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Abstract. The effect of accumulation of round-off errors, leading eventually to instability, limits the use of exponentially 
weighted fast Kalman least-squares identification algorithms. With the present paper we try to eliminate this severe drawback 
of this class of algorithms. The idea for deriving a more stable version is similar to an existing work, our derivation though 
being more elegant and leading to an algorithm with significantly lower complexity. Specifically, the proposed algorithm has 
complexity 8N, where N is the number of parameters to be estimated. This is only N more multiplications, compared to 
the fastest Kalman Algorithm. The stabilization is achieved by correcting in a very well defined manner the two prior (forward 
and backward) residuals. 

Zusammenfassung. Die Akkumulation von Rundungsfehlern, die in ung/instigen Fallen sogar zur lnstabilitat fiihren kann, 
begrenzt die Leistungsfahigkeit exponentiell gewichteter schneller Kalman-Algorithmen nach dem Prinzip des kleinsten 
Fehlerquadrats. In vorliegendem Beitrag versuchen wit, diese ungiinstige Eigenschaft zu vermeiden. Die hier vorgeschlagene 
Methode der Stabilisierung lehnt sich an ein bereits bestehendes Verfahren an; unsere Ableitung ist jedoch eleganter und 
fiihrt zu einem weniger aufwendigen Algorithmus. Die Komplexitat des Algorithmus ergibt sich zu 8 N, wobei N die Zahl 
der zu schatzenden Parameter ist. Verglichen mit dem schnellsten Kalman-Algorithmus bedeutet dies nur N Multiplikationen 
meat. Das Verfahren wird stabilisiert, indem die beiden Residualsignale (Vor- und Riickwartspradiktion) in wohldefinierter 
Weise korrigiert werden. 

R6sum6. Les eitets de l'accumulation des erreurs d'arrondi, allant jusqu'a l'instabilit6, limitent l'utilisation des algorithmes 
rapides de Kalman aux moindres carr6s, a oubli exponentiel. Dans l'article pr6sent, nous essayons d'61iminer cet important 
inconv6nient de cette classe d'algorithmes. L'id6e d'aboutir b. une version plus stable est semblable a celle d'un travail existant; 
notre derivation 6tant plus 616gante et conduisant a un algorithme de moindre complexit6. L'algorithme propos6 a une 
complexit6 8N, ofJ Nes t  le nombre de param&res h estimer. Cela fair seulement N multiplications de plus que le plus rapide 
algorithme de Kalman. La stabilisation est assur6e en corrigeant les deux r6sidus/t priori (direct et r6trograde). 

Keywords. Recursive estimation, fast least squares. 

1. Introduction 

L i m i t e d  p r e c i s i o n  effects ,  s eve re ly  d e g r a d e  the  

p e r f o r m a n c e  o f  ce r t a in  fas t  r ecu r s ive  l e a s t - s q u a r e s  

i d e n t i f i c a t i o n  a lgo r i t hms .  A c t u a l l y  the  f a s t e r  the  

ve r s i on  the  l a rge r  the  d e g r a d a t i o n .  T h e  a c c u m u l a -  

t i on  o f  r o u n d - o f f  e r ro rs  l e ads  e i t he r  to a b l o w  to 

inf in i ty  o f  t he  v a r i a b l e s  o f  t he  a l g o r i t h m  o r  l imi t s  

the  t r a c k i n g  c a p a b i l i t y  o f  t he  a l g o r i t h m  by  m a k i n g  

its ga in  v e r y  smal l  [2].  I n  [4, 18] we  can  f ind 

o v e r v i e w s  o f  the  m o s t  p o p u l a r  ve r s ions  o f  leas t -  

squa re s  a n d  in [7] the i r  p e r f o r m a n c e  wi th  r e spec t  

to l im i t ed  p r e c i s i o n  er rors .  

