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Stabilizing the Fast Kalman Algorithms 
JEAN-LUC BOTTO A N D  GEORGE 

Abslract--Ea\t halniaii algorithm\ are algorithms that soI\e, in a 
\er? efficient way, the recur\i\e lea\t-square\ e\timation problem. Un- 
fortunately the! are hnoun to e\hihit a \er> unstable behavior, due 
hasicall> to the accutiiulation of roundoff error\. I t  is the structure of 
the algorithms that f a i o n  this accumulation, w hich is present even 
when the data are well hehaled. I n  this paper, b> introducing a re- 
dundant equation, that i\, bj computing a specific quantitj of the al- 
gorithm\ in t w o  different \ray\, \%e use the difference of the\e two wa!s 
as a measure of the accumulation of the roundoff errors. This difference 
i s  concequentlq used to correct the varial)le\ of the algorithm at e l e r j  
time step in order to stabiliie i t .  The correction i\ defined as the solu- 
tion of a specific mininiiiation problem. The resulting algorithm still 
ha\ the nice coniple\itj propertie\ of the original algorithni (linear i n  
the number of parameter\ to be estimated), but has a much more stable 
heha\ ior. 

1. INTRODUCTION 
ECURSIVE least-squares identification algorithms R play an increasing role in many adaptive control and 

signal processing problems. Adaptive and computation- 
ally efficient versions of the Recursive Least-Squares 
(RLS) algorithm [ 121 have been implemented under the 
form of Fast Kalman Algorithms (FKA) [3]-[6], [ I O ] ,  
[ 131. These fast least-squares algorithms require a number 
of arithmetic operations which is proportional to the 
number N of parameters to be estimated per sample. This 
is comparable to the suboptimal gradient-type techniques. 
A useful classification of the different existing fast se- 
quential least-squares algorithms can be found in [ IS]. 

Unfortunately, all exponentially weighted FKA are 
known to exhibit an unstable behavior and a sudden di- 
vergence due to the accumulation of roundoff errors in 
tinite precision computation. This numerical instability 
remains the main drawback of these algorithms and limits 
their use in practical problems. Several techniques have 
been proposed to overcome this problem. In  IS] and [ 1 I ] ,  
the algorithms are applied in spite of their numerical in- 
stability, in parallel with a detection procedure. As soon 
as the detector detects instability, then the algorithm is 
reinitialized. This method leads to a more or less periodic 
reinitialization, with effects that are quite apparent (for 
example, in the prediction error). 

Other stabilization techniques have been recently pre- 
sented in [ 11 and [SI. They are basically regularization 
techniques, used to stabilize the algorithm for cases where 
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the sample covariance matrix of the data is il l  condi- 
tioned. These algorithms are always suboptimal in the 
sense that the identification gain that they compute is not 
close to the theoretical optimum gain, and thus have a 
reduced tracking capability. Because the above methods 
do not take into account the unstable structure of the FKA, 
they fail to stabilize the algorithms for specific well-be- 
haved sequences (as white noise). This was confirmed in 
our simulations [ 2 ] .  In [7] there is a presentation of the 
behavior of most realizations of the least-squares with re- 
spect to roundoff errors. 

From a theoretical point of view, the numerical insta- 
bility of the FKA of [I21 and [I31 has been analytically 
pointed out in [14] for a first-order filter and a specific 
input signal. Also, in [ 2 ] ,  using simple assumptions re- 
garding the input signal and the errors in the filters, the 
unstable behavior of the algorithms was shown. It was 
shown that the FKA exhibit two different modes ofdiver- 
gence-divergence toward infinity and toward zero. The 
first is immediately apparent since most of the variables 
of the algorithm blow to infinity. The second mode is less 
known since it is difficult to observe. It consists basically 
of a gain tending to zero, with the filters having usually 
reasonable values. In the stationary case, this is not ap- 
parent even in the prediction error. For the nonstationary 
case, this becomes a serious problem, because even 
though the prediction error is large, the gain is so small 
that the algorithm cannot track the signal efficiently. 

