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Fast Newton Transversal Filters—A New Class of
Adaptive Estimation Algorithms

George V. Moustakides and Sergios Theodoridis, Member, IEEE

Abstract—A new class of adaptive algorithms for the estima-
tion of FIR transversal filters is presented. The main charac-
teristic of this class is the fast computation of the gain vector
needed for the adaptation of the transversal filters. The method
for deriving these algorithms is based on the assumption that
the input signal is autoregressive of order M, where M can be
selected to be much smaller than the order of the filter we want
to estimate. Under this assumption the covariance matrix of the
input signal is estimated by extending in a min-max way the
Mth order sample covariance matrix. This estimate can be re-
garded as a generalization of the diagonal covariance matrix
used in LMS and leads to an efficient computation of the gain
needed for the adaptation. The new class of algorithms contains
the LMS and the fast versions of LS as special cases. The com-
plexity changes linearly with M, starting from the complexity
of the LMS (for M = 0) and ending to the complexity of the
fast versions of LS.

I. INTRODUCTION AND BACKGROUND MATERIAL

PTIMAL estimation of an FIR filter’s impulse re-

sponse is of major importance in many application
areas such as automatic control, system identification,
channel equalization, interference rejection, echo cancel-
lation, etc. [11, [6], [11], [12]. The task is to estimate the
filter’s response in such a way so that for a given input
signal, its output tracks a desired response signal in an
optimal way.

Wiener’s approach to the problem is to assume that the
input and output signals are jointly stationary with known
second-order statistics. The FIR filter is parametrized in
its transversal form and optimality is defined as the min-
imization of the mean-squared error between the actual
and the desired output signals. Under this setting the un-
known filter parameters satisfy the well-known Wiener
equation.

There are very rare cases where the knowledge of the
second-order statistics is available. To overcome this lack
of information, a simultaneous estimation of the filter
coefficients and of the second-order statistics is used. The
estimates are based on the available input and output data.
In most practical cases, the number of data grows with
time, thus the estimates have to change with every new
incoming information. Sequential techniques were de-
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rived to deal with this situation. These techniques use only
the new information in order to correct the estimates of
the previous instant. Most sequential algorithms behave
the way one hopes they will, that is, when the number of
available data tends to infinity, under stationarity and
some other weak conditions, their estimates tend to the
Wiener solution.

Before presenting the algorithmic class that we will deal
with, let us state the estimation problem in a more rigor-
ous way. Suppose we are given sequentially two se-
quences {x(r), y(¢)} (input and output). Define Xy(#) =
[x(® *+ - x(t = N + 1)}7, we are interested in finding a
filter Hy = [ho - - * hy—1]" such that the sequence {wy ()}
with wy(?) = y (1) — H{ Xy (9) is uncorrelated with {Xy (1}
(Wiener problem).

Since from a practical point of view, sequential tech-
niques are more important for solving the problem we just
defined, we will concentrate on a very general class of
sequential algorithms, a class known as stochastic New-
ton (SN). To define the class, let Hy(7) denote an estimate
of Hy at time instant ¢, then Hy(#) can be obtained from
the estimate of the previous instant Hy(z — 1) by the fol-
lowing relations [9, p. 47]:

Cy() = —Ry'®) Xy
e = y(® — Hy@ — 1) Xy(0)
Hy(n = Hy(t — 1) — ey(®) Cy() (10

where ey (?) is the prior prediction error and Cy (¢) the gain
vector. Notice that (1b), (1c) are common to all algo-
rithms in this class and are known as the ‘‘filtering part’’
of the algorithm. Notice also that in order to compute this
part we have to perform 2N (where N is the filter length)
operations per time step. This number of operations con-
stitutes a lower bound for the computational complexity
of any algorithm in this class. The part that discriminates
the algorithms is the definition of the matrix Ry (?) in (1a).
This matrix usually estimates the second-order statistics
of the input sequence {x ()} and it is obvious that it plays
the most important role for the SN class.