O n e  t y p e  o f  l e a s t - squa re s  a l g o r i t h m s  tha t  s u f f e r  

f r o m  ins tab i l i ty  c a u s e d  by  r o u n d - o f f  e r rors  a re  the  

e x p o n e n t i a l l y  w e i g h t e d  fast  K a l m a n  a l g o r i t h m s  

( F K A ) .  T h e r e  are  seve ra l  v e r s i o n s  o f  F K A  

[5, 6, 8, 9, 13, 14] w i th  d i f fe ren t  c o m p l e x i t i e s  a n d  
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all of  them suffer from instability. A useful 
classification of FKA can be found in [17]. The 

fastest versions [5, 8] have complexity 7N, with N 

the order of  the filter to be estimated. These ver- 
sions are highly unstable. 

Even though the instability of  the FKA is an 
obvious fact in practice, proving it theoretically is 
very hard. In [16] it was shown that the FKA 
version of  [14, 15] is unstable for a first order filter 

and for a specific input. In [2], with certain 
assumptions on the input signal and the rounding 
errors of  the filters, the instability of  the FKA 

versions of  [5, 8] was shown. Several techniques 
were used in order to stabilize the FKA 
[1, 3, 11, 12]. Most of  them yield algorithms that 
are not realizations of  the least-squares, thus 
having a reduced tracking capability. 

In this paper  we will concentrate on the tech- 
nique introduced in [3] and try to improve it. The 
idea in [3] was basically to compute the backward 

prior residual in two independent ways. The 

difference of  these two ways was regarded as a 
measure for the accumulation of the round-off 
errors. Consequently this difference was used to 
correct the two already computed forward and 
backward filters. The resulting algorithm had com- 
plexity 10N and for its derivation certain approxi-  

mations were necessary. We will use the same idea 
as in [3]. We will compute  the backward prior 
residual in two different ways and use the 
difference to stabilize the algorithm. Instead of 
correcting through the computed filters we will try 
to directly affect the computat ion of  the filters of  

the next time instant. This will lead to a derivation 
of  an algorithm without any approximations and 
of complexity 8N. This is only N more multiplica- 
tions compared to the fastest FKA (versions 
FAEST, FTF; actually there are versions of  FAEST 
and FTF that have complexity 8N) ,  but the result- 
ing algorithm has a much more stable behavior. 
The additional N multiplications are used to com- 
pute the backward residual in the normal way, by 
multiplying the backward filter with the input 
vector. 
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2. Derivation of  the algorithm 

We will present our method by directly applying 
it to the FAEST version of  the FKA of [5]. Before 

deriving the algorithm we will introduce some 
notations and some basic relations from the least- 
squares theory that we are going to use. With lower 
case letters we denote scalars and with upper  case 

vectors. Vectors will have two indices; the first 
denoting their length and the second the time. I f  
X is a vector then X i denotes the ith element of  

the vector X. Barred variables will denote corrected 
versions of  the same variables. Finally ..... denotes 
transpose. 

The recursive least-squares identification 

algorithms solve the following problem: Given 
sequentially two sequences {x( T)} and {y( T)} esti- 
mate at every time instant T a filter HN, r that 
minimizes vN (T) defined by 

T 

v N ( T ) =  2 A r - k [ y ( k ) - H ~ , r X l v ,  r] 2, (1) 
k = 0  

where 0 < A <~ 1 is the exponential forgetting factor, 

XN, r = [ x ( T )  . . . .  , x ( T - N + I ) ] '  with x ( T ) =  
y ( T ) = 0  for T~<0. Given the solution HN, r-1 at 
time T -  1 of  the minimization, the solution at time 
T can be computed from the recursion (see [15]~ 

eN( T)  = y ( T )  - H'N,T-,Xlv, T, 

eN ( T )  = YN ( T )  eN (T ) ,  (2) 