In this paper we introduce a quantity that has the prop- 
erty of being a measure of the accumulation of the round- 
off errors. This quantity is used to correct the variables of 
the algorithm at every t ime step. This results in an in- 
crease in the complexity of the original algorithm, but still 
keeping the complexity linear with respect to the number 
of parameters to be identified. The resulting algorithm has 
a much more stable behavior. We performed simulations 
for different orders Nand signals (white, AR, speech). In 
all the cases we tried, our algorithm did not diverge in 
any sense (we tried up to SO0 000 points) [2]. In this pa- 
per, as an example, we present the case N = I O  and we 
perform a simulation for 100 000 points (for other ex- 
amples, see [ 2 ] ) .  

Clearly, having an algorithm that does not diverge (or 
at least not as quickly as the FKA) does not mean that we 
have an algorithm that solves the Least-Squares (LS) 
problem. It is possible that the modifications we intro- 
duce lead the variables away from their correct values. 
To check this point, in Section IV,  with simulations, we 
compare at every time step the Kalman gain computed 
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with our algorithm, with the Kalman gain computed with 
RLS. We use RLS because if it is performed in  its most 
nonfast way, it is a very stable method to solve the LS 
problem. The relative difference of the two gains turns out 
to be of the order of the machine accuracy. This means 
that our algorithm introduces corrections in the right 
sense. Finally, since all corrections depend on a quantity 
that is a measure of the accumulation of the roundoff er- 
rors, with infinite accuracy all corrections are zero and 
thus we get the original algorithm. 

We would like to point out that in this paper we do not 
prove stability of our algorithm in any sense. This is a 
very difficult problem. By "stabilizing" we only mean 
that the stable life of the algorithm is increased by a very 
important factor. This was basically justified with com- 
puter simulations that were performed with different or- 
ders and signals 121. Since there is always the risk that the 
algorithm will possibly diverge, we also introduce a new 
divergence detector that detects efficiently the two modes 
of divergence. As we said, however, in all our siniula- 
tions our algorithm did not diverge in any sense, thus, the 
detector was not really used. 

The price we have to pay for having an algorithm with 
a more stable behavior is another 3N multiplications, thus 
raising the total from 7 N  to 10N. 

11. THE FAST KALMAN ALGORITHMS 

Before briefly presenting the FKA, let us introduce our 
notation. With lower case italic letters we will denote sca- 
lars, and with upper case italic letters we denote vectors. 
Vectors will usually have two indexes-the first denoting 
their length. Also, if X is a vector, then X i  denotes the ith 
element of X .  The problem we would like to solve is the 
following: we are given sequentially pairs ( y (  T ) ,  x (  T ) ) .  
At every time instant T ,  we would like to determine a 
filter HN,T that solves the LS problem, i.e.,  that minimizes 
u , ~  ( T ) defined as 

T 

u N ( T )  = X X T P h ( y ( T )  - HA,.TX,y,,)' ( 1 )  
h = O  

where 0 < h 5 1 is the exponential forgetting factor, 
XA,h = [ x ( k ) , x ( k  - 1 ) .  . . * , x ( k  - N + I ) ]  and '"" 
denotes transpose. We assume that y (  T )  = x (  T )  = 0 for 
T 5 0. The recursion that updates H N , T  is the well known 

where E:( T ) is the prior scalar residual, tN ( T ) is the pos- 
terior, and Chr.T is the Nth-order Dual Kalman gain defined 
as 

where 
T 

also the power -yN( T )  is defined as 

~ 

I343 

( 4 )  

All FKA basically update the Dual Kalman gain in a very 
efficient way, with the fastest versions requiring 5 N  + c 
multiplications (versions FAEST, FTF 131-151). Combin- 
ing this with (2) gives a total of 7 N  + c multiplications. 
This is the fastest realization of the least squares (for a 
given order) up to date. Notice that we use here the Dual 
Kalman gain because this yields the fastest FKA. 

The stabilization method that follows in the next sec- 
tion can be very easily applied to any FKA version, nor- 
malized or not. As an example, we will apply it to the 
Fast Transversal Filters (FTF) version of 1.51. Also, with- 
out proof, in a table we will give the stabilizcd version 
for the Normalized FTF algorithm of [ 5 1 .  

