τ1. When
S1
τ1 ≤ 0 we declare that the first process is under control, and

we switch to the second process and start taking samples at
time τ1+1. That is, we define another SPRT from the second
process

τ2 = inf{t > τ1 : S2
t =

t∑
l=τ1+1

log
g(X2

l )

f(X2
l )

/∈ (0, A)}. (9)

If S2
τ2 ≥ A we declare that the second process has a local

alarm and we raise a global alarm at time T = τ2. When
Sτ2 ≤ 0 we decide that the second process is under control
and we switch back to sampling the first process. We apply
again the SPRT to the new observations from the first process,
starting from time τ2 +1. This leads to a new SPRT from the
first process

τ3 = inf{t > τ2 :

t∑
l=τ2+1

log
g(X1

l )

f(X1
l )

/∈ (0, A)}. (10)

If the upper bound A is crossed at time τ3 we raise the global
alarm at time T = τ3. If the lower bound 0 is crossed then
we switch to sampling the second process. We repeat this
procedure until we stop.

In summary, when monitoring M = 2 processes, the
sampling policy of our proposed algorithm is to define R1

t = 1
if t ∈ [1, τ1] ∪ [τ2 + 1, τ3] ∪ · · · , whereas R2

t = 1 if
t ∈ [τ1 + 1, τ2] ∪ [τ3 + 1, τ4] ∪ · · · . Moreover, our proposed
algorithm raises a global alarm at time

T = min
{
inf{τ2k+1 : S1

τ2k+1
≥ A}, (11)

inf{τ2k : S2
τ2k
≥ A}

}
.

The definition of our proposed algorithm in the form of (11)
allows us to easily derive the theoretical properties, but it
is computationally inefficient. Inspired by the full-sampling
procedure Tfull in (6), we propose an equivalent way to define
T that is computationally simple.

To define the alternative form we initialize the CUSUM-
type statistics W i

0 = 0, i = 1, 2. At each time instant, we
update W i

t as in the classical CUSUM statistic in (5) if the
ith process is sampled and re-initialize the other process that
is not being sampled. Specifically, for i = 1, 2 we have

W i
t =

{
0, if Rit = 0

max{W i
t−1, 0}+ log

g(Xi
t)

f(Xi
t)
, if Rit = 1.

(12)

We note that the main difference between the previous form
of W i

t and the one used in the classical CUSUM statistics in
(5) is that W i

t is kept equal to 0 whenever Rit = 0, e.g., when
the ith process is not sampled.

With the previous definition our proposed stopping time T
defined in (11) can be equivalently written as

T = {t > 0 : max{W 1
t ,W

2
t } ≥ A}. (13)

Moreover, the sampling policy of our proposed method can be
summarized by the following algorithm:

Step 1: Sample Process 1 until W 1
t /∈ (0, A). If we do not

stop sampling according to the stopping rule in (13), switch
to Process 2.

Step 2: Sample Process 2 until W 2
t /∈ (0, A). If we do not

stop sampling according to the stopping rule in (13), switch
to Process 1.

Step 3: Go back to Step 1.

B. Asymptotic optimality properties

Before presenting the asymtotic optimality properties, it
is useful to mention a standard assumption in the classical
sequential analysis literature: we assume that the following
Kullback-Leibler information numbers are well-defined:

I(f, g) =

∫
log

f(X)

g(X)
f(X)dX,

I(g, f) =

∫
log

g(X)

f(X)
g(X)dX. (14)

Here I(f, g) and I(g, f) will be used to estimate the expected
sample size of the SPRTs.

Clearly our proposed algorithm satisfies the sampling con-
trol constraint in (7). Thus it suffices to analyze the statistical
properties of the proposed stopping time T in (11) or (13) in
terms of the average run length to false alarms and detection
delay. The following theorem summarizes the main results.

Theorem 1 For our proposed stopping time T in (11) or (13),
we have

E∞[T] ≥ eA. (15)

Moreover, its detection delay satisfies

D(T) ≤ A

I(g, f)
+O(1), (16)

as A→∞.