HN, T = HN, T-1 -- eN( T)  WN, T, 

where e N ( T ) ,  e N ( T )  are the prior and posterior 
estimation residuals and Ws, T is known as the 
Dual Kalman Gain. It was the use of  the Dual 
Kalman Gain that resulted in the derivation of the 
fastest FKA (introduced in [5] and resulted in the 
version FAEST with complexity 7N) .  The quan- 
tities WN, r and YN(T) are defined by the following 
equations 

1 1 
WN, r = - -~  Rf~,T-IXN, r, (3) 

Signal Processing 
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with 

T 
T kv v ,  (4) RN, T -~ )~ zt .rlN, kZ'XN, k 

k=0 

and 

1 
YN (T) - (5) 

1 -  W'N, T XN, r" 

It is easy to see that 0 ~  < yN(T)<~ 1. All FKA 
efficiently update WN, T and yN(T)  requiring a 
number of  operations proportional to N, with the 
fastest versions requiring 5 N  multiplications 
(FAEST, FTF [5,8]) .  Combining this with the 

relations in (2), we can update HN, T with a total 
of 7 N  multiplications per time step. This is the 
fastest version of  FKA (and the fastest realization 
of the least-squares for a given order). As we said, 
we will present our method by applying it directly 
to FAEST. Table 1 contains in detail all the steps 
of the FAEST algorithm. Notice that the algorithm 
of Table 1 differs slightly from the conventional 
FAEST of [5], in the sense that we prefer to propa- 
gate yN(T)  of (5) instead of the inverse of this 
variable propagated in [5]. The reason is that with 
this variable we will avoid some divisions by 
replacing them with multiplications. We will give 

Table  1 

The fast a-posteriori  error sequent ia l  t echn ique  (FAEST)--complexi ty  7 N  

Mult ip l i ca t ions  D iv i s ions  

A v a i l a b l e  at t ime  T: WN, T--i, AN.T 1, BN, T I ,  HN, T--1, XN, T 1, 
yN(T--  1), aN(T- - l ) ,  f i N ( T - l ) .  

N e w  informat ion:  y(T) ,  x (T) .  

Time update  o f  the K a l m a n  G a i n  WN, T 

e f ( T ) = x ( T ) - A ' N . T  tXN, T I 
efN( T) = yN( T-- 1 ) e l ( T )  

aN( T)= ZaN( T - 1 )  + e f  ( T ) e r  ( T) 

YN+,(T) = A a N ( T -  1) y N ( T -  1) 
aN(T) 

[ o ] r , 1 
WN+I'T = WN, T 1 "taN-~T~--I)L--AN, T- iJ  

AN, T=AN.T I--erN(T) WN.T I 
eb(T)  = N+I --AfN( T -  1) WN+I.T 
0 N ( T ) =  b N+l 1 + YN+I( T)eN(T) WN+I. r 

'YN+I(T) 
YN (T) = - -  OMT) 
e~( T) = yN( T)ebN( T) 

flN( T) = AflN( T - 1 )  + e~( T)e~(  T) 

BN.T = BN.T 1--ebN(T)WN.T 

Time update  o f  the filter HN. T 

eN (T) = y (T)  - H ~ . r  XN.r 

eN( T) = yN( T)eN( T) 

HN.T = HN.T--I -- eN (T) W~. T 

Total  n u m b e r  o f  m u l t i p l i c a t i o n s / d i v i s i o n s  

N m 

1 

2 

2 1 

N + I  1 

N 

2 

2 

- -  1 

1 

2 

N 

N 

N 

1 

N 

7 N + 1 4  3 
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one more relation that we will use and that can be 
easily shown to be true using the matrix inversion 
lemma, 

R-N~rXN, r = --Yn(T) Wn, r. (6) 