The two best known estimation algorithms fall into the
SN class. Selecting Ry(z) = (¢2/8)I, with ¢} being an
estimate of the input power and 6 a small constant known
as ‘‘step size,”’ results in the LMS algorithm. If Ry (¢) is
taken as the sample covariance L' Xy(n) X% (n), the re-
sulting algorithm is the RLS. Both algorithms have been
extensively analyzed in the literature theoretically. LMS

(1a)
(1b)
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is characterized by its simplicity, a feature that constitutes
this algorithm (and its variants) as a major estimation tool
for practical applications nowadays. RLS, on the other
hand, has a much more complex form, but from a perfor-
mance point of view is superior to LMS. RLS is known
mostly as the solution to the least squares (LS) problem,
a unique feature of this algorithm.

In real-time estimation, two important properties are
considered when deciding the usefulness of a sequential
algorithm. The first is convergence performance, that is,
how fast the estimation tends to the optimum (Wiener so-
lution), and second, the computational complexity ex-
pressed in number of operations per time instant. Ob-
viously in practice we would like an algorithm with low
complexity and high convergence rate. LMS has com-
plexity equal to 2N (the minimum) and very slow conver-
gence, while RLS has high complexity O(N?) and very
fast convergence rate. In order to improve the complexity
of RLS, in [8] the very special structure of the LS problem
was taken into account and fast LS algorithms were de-
rived that have linear with N complexity. Later faster ver-
sions appeared, with the fastest being FAEST and FTF
[3], [4], which have complexity equal to 7N. These al-
gorithms combine the convergence properties of the RLS
with linear complexity. Unfortunately, they present sta-
bility problems, thus stabilized versions occurred [2],
[10], [13] that have complexity from 8N to 10N. For some
applications the extra 6N to 8N operations, with respect
to the LMS, we have to pay for the fast LS versions can
be prohibitive with today’s technology. A notable exam-
ple is echo cancellation in audioconferencing where N can
go up to a few thousands.

RLS and LMS can be regarded as the two extremes in
performance and in complexity for the SN class, leaving
a notable gap between them. It is exactly this gap we will
try to completely cover with the present paper. Specifi-
cally we will define a class of algorithms that have com-
plexity 2N + 5M. By selecting M from 0 to N we can go
from the performance and complexity of LMS to the per-
formance and complexity of the fast versions of LS. Since
this class has the extra parameter M that we can play with,
it might be possible to select an M that will yield an al-
gorithm with low complexity while the performance will
remain comparable to the performance of RLS.

The rest of the paper is organized as follows: Section
I contains the main result of this paper, namely a method
for extending a nonstationary covariance matrix. Based
on the results of Section II, in Section III we derive three
versions of our class of algorithms. Simulations are pre-
sented in Section IV with a discussion on how we can
obtain simplified versions of the algorithm. Finally the
conclusion is given in Section V.

II. A MIN-MAX EXTENSION OF A NONSTATIONARY
COVARIANCE MATRIX

This section contains the main result of the paper which

we will use in Section III in order to derive our class of
algorithms. Before getting into any details let us first dis-

cuss some key features of LMS and RLS. As we have
seen in Section I, the most important quantity for the SN
class is the matrix Ry (f) which estimates the second-order
statistics of the input sequence {x(r)}. For this estimation
we have seen that RLS uses the sample covariance matrix.
This estimate of the covariance matrix is an estimate one
will use in cases where there is absolutely no prior infor-
mation (or no assumption is made) about the input se-
quence. If, for example, the input is white noise it is ob-
vious that the sample covariance is a bad estimate. For
such a case we expect that with a diagonal matrix we will
have a much better estimate. It is exactly this fact that can
be used to derive LMS. A way to obtain LMS (from RLS)
is to assume that the input sequence can be modeled by
white noise, thus Ry (f) can be replaced by a diagonal ma-
trix. It is well known that the two algorithms do not ex-
hibit a significant difference in performance when the in-
put is indeed white noise. Even though LMS models the
input as white, it still works for nonwhite sequences given
that some weak persistent excitation conditions are satis-
fied. This is a consequence of the convergence properties
of the algorithm [15]. Unfortunately, the convergence rate
is reduced if the white noise model does not adequately
model the input.

In this paper we will generalize the idea used in LMS.
Instead of assuming that the input sequence is white, we
will assume that it is autoregressive of order M (AR(M)).
Notice that a white noise is just an AR(0) sequence. Also,
if we observe in Table I the FAEST algorithm, we can
see that it uses predictors of order N for the prediction
part. Thus FAEST models the input as an AR(N) se-
quence. Concluding we have that LMS assumes an AR(0)
input and FAEST (and most fast LS versions) an ARV ).
By assuming an AR(M) input sequence with 0 <= M =<
N, we can see that LMS and the fast versions of LS are
the two extremes of our class.