Proof When the system is under control, both processes have
the same pre-change distribution, and applying SPRT between
the processes is equivalent to applying the SPRT to the same
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process, which implies that our proposed stopping time T is
stochastically equivalent to the classical CUSUM procedure Ti
depicted in (4). Hence, relation (15) follows directly from this
and the well-known property of CUSUM that E∞[Ti] ≥ eA,
see Theorem 2 in [3].

The proof of (16) is based on the relationship between
our proposed stopping time T and the classical CUSUM
procedure Ti in (4). However, they are no longer stochastically
equivalent under the alternative hypothesis when a change
occurs. This is because only one of the two processes is under
the post-change distribution and the other is still under the
pre-change. Switching to sample from the process under the
pre-change distribution will increase the detection delay of
our proposed stopping time T as compared to the classical
CUSUM procedure Ti in (4). The good news is that such
increase on the detection delay is of order O(1), since the
SPRTs from the process under the pre-change distribution can
easily cross the lower bound 0 and have little impact on the
false alarm or detection delays. More technical details are
presented in the appendix for completeness.

The following corollary shows that our proposed algorithm
is asymptotically optimal up to O(1), as the false alarm
constraint γ → ∞. In the sequential change-point detection
literature, the order o(log γ) is often referred as the first-order,
and the order O(1) is referred as the second-order. Thus our
proposed algorithm is asymptotically optimal up to second-
order.

Corollary 1 Let A = log γ. Then our proposed algorithm T
in (11) or (13) satisfies the average run length to false alarm
constraint in (3). Moreover, its detection delay satisfies the
bounds

Dopt ≤ D(T) ≤ Dopt +O(1), (17)

where Dopt is the smallest detection delay of any stopping time
under the full-sampling scenario that satisfies the average run
length to false alarm constraint in (3):

Dopt =
log γ

I(g, f)
− C0 (18)

for some constant C0 that only depends on f and g.

Proof The smallest bound Dopt is from the optimality prop-
erties of the CUSUM procedure Ti in (4) when it is known
that the ith process is affected by the occurring event, also see
equation (2.14) of [6] for the same bound. All other statements
in the corollary follow directly from Theorem 1.

IV. EXTENSION TO THE GENERAL M PROCESSES

Our proposed algorithm for M = 2 processes can be easily
extended to the general case of M ≥ 2 processes, by switching
among all M processes. To be more precise, let us consider
the CUSUM-type definition of our proposed algorithm, and
define the CUSUM-type statistics W i

t , i = 1, . . . ,M . Here
at each time step t, M − 1 values of the W i

t will be set to 0
corresponding to the processes not being sampled (i.e. Rit = 0)
and only one statistic will be properly updated corresponding

to the process being sampled (i.e. Rit = 1). The updating
equation is exactly the same as in (12) only now i = 1, . . . ,M .
Also the stopping rule in (13) becomes

T = {t > 0 : max{W 1
t , . . . ,W

M
t } ≥ A}. (19)

For sampling we apply a cyclical sampling rule with respect
to the available processes:

Step 1: Sample Process 1 until W 1
t /∈ (0, A). If we do not

stop sampling according to the stopping rule in (19), switch
to Process 2.

Step 2: Sample Process 2 until W 2
t /∈ (0, A). If we do not

stop sampling according to the stopping rule in (19), switch
to Process 3.

...
Step M : Sample Process M until WM

t /∈ (0, A). If we
do not stop sampling according to the stopping rule in (19),
switch to Process 1.

Step M + 1: Go back to Step 1.
Theorem 1 and Corollary 1 still hold for T in the general

M case in the classical asymptotic setting when M is fixed
as γ → ∞. In such a setting, the constant O(1) will be
proportional to the number M of processes. Because of this
fact, even if we allow M to grow to infinity with γ, our
test is still first-order asymptotically optimum as long as
M = o(log γ). It remains an open problem to derive an
efficient algorithm when M � log γ.