111. STABILIZATION OF T H E  FAST KALMAN ALGOKI I H M S  

It is widely known that two independent f. x t s  can cause 
the instability of an exponentially windowed least-squares 
identification algorithm 161, [ 1 I ] .  First, if the matrix 
R,v, of (4) is not well behaved because of a small X and/ 
or of an input sequence { x (  T )  ) not consistently excited, 
then the algorithm is unstable regardless of the way i t  is 
implemented (RLS, FKA, Ladder . . . ) .  Sufficient con- 
ditions for a safe choice of the exponential forgetting fac- 
tor were estimated in [ 11. Second. for some LS algo- 
rithms, roundoff errors have the tendency to accumulate 
until the algorithm diverges. This is. for example. the case 
for most versions of the FKA and for a version o f  RLS 
1141, but i t  is not the case for the Ladder least-squares and 
some other versions of RLS. These two flicts prevent the 
wide use of the FKA. However, we must distinguish the 
first fact, common to all exponentially windowed algo- 
rithms from the second, which is basically a characteristic 
of the FKA. Our goal in this section is to t ry  to eliminate 
this drawback of the FKA, assuming that the forgetting 
factor X and the signal .r( T )  are such that the matrix 
RN,T is well behaved. Before presenting our method, Ict 
us introduce some additional notation that we are going 
to use in the sequel. Boldface italic letters denote theo- 
retical values of variables, that is, variables computed 
with infinite accuracy. Barred letters denote corrcctcd val- 
ues of variables. Also, for simplicity, we drop the tilde 
from the notation of the Dual Kalman gain. 

As we said in Section 11. we will apply our method t o  
the FTF version of the FKA. This algorithm is presented 
in Table I .  The algorithm of Table I is known to be very 
unstable. It is possible to increase its stable life by an 
important factor if we compute the prior backward error 
r i . (  T )  as r L (  T )  = .Y (  T - N )  - B; , , ,  lX,y , / -  instead of 
using the equations of Table I .  Of course, this requires 
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TABLE I 
THE FTF ALGORITHM ( C ~ M P L F X I T Y  7 N )  

Available a t  time T :  C N , T - ~ , A N , T - I ,  B N , T - ~ ,  H N , T - ~ , ~ N , T - I  
YN(T- l ) > a N ( T -  l) ,DN(T- 1 )  

New Information: Y(TL 4 T )  

Computation of the Dual Kalman Gain vector CN,T.  

Filtering of the y(T) signal 

another N multiplications raising the total to 8 N ,  but the 
new algorithm has a much more stable behavior compared 
to the original. Notice that there are two different ways 
for computing rL(  T )  and they seem to be quite indepen- 
dent. With no roundoff errors, they yield the same result, 
but under finite precision this is hardly the case. We can 
thus use their difference as a measure of the accumulation 
of the roundoff errors. Let us denote this difference by 
E N (  T ) .  Using the formulas of Table I ,  we define it as 
fo I lo w s : 

Fig. 1 shows the typical behavior of i N (  T )  and y y (  T ) .  
Notice that E N (  T )  gradually increases in absolute value 
indicating the accumulation of roundoff errors. Since 
EN(T)  is a measure of divergence of the algorithm, we 
will use E N (  T )  to correct the variables of the algorithm 
of Table I in order to stabilize it. We will mainly concen- 
trate on the upper part of the algorithm of Table I con- 
cerning the adaptation of the filters A N , T ,  B N . T ,  and C,.,, 
because it was observed that if this part is stable, then the 
part concerning HN,T  is stable as well. Our goal will be to 
replace the two filters A N , T -  I and B,y,T-  I with new cor- 
retted values A N , T - ,  and I. We would like the cor- 
rected values to be as close to the originally computed 
values as possible, but also to minimize i,v( T )  = 

~ ( A N . T -  I, B N , T -  withf(A, B )  defined in ( 6 ) .  This dou- 
ble requirement is expressed with the minimization of 
W ( A N . T -  I ,  BN.T- I )  defined as 

- 

- 

where p is a constant. Notice that the first term in (7) is 
nothing but El:; XT-l-'[(x(k) - Ah,T-lXN,L-l) - 

( x ( k )  - A , ~ . T -  I X N , L -  I ) I 2 ,  i.e., the norm of the difference 
of the two (length T - 1 ) error vectors. It is in this sense 
that we define the distance of the two filters A , y , T -  I and 
AN.T- I (similarly the second term). The nice property of 
this setting is that the resulting corrections are scale in- 
variant, a property that the original filters have as well. 
Unfortunately, the minimization in (7) is nonlinear be- 
cause of a nonlinear term i n f ( 2 ,  B). Assuming that the 
required corrections are small, we can linearize f ( A ,  E)  
around A and B ,  this gives 