Having decided the input model, it is clear from (1) that
the only quantity to be defined is the matrix Ry(7) for a
nonstationary AR(M) sequence. We will define the co-
variance matrix in a somewhat indirect way. We will re-
gard the definition of the matrix as an extension problem,
namely, the extension of a covariance matrix which is
partially known. Specifically, we want to define a covari-
ance matrix Ry for which we are given the elements of
the diagonal and all elements of the M off-diagonals. Such
a problem is already solved for the stationary case with
the use of the maximum entropy (ME) criterion. It was
also shown [14] that the ME criterion is equivalent to as-
suming that the underlying sequence is AR(M). Here we
will try to extend this result to the nonstationary case. We
will use a criterion different from the ME in order to avoid
risky generalizations of the entropy concept for nonsta-
tionary sequences.

Let us denote with R, , | ,,, where k > m, a covariance
matrix of size k + 1 for which all elements of its diagonal
and of the m off-diagonals are known. Let us first consider
solving the simplest problem, that of extending a covari-
ance matrix Ry, ;_, when only the upper right corner



2186 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 39, NO. 10, OCTOBER 199t

TABLE 1
THE FAEST ALGORITHM (PREDICTION PART)

Available at time: ¢ Cyt — 1), Ayt — 1), Byt — D), Xyt — 1)
Yult = 1), ot = 1), aly(t = 1)

New information: x(1)

Time Update of the Gain Vector MULT / DIV

() =x() — ALt — D Xyt — 1) M
) = 4@ /1
aly(t) = Ny (t = 1) + ey (1) e, (1)

[\S]
- o~ o~ -

Yai (D) = yu (0 a{,(t)/)\a{,(r - 1) 2 1
_ 0
=)
0 [ 1 } M+ /Y
Nyt — 1) L=Aut = 1)

Ay (t) = Ayt — 1) — €4y (1) Cyyt — 1) M /
eh(n) = =Xyt — 1) CHII® 2 /
0(1) = 1 + ef () CHIIO/Yaar (D) 1 / 1
Yu () = 0 () a1 (D) 1 /
e = el (0 /yu) A
aly(®) = Nyt — 1) + e (1) €5 2 /
[C’g‘”] = Cun®) - Czi‘.[‘f”(’ - ”} M !
By (1) = By (t = 1) = €34 (1) Cy(1) M /

Total Number of Mult/Div SM + 11 / 5

and lower left corner element is unknown. Suppose that

70,0 VkT—l ?
Ri1o—i(® =] Vicy Ry Wi 2
F W[~l T,k

where 7 is the element we want to define and all other
entries are assumed known. Since prediction is of crucial
importance for estimation we shall define # in an optimum
way with respect to prediction. Let A, B, be a forward
and a backward predictor, respectively. If we call o (4,
#) and o’ (B, ) the respective powers of the two predic-
tion errors we have

A ) =1 = A[1Res 1 DI — 417 ()
a’By, /) = [-Bi 1R —(A[-BL 1]". (3b)

Consider now a game theoretic approach of the extension
problem, a game between nature and us. Nature selects
# while we select the predictors; for each combination our
loss is the corresponding «. We try to make our loss as
minimal as possible while nature tries to maximize it. We
can distinguish two problems which are common in game
theory [5, p. 33]:

PI: The Max-Min Problem: Find #*, AF, B} such that

o/ (4f, #*) = max min o’(4,, P (4a)
? Ak

a®(B}, #*) = max min o®(B,, ). (4b)
? By

The above equations require some comments [5, p. 57].
They basically reveal that if nature were a rational oppo-
nent plotting our ruin, she could use a least favorable 7
(the #*) that would guarantee her that our loss would be
at least the amounts defined in (4) no matter what selec-
tion of predictors we might use.

P2: The Min-Max Problem: Find #*, A¥, B} such that

of(AF, #*¥) = min max of (4, 7) (5a)
Ak 7
bip¥ %y — i b o
o’ (B, #*) = min max a” (B, 7). (5b)
Bi F

Here we have a selection of predictors A, B} that ensure
that our expected loss will not exceed the quantities in (5)
no matter which 7 nature decides to use.