V. SIMULATION

We conduct the Monte Carlo simulation studies to illustrate
the usefulness of our theoretical results. Assume f ∼ N(0, 1)
and g ∼ N(1, 1). In our simulations, we consider two cases
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Fig. 1. Top: M = 2 processes. Bottom: M = 5 processes. In each plot, the
x-axis is the false alarm constraint γ value (in a base 10 logarithmic scale)
in (3) varying from 103 to 105, and the y-axis is the detection delay. There
are two curves in each plot: the red curve represents the optimal CUSUM
procedure, whereas the black curve represents our proposed algorithm.
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for the number of available processes, namely M = 2, 5. In
each case, we compute the detection delay of our proposed
algorithm D(T) and compare it against the classical CUSUM
procedure Ti when the ith local process is known to be
affected by the occurring event. Since our detection delay
is defined in the worst-case sense, we simulate D(T) by
assuming that the change occurs to the M th process at time
τ = 0 which suggests that we need to test all non-affected
processes before testing the one that has changed. This clearly
generates the worst-case detection delay. We compare the two
tests for the same run length to false alarm (average false alarm
period). To construct our graphs we performed 2500 Monte
Carlo independent runs for different values of the threshold A.

From Figure 1, it is clear that the gap between the two
curves remains constant as γ →∞. This is consistent with our
theoretical result that our proposed algorithm is asymptotically
optimal up to O(1). Also the gap increases with the number
M of sensors, which is also consistent with our theoretical
results.

APPENDIX: PROOF OF DELAY (16) IN THEOREM 1

To prove the detection delay relation in (16), without loss
of generality, we assume that the change occurs to the second
process at time τ = 0. Recall that our proposed algorithm T
in (11) can be defined as the sum of stopping time differences
T = τk = (τk − τk−1) + · · ·+ (τ2 − τ1) + (τ1 − 0) where the
difference τi − τi−1 corresponds to an SPRT decision delay.
For the detection delay of T, about half of these k differences
follow the pre-change distribution f, and the remaining ones
the post-change g.

For notational convenience, let δ be the SPRT in the problem
of testing H0 : f against H1 : g based on the observations
X1, · · · , Xt :

δ = inf{t > 0 : St =

t∑
l=1

log
g(Xl)

f(Xl)
6∈ (0, A)}.

Denote the SPRTs under the pre-change as δ
(0)
1 , δ

(0)
2 , · · · ,

whereas denote the SPRTs under the post-change as
δ
(1)
1 , δ

(1)
2 , · · · . Then it is not difficult to show that under P0,

our proposed stopping time T satisfies

T ≤
k∑
j=1

δ
(0)
j +

k∑
j=1

δ
(1)
j ,

where k is the first time when the SPRTs δ(1)i crosses the upper
bound A. Note that the procedure in the right-hand side never
stops sampling at the first-process, and only stops sampling
and raises a global alarm when the second process raises an
alarm. Moreover, under P0, the classical CUSUM procedure
Ti in (4) for process i = 2 can be written as

T2 =

k∑
j=1

δ
(1)
j ,

see equation (2.50) in [8]. In addition, equation (2.52) in [8]
shows that

E0[T2] = E0

 k∑
j=1

δ
(1)
j

 = E0

[
δ
(1)
1

]
E0[k]

=
Eg[δ]

Pg(Sδ ≥ A)
=

A

I(g, f)
+O(1),

as A→∞.
As compared to the classical CUSUM procedure Ti in (4),

our proposed algorithm has an extra term

E

 k∑
j=1

δ
(0)
j

 = E[δ
(0)
1 ]E[k] =

Ef [δ]

Pg(Sδ ≥ A)
.

Here it is important to note that k depends on the second
process under the post-change hypothesis, whereas δ(0)j are the
SPRTs from the first process under the pre-change hypothesis.

When I(f, g) > 0, it can be shown that Ef(δ) = O(1).
Also when I(g, f) > 0, we have infA>0 Pg(Sδ ≥ A) > β0,
for some β0 > 0 bounded away from 0, e.g. the SPRT will
cross the upper bound A with non-zero probability under the
alternative hypothesis when g is true. Combining these results
yields that E[

∑k
j=1 δ

(0)
j ] = O(1). Hence, the detection delay

relation (16) in Theorem 1 is valid.
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