- 

f ( A ,  B )  = f ( A ,  B )  - [ B  - B1'XN.T + k , y ( T  - 1 )  

. [AN - A ~ ] ~ ; ( T )  

- k N ( T  - 1)AIV[A - A ] r X , , , - l  ( 8 )  

where k N (  T - 1 ) = c y N (  T - 1 ) / P N (  T - 1 ). Substituting 
(8) in (7), the resulting minimization is now straightfor- 
ward and gives 

where DN,T - = ( I / X ) R , \ [ O  . . . I ] '  and g N ( T )  = 
f (AN.7- -1 ,  B N , T - l ) .  Using (9) and (lo),  we can compute ( 6 )  
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Fig. I .  Typical performance of the variables y N (  T )  and E V (  T )  for the 
FTF  algorithm. 

the corrections for the two prior errors 
7 

where 

In the above expressions, we use theoretical values of cer- 
tain variables. We will approximate these theoretical val- 
ues as follows: C N 3 T -  1 = C N . T -  1 ,  yN( T - 1 ) = y N (  T - 
1 ) and y N (  T )  = y N (  T ) .  Notice that in ( lo),  the correc- 
tion of the backward filter is defined in terms of 
the theoretical Kalman Gain CN,T.  We would like to ex- 
press it in terms of known quantities. Let us first define 

if we use the formulas of Table I ,  and approximate theo- 
retical values with corrections, then 

Substituting (15) in (10) gives 

(16)  

Simulations have shown that the performance of the al- 
gorithm does not change if we neglect the terms involving 
D N , T  and also if we set = A N . =  With these as- 
sumptions, the resulting algorithm is given in Table 11. 
We can see from this table that we need N additional mul- 
tiplications for computing the backward error r!;!( T )  plus 
another 2 N  for correcting the filter BN.T- I .  Notice also 
that we compute k N (  T - 1 ) as K N y N (  T - 1 ) instead of 
P N (  T - 1 )/a,( T - 1 ) (thus avoiding one division) since 
these two expressions are equivalent for the correspond- 
ing theoretical values. Even though we do not need to 
correct the filter A,,T- I ,  we do correct the forward prior 
error. We have to point out that the algorithm defined in 
Table I1 is very sensitive. If we omit certain corrections 
or change the way of correcting the vectors, the resulting 
algorithm most probably will diverge. Notice also that all 
corrections depend on j N (  T )  which is proportional to 
E N (  T ) .  Thus, all corrections become zero when tflV( T )  is 
zero (which is, for example, the case of infinite preci- 
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TABLE II 
STABILIZED FTF ALGORITHM (COMPLEXITY ION) 

Available at time T:  C N , T - ~ ,  A N , T - ~ ,  B N , T - I ,  H N . T - ~ ,  X N , T - ~  
Y N ( T -  1),ON(T- I) ,PN(T- 1 )  

New Information: Y(T), Z ( T )  

Computation of the variables f ,v(T),&(T) 

Correction of the Transversal Filter BN,T-I 

Classical FTF algorithm 

Filtering of the y(T) signal 

sion). Finally, notice that we modify the variables of the 
original algorithm at every time instant. 

Since we do not prove stability of our algorithm in any 
sense, there is always the risk of divergence. Thus, we 
still need a divergence detector. From Fig. I we can see 
that y,,,( T )  (used in [5]  as divergence detector) does not 

TABLE 111 
STABILIZED N O R M A L I Z E D  FTF ALGORITHM ( C O M P L E X I T Y  12N ) 

Available at time T :  CN,T-I ,  A N , T - ~ .  B N , T - ~ ,  H N , T - ~ ,  X N , T - ~  
y Z 2 ( T  - 1 )  

New Information: Y(T), z ( T )  

Computation of the variables fN(T) ,  &(T)  

Filtering of the y(T) signal. 
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Fig. 2 .  Typical performance of the variables Y,,( T )  and E L (  T )  for the 
stabilized FTF algorithm. 

1341 

-150 
0 io,ooo 

Fig. 3. Relative difference ( i n  decibels) of the Kalman Gains computed by 
RLS and by the S F T F  algorithm of Table I I .  

really show the accumulation of the roundoff errors (since 
any nonnegative value less than unity is acceptable). The 
quantity y N  ( T )  suddenly becomes larger than unity or 
negative and this is used in [ 5 ]  as a criterion for reinitial- 
ization. It is possible especially when we have divergence 
toward zero (in which case y N (  T )  --t 0) to pass a large 
amount of time before this detector detects divergence. 
We propose here the following detector: reinitialize 
whenever T )  > t P N (  T ) ,  where t is a small constant. 
By selecting t properly, we can detect divergence earlier 
than y N (  T )  and also both modes. 