We will now proceed to the derivation of  the 
algorithm. As in [3] we concentrate only in stabiliz- 
ing the part concerning the forward and backward 
filters An, r, Bn, r. Notice from Table 1, that the 
prior backward residual e b ( T )  is computed using 
the following equation 

eb(T)  n = - A f l n ( T -  1) Wn, T-i 

B i n ( T - l )  n f 
a n ( T _ l )  An, r_ len(T) ,  (7) 

where e f ( T )  is the prior forward residual. There 
is another way of  computing eb (T) ,  that is, in the 
normal way 

e~(T)  = x ( T - N ) - B ~ , r _ ~ X n ,  r. (8) 

Following now the idea of [3] we define the 

difference of  (7) and (8) as 

~N( T) = eb ( T) + kN( T -  1 ) e f ( T )  

+ A B N ( T -  1) n Wn, r-1,  (9) 

where eb(T)  denotes the computation in (8) 
and k N ( T -  1) = T -  1)AN, T_I/ OtN( T -  1). The 
quantity in (9) under infinite precision is always 
equal to zero and under limited precision can be 
regarded as a measure of  accumulation of  round- 
off errors. That Cn(T) is indeed an efficient 
measure can be seen from the simulations. In Fig. 
1, for example, it is plotted for the case N = 20. 
Its magnitude gradually increases with time, 
indicating the accumulation of the round-off 
errors, while y n ( T )  has acceptable values (in the 
interval [0, 1]). At some point Yn(T) exceeds unity 
or becomes negative and the algorithm is reinitial- 
ized (this reinitialization procedure is used in [8]). 
Notice that ~:n(T) is a function of An, r-~ and 
Bn, r-~; this is the reason why in [3] the algorithm 
corrects these filters. We would like to express 

1 .6  
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0 . 4  

0 . 0  
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Fig. 1. Pe r fo rmance  of  the F A E S T  a lgo r i t hm for N = 20 and  for whi te  noise  da ta  sequence .  
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~N (T)  in terms of  AN, T and BN, T in order to correct 
directly the filters of  the next time instant. We can 
easily introduce these filters by writing the prior 

residuals in terms of the posterior, specifically 

ebN( T)  e ~ (  T)  
~:N(T) - - + k N ( T - 1 )  

yN(T)  yN(T- -  1) 

+X#N(T--1) N WN, T-1 (10) 

and express in (10) the two posterior residuals in 

terms of the filters AN, T, BN, T as follows 

1 
I~N( T)  -- YN( T)  [X( T -  N )  -- B'N, TXN, T] 

k N ( T -  1) 
+ YN ( T -  1) [x (T)  - A'N, TXN, T] 

+ AflN( T _  I ) N . WN, T-- l (11) 

The corrections will be made in such a way that 

if in (11) we substitute the filters with their correc- 

tions "4N.T and /~N,T the resulting ~:N(T) is minim- 
ized. Let us call ~N(T) the quantity in (12) but 
with the two filters replaced with their corrections. 
We can then write 

1 
~TN(T) = SeN(T) yN( T)  AB'XN, T 

k N ( T -  1) , ~aA XN,~_, (12) 
yN(T 

where AA = "4N, T -- AN, r, ztB =/~N,T -- BN, T and 
~:N (T) denotes the quantity in (9). We would like 
to minimize ~N(T) but at the same time keep small 
the values of  the corrections zlA and AB. These 
requirements are expressed by the minimization 

of the following criterion 

1 
WN ( T )  - YN ( T - 1) AA'RN, T_~ AA  

1 
+ _ _  , + p[~N(T)]  2 ' TN( T) A B  RN.TAB 

(13) 

where p is a constant. As we will see from the 
derivation, in order to correct the two filters it will 
be enough to correct the forward and backward 

residuals. The reason for dividing the first two 
terms with the corresponding YN is only to make 
the corrections to the prior residuals instead of the 

posterior. We could, without any problem, replace 
them with unities. Notice that 