The value of the max-min problem is known as ‘‘the
lower value’’ of the game and the value of the min-max
as ‘‘the upper value.”’ The lower is always less than or
equal to the upper value. When the two values are equal,
the common value is called ‘‘the value’’ of the game. It
is by no means obvious that a single triple (#*, A, B})
exists satisfying the optimization problems defined by (4a,
b) and (5a, b). With the next theorem we show that such
a triple indeed exists by identifying it and by showing that
it solves all optimization problems at the same time.

Theorem 1: Let Ry .| - ((P) defined in (2) be a matrix
with the two principal minors of size k being positive def-
inite matrices, then the triple #*, Af, B{ defined as

P = ViR Wi (6a)

-1 —i
R, W Vi R._\V,-
AIT:I:le kl:\ |:Akl:|=|:k1kl:| (6b)

Wk—l Tk k ¥ 0

oo VIo ] [#* 0
Rk—] Wk*l Rk*IWk—l

Vi1
solves all problems defined in P1 and P2. Also
det {Ry .« (F¥} > 0. M

Proof: The complete proof of this theorem is given
in the Appendix.

With Theorem 1, we have shown that if we extend our
matrix using #* then this extension is max-min and min-
max optimum simultaneously with respect to forward and
backward prediction. Equations (6b), (6c) suggest that
A, Bff are the optimal predictors under the optimal ex-
tension #* of the matrix. Also these predictors of order k
are equal to the optimal predictors of order k — 1 enlarged
properly with a zero. It is exactly this property that will
reduce the complexity of our algorithms compared to
FAEST. Finally, inequality (7) shows that the optimal ex-
tension of the matrix is positive definite and thus a legit-
imate covariance matrix.

Let us now apply Theorem 1 to solve the general ex-
tension problem. Consider the following covariance ma-
trix corresponding to a nonstationary case with more than
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one off-diagonals to be defined:

[ ro(t) ORI A0 ]
rot — 1) Pt = 1) Pt — 1)
0
Ry n(t) = o = 1) (¢))
Pasit — 1)
Lfk(t) ro(t — k)_

where again all entries with hats are to be defined while
all elements in the diagonal and the off-diagonals of order
up to m are assumed known. Before proceeding we must
make the following assumption.

Assumption A: All principal minors of size m + 1 are
positive definite matrices.

To extend our matrix we will use the same procedure
used in ME. We will first define all elements across the

m + 1 off-diagonal then those of the m + 2, etc. To define

the first element of the m + 1 off-diagonal consider the
first principal minor of size m + 2. This matrix becanse
of assumption A satisfies all conditions of Theorem 1 and
has only one unknown element, namely 7, (). We can
thus, with the use of (6a), define 7,,,(f). To define the
second element, we consider the second principal minor
of size m + 2. For this matrix the only unknown element
is 7,,41(t — 1) and the matrix again satisfies the conditions
of Theorem 1. Proceeding in this manner we can com-
pletely define all elements in the m + 1 off-diagonal. The
resulting principal minors of size m + 2 are all positive
definite because of (7). Having completed with the m +
1 off-diagonal we consider principal minors of size m +
3 to define the m + 2 off-diagonal. Continuing in this way
we can completely fill the whole matrix. We can also give
a recurrent formula for the elements defined in this way.
Using (6a) we have forj > m

B = [n@) - @R . = 1)

Fio—1)
: ©)
net—j+1

The whole procedure may seem quite complex but as we
will see it will be considerably simplified by considering
the inverse of the matrix Ry . | ,(?), which is actually in-
volved in the SN algorithmic class. With the next theorem
we present three properties that this inverse satisfies,
which are the key points in defining the versions of our
class of algorithms.