Before going to simulations, we will briefly say a few 
things about the stabilization of the normalized FTF 
(NFTF) algorithm. It can be shown [2] that the correc- 
tions in (9) and (10) can be included in the NFTF of [ 5 ]  
without significantly increasing the complexity of the al- 
gorithm. We will only need N additional multiplications 
for the commtation of the backward prior error (raising 

the total from 11N to 12N ) plus an additional constant 
number of multiplications. The reason is that we can by- 
pass the computation of the corrections of the two filters 

I and B N , T -  I by directly expressing A N . 7  and B N . 7  

(the normalized versions of the corresponding filters), in 
terms of A N , T -  I and B N , T -  I .  The resulting algorithm is 
presented in Table 111. 

IV. SIMULATIONS 
In this section we present computer simulations for a 

10th-order filter. We use h = 0.96, p = 1 ,  and, as input 
sequence { x (  T )  }, a pseudowhite centered Gaussian noise 
of unit variance. We initialize the algorithms as in [ 5 ]  

0. I .  The constant p is also used for the reinitialization of 
the normal FTF algorithm as described in (51. The sim- 
ulations were performed with a Personal Computer and 
with 32 bit floating-point arithmetic. In Fig. 1 we can see 

with aN(0)  = p h N ,  P N ( 0 )  = p ,  y N ( 0 )  = 1 ,  with p = 
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a typical behavior of the FTF algorithm of complexity 8N 
(the algorithm of Table 1, but with rlk( T )  computed as 
.t-( T - N )  - B,k,T- , X , y , T ) .  Every time r.,( T )  exceeds 
uni ty ,  the algorithm is reinitialized. Notice that we have 
performed simulation only up to 10 000 points. The cor- 
responding FTF of complexity 7N has two times as many 
reinitializations. We can also see the behavior of the vari- 
able (,,( T ) ;  its absolute magnitude increases with time as 
the roundoff errors accumulate. I n  Fig. 2 we have the per- 
formance of our algorithm defined in Table 11. Here we 
have performed a 100 000 points simulation. At {.U( T )  } 
we were recycling a 10 000 samples pseudowhite Gauss- 
ian noise sequence. This is the reason why the graph 
seems periodic. We can see that our algorithm behaves in 
a much more stable way and that ov( T )  is practically zero. 
As we said in the Introduction, having a stable algorithm 
does not necessarily tilean that we have an LS algorithm. 
In order to check this point, in Fig. 3 we plot I /  CsF,F - 
CKI.S 1 1  / / /  CRIS 1 1  ( in  decibels), the relative difference of the 
Dual Kalinan Gains computed by our Stabilized FTF 
(SFTF) algorithm and by RLS. We can see that they are 
very close to each other and that their relative distance 
decreases with time. This means that the modifications 
introduced here are such that the resulting algorithm, to 
all practical considerations, solves the 123  problem at 
every time instant. 

V .  CONCLUSIONS 
In  this paper we have presented a method for stabilizing 

Fast Kalman Algorithms. The method was presented with 
an example by stabilizing the FTF algorithm. We derived 
a version of the FTF algorithm that has a much more sta- 
ble behavior compared to the normal FTF. In all the sim- 
ulations we have performed, this new version did not di- 
verge even for as many as 500 000 points. The price we 
pay for this performance is another 3N multiplications for 
the unnormalized case. raising the total from 7N to 10N, 
and only N for the normalized case, raising the total from 
1 IN to 1". We must also point out that we have not tried 
to optimize the computations in any sense. It might thus 
be possible to reduce further the complexity below 10N. 
Of course. with the idea used here, i t  is impossible to go 
below 8N since we always need to compute the backward 
prior error using N multiplications. For our algorithm we 
need to define the constant p .  This constant, as we can 
see from (9) and ( lo) ,  is directly related to the amount of 
correction that we impose on the two filters. I t  is clear 
that if it has a small value. then the algorithm will di- 
verge. The same will happen if the value is too large. For 
orders around 10 or 20, a good selection is p = 1 .  For 
larger orders, a larger value of p is required. 
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