AAtRN, T _ t A A  

T 

= E AT-k[(x(k)-- f idN,  TXN.k-O 
k- -O 

- - (x (k ) - -A 'N ,  TXN, k 1)] 2, 

which is the norm of  the difference of the two 

(length T) error vectors. In other words we would 
like the corrections to be small in the sense that 
the two resulting error vectors are close to each 
other. This definition of distance is preferable from 
the Euclidian distance of  the filter and its correc- 

tion, because it leads to corrections that are scale 
invariant; a property that also has the two filters 

AN, T and BN, T. Minimizing (13) is straight-forward 
and needs no approximations as was the case in 
[3]. The solution, using (6), is given by 

AA = P~N( T)kN( T - 1)R ~VlT-, XN.T-I 

= - -TN(T--  1 ) p ~ m ( T ) k N ( T -  1)WN, T-1, 

(14) 

A B  = P~N( T ) R ~ T X N . T  

= - - y N ( T ) p ~ N ( T )  WN.T, (15) 

where 

( (1 1 ~ N ( T ) =  l + o  y m i T )  1 + O ( k N ( T - 1 ) )  2 

1 1)} -1 
X(yN(r_l) ~'N(T). 

(16) 
Using (14) and (15) and Table 1 we can express 
-4N, r, /~N,r directly in terms of  AN, T-1 and BN, T-~ 
as follows 

"4N, r = AN, T-I -- YN( T -  1) 

x (erN(T) + kN ( T -  1)p~TN (T))  WN, T--1, 

(17) 
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BN, r = BN, T-1- yN(T) 

×(eb(T)+p(N(T))WN, T. (18) 

Equations (17) and (18) show that we just have 
to introduce a correction in the two prior residuals 
in order to correct the filters of the time instant T. 
This is intuitively correct since the place where the 
rounding errors mainly accumulate is at the com- 
putation of the two prior residuals. To the correc- 
ted filters correspond corrected residuals. From 
(1i) and (18), by multiplying correspondingly with 
XN, T-I and XN, r we can compute the corrections 
for the posterior residuals. Dividing these two 
residuals with the corresponding yN yields the 
corrected prior residuals. The result is given with 
the following equations 

e~(T)=ef  (T)-(yN(1T_I)-I  ) 

×kN(T-1)p~N(T), (19) 

~ b ( T ) =  eb(T)--(yN-~--l)p~N(T ). (20) 

We can simplify our algorithm by avoiding some 
divisions introduced in (16, 19, 20). Since yN(T) 
is usually close to unity we can use the following 
approximation 

1 
1 ~ 1 - yN(T).  (21) 

YN (T)  

The resulting algorithm is presented in Table 2. 
Notice that the only additional operations that 
will increase the complexity are those required for 
the computation of the backward residual as 
defined in (8) ( N  multiplications and additions). 
Also in Table 2, the variable k N ( T - 1 )  is 

N computed as A-NyN(T--1)AN, T-, instead of  
flN(T--1)A~,T_I/olN(T--1) as was initially 
defined. The two expressions are equivalent under 
infinite precision but the first avoids one division. 
The only additional divisions are those required 
for the computation of ~N (T)  and (N (T). 

Comments. A parameter of our algorithm that 
needs to be defined is the constant p. The algorithm 
Signal Processing 

is quite robust regarding this parameter, although 
very small or very large values will make it 
unstable. We will give a means for estimating a 
value for p. Substituting in wN(T) defined in (13) 
the optimal values for the corrections from (14) 
and (15), yields 

min wN( T) 

2 -- 2 2 1 
~ P  [~N(T)] ( k N ( T - - I ) )  [ ~ N ( T _ _ I ) - - I  ] 

2 -- 2 1 

(22) 

The approximation is usually valid since for most 
signals we have IA~,rl'~ 1 and thus we will also 
have Ik~(T-1)[.~ 1. The ratio of the two terms in 
(22) is p ( 1 / y N ( T ) - I ) .  Approximating y N ( r )  
with A we have that the ratio of the two terms is 
p(1/A - 1). From simulations it was observed that 
our algorithm worked best when the ratio had 
values around 0.05. Thus, a first estimation for p 
can be 

A 
p = P O l _  A with po~0.05. (23) 

From (23) we can see that P is basically related to 
A and not to the order N. A correct selection of  A 
depends heavily on the eigenvalue spread of the 
matrix RN, r (defined by (4)). Details on this depen- 
dence and optimal values for A can be found in 
[ 10]. Since usually ;t overestimates yN (T),  we have 
that (23) overestimates p. As one can see this 
overestimation becomes more severe for large A 
close to unity. Thus (24) is used, merely to indicate 
the order of  magnitude of  p and not p itself. 

It is possible to simplify even further our 
algorithm. Notice from Table 2 that in the correc- 
tions there is always the term O~N(T). Using 
(17, 22), neglecting the term with kN(T- 1) and 
approximating yN(T) with A we have 

p~.~( T) .~ P tiN(T). (24) 
l + p ( 1 - A )  
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Table 2 

Stabilized fast a-posteriori error sequential technique (SFAEST)--complexity 8N 

39 

Mult ipl icat ions  Div i s ions  

Available at time T: 

New information: 

WN, T--1 , AN, T -1 ,  BN, T--1, HN, T 1, XN,  T 1 , 
T N ( T - -  1) ,  OIN(T--  1) ,  [3N(T- -  1).  

y(T), x(T). 

Computation of the residuals and their corrections 

e fN(T)=x(T) - -A 'N.T  1XN, T I N 

e~(  T) = x( T - N)  - B'N.T-, XN.T N 

A a N ( T - 1  ) 
YN+~(T)-- AaN(T-1)+yN(T-  1)(el(T)) ~ YN(T-- 1) 4 

( e l ( T )  N,T--I) 3 A N 0,~(T)=I+yN+,(T)eb(T) W~.T_I+ a N ( T _ l )  

YN+t(T) 
YN (T) 

ON(T) 

kN( T -  1) = A - N y N ( t  -- 1)A~,T_ l 2 

CN( T) = e~(  T) + kN( T - 1 ) e f  ( T) + A[3N( T - 1) W N N,T I 3 
~N(T)={I+p(1--yN(T)) 4 

+ p ( k N ( T - 1 ) ) 2 ( 1 - 3 % ( T - 1 ) ) }  '~N(T) 

~ f  ( T) = e f  ( T) - ( 1 -  yN( T -  I ) )kN( T - 1 ) p ~ N (  T) 3 

aN( T) = ACtN( T--1)  + yN( T--1)(  ~ f  ( Ti  ) 2 3 

('~(T) = e~(T)-  (1 - - yN(T) )p~N(T)  2 

f iN(T)  = AflN( T -  1)+ yN(  T ) (  ~bN( T)  ) 2 3 

Time update of the Kalman Gain BIN, T 

WN+~'T= W~,T ~ horN(T-I) --AN, T-~ 

AN, T=AN,  r , - - T N ( T - 1 ) ( e f ( T ) + k N ( T - - 1 ) p ~ N ( T ) ) W N ,  T_~ N+4 

=WN+I'~-WN+"TL 1" J N 
L 'J ..] 

BN.T = BN.T I - YN ( T ) ( e b ( T )  + P~'N(T)) WN. r N + 3 

Time update of the filter HN, T 

eN( T) = y ( T )  - H'N, T XN.T 

eN (T) = YN ( T)eN (T)  

HN, r = HN, T 1 -- eN(T) BIN, r 

Total number of multiplications/divisions 

m 

1 

1 

1 

1 

1 

N 

1 

N 

8N+36 5 

With this s implif icat ion we avoid one more divis ion 

and  certain mul t ip l ica t ions  since the term in front  

of ~:N(T) can be precomputed .  

Even though our  a lgor i thm seems to work at 

least for a n u m b e r  of  data  of several h u n d r e d  

thousands ,  there is always the possibi l i ty of  a very 

slow instabil i ty.  There is thus the need of a detec- 

t ion procedure.  In  [8] the variable  7 N ( T )  of the 

algori thm is moni to red  and  the algori thm is rein- 

itialized when  this variable  is outside the interval  

[0 1]. As stated in [3], this detect ion procedure  

works for the case where we have divergence 
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toward infinity. There is unfortunately another 
mode of  divergence [2], which is less known and 
difficult to observe. It consists of a gain tending to 

zero (and thus yN(T) tends to zero as well) with 
filters having acceptable values. In other words the 
tracking capability of  the algorithm becomes small. 
This is very severe for the nonstationary data 
sequence case. In our opinion the following rule 
does not seem to have the problems of  yN(T):  
reinitialize when #2(T)>tfiN(T) where t is a 
small constant. For both modes of  divergence 
~N(T) increases in absolute value. Thus this rule 
will detect instability efficiently in both cases. 

3. Simulations 

We present the case N = 2 0  for {x(T)} being a 
white Gaussian noise sequence with zero mean 
and unit variance. The parameters of the algorithm 
are the following: A = 0.98, p = 2. We initialize the 
algorithm with a N ( 0  ) --~/d,A N, f i N ( 0 )  = /.t,, ")/N(0) = 1 

and/~ = 0.1 (similar example as in [7]). The simula- 
tions were performed with a PC and with 32 bits 
floating point arithmetic. In Fig. 1 we plot YN (T) 
and ~N(T) for the algorithm of Table 1 but with 

the backward residual computed as in (8). This 
algorithm has complexity 8N, comparable to our 
algorithm, but it is more stable than the 7 N  FAEST 
which i s  highly unstable. When the algorithm 
works correctly then 0 <~ YN (T)~< 1. The algorithm 
is reinitialized every time we have y N ( T ) >  1 or 
y N ( T ) < 0 .  We can also see the behavior of the 
variable ~N( T); its magnitude gradually increases 
with time as the round-off errors accumulate. 
Notice that we performed a 10 000 points simula- 
tion. Fig. 2 has the performance of the stabilized 
FAEST (SFAEST) algorithm of  Table 2 for the 
same input sequence. We can see that YN (T) has 
always a value less than unity and ~N(T) is very 

small. For this case we performed a 100 000 points 
simulation. The periodic nature of the graph is due 
to the recycling of a data sequence of length 10 000. 
The recycling does not favor the stability of the 
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Fig. 2. Performance of the SFAEST algorithm for N = 20 and for white noise data sequence. 
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Fig. 3. Relative difference (in dB) of the Kalman Gains computed by RLS and SFAEST. 
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algorithm because instability is basically a feature 
of  the algorithm itself and it is present even when 
the data are well behaved. As in [3] we will com- 

pare the Dual Kalman Gains of  the SFAEST and 
the RLS to see if the proposed algorithm is still a 
realization of the least-squares. We use the RLS 
Algorithm for comparisons,  because when it is 

performed in the most non-fast  way, it is a very 
stable realization of least-squares. Thus, in Fig. 3, 

we plot IIWRLs-WSFA~STII/II WRLsll (in dB); the 
relative difference of the two Dual Kalman Gains. 
We can see that the two gains are very close to 

each other. 

4. Conclusions 

In this paper  we derived a stabilized version of 
the FAEST algorithm. The idea used to stabilize 
the algorithm was similar to a previous work, but 
our derivation was easier and led to an algorithm 
of  significantly lower complexity. We do not claim 
that the method introduced here can stabilize all 

FKA versions in all situations. As it is stated in 

[3], if the forgetting factor is not compatible w~th 
the data, then no least-squares version is stable. 
We believe though, that for most cases where the 
forgetting factor A and the parameter /9  are cor- 

rectly selected, our method will stabilize or at least 
will increase the stable life of  the corresponding 

FKA by a significant factor. 
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