Theorem 2: Let R, ., ,,(¢) be the matrix defined by (8),
(9), with k& > m and satisfying assumption A, then the

inverse of this matrix satisfies the following properties:

» [0 of 1 1
Rilin® ={ o pog 1)] fTo | A
’ Oi-m
‘[l — A Oi-pl (10a)
_ [ Ren® ok} 1
Clor 0 al(t —k + m)
Oi—m
—B,(t — k + m)
1
-[0I_, - BL¢ —k+m 1 (10b)

0k+l -mk+1—m

R_] (t) _ l: 0k+1 m,m ]
frtm Onisr-m Ry —k=1+m)

0;
- 1
Z -
j=0 m(t~J) ~A,t = j)
Okfm—j
S[07 1 - ALt —j) Oim-j] (11
- (t)_[R,;,’m(t) Opisi-m }
kb 0k+1—m,m 0k+1—m,k+|7m
o;
- _Bm(t—j)
Z —
j=0 m(t—J) 1
Ok—mfj
- [0T = BLG —j) 1 Of_pj] (12)

where O; is a zero vector of size i and O; ; a zero matrix
of dimensions i X j. Also A, (), B, (¢) are the optimum
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forward and backward predictors of order m and a{,, o, _

o (1) their corresponding prediction error powers. By
taking derivatives in (3a), (3b) with respect to A4, By it
can be easily shown that they are given by

ri(®)
An®) = Ry, = D| (13a)
I'n ()
T ()
B, = R, : (13b)
nt—-—m+1)
@) = ro@®) = @)« * 114 () (142)
(@) =rft —m) — [ru(® -+ - 1t —m+ DIB,®.
: (14b)
Proof: The proof of this theorem is also given in the

Appendix.
Notice from Theorem 2 that in order to find the inverse

of the matrix R, , () we need to compute predictors -

only of order m. Notice also from (11), (12) that the in-
verse has all off-diagonals of order greater than m equal
to zero. This property is characteristic for covariances of
AR(m) processes. In other words, the matrix R, ,(?)
can be regarded as an estimate of the covariance matrix
that takes into account the prior knowledge of the order
m. In the next section we are going to use the results given
in Theorem 2 in order to derive three versions of our new
class of algorithms.

III. DErRIVATION OF THE NEW CLASS OF ALGORITHMS

In this section we will use the results of Theorem 2 in
order to define three efficient schemes for computing the
gain vector Cy(¢) defined in (1a). Since we would like the
class of algorithms we are going to define to contain LMS
and FAEST as its members, we will slightly modify the
definition of the SN class. This is necessary because
FAEST and FTF, in order to achieve the 7N complexity,
use the dual Kalman gain and not the usual Kalman gain
[3], [4]. Thus the general form of our class becomes

Cy(0) = —%Rﬁl(t - 1) Xy(® (15a)
ex(®) = y(t) — H{(0) Xy (15b)
Hy() = Hy(t — 1) — en(?) Cy(® (15¢)

where 0 < N =< 1 is the forgetting factor. The problem
of the posterior error ey(?) is solved in the same way as
in FAEST. From (15¢) we can easily express the posterior
error in terms of the prior. This gives

e(n)
Yn,u(®)

en(®) = (16)

where
e(r) = y(t) — Hy(t = 1) Xy (17a)

ywu® =1 = CR® Xy(@). (17b)

Notice that vy »(¢) has exactly the same properties as the
corresponding variable (power) in FAEST. It is non-
negative and greater than unity. The algorithms which
follow give recursions for the gain vector Cy(#) and also
for vy, m (0.

Let us now define the matrix Ry(#). In order to apply
the theory of the previous section it is clear that we must
define this matrix as some Ry (r) matrix of the form of
(8). For the known elements we will use the sample es-
timates, that is

i

J
rt —j) = zki N R k) x(k — i)
for i —j| = M. (18)

In other words, the diagonal and the M off-diagonals co-
incide with the corresponding elements of the sample co-
variance matrix used by all LS algorithms. From (18) we
conclude that all principal minors of order M + 1 can be
written as L7/ N7/ 7%X,,, (k) X}, (k) and thus under
persistent excitation are positive definite. Since assump-
tion 4 holds, we can use the procedure defined in Section
11 to fill the rest of the matrix. If we apply the results of
Theorem 2 to this matrix, all predictors of order M that
are involved in (10)-(12) are LS optimal predictors of or-
der M and thus can be computed using any LS algorithm
RLS, FAEST, FTF, etc. The three versions of our algo-
rithmic class are as follows.

Version 1: This version uses (10) and yields a FAEST-
type adaptation of the gain vector. Applying (10a), (10b)
fork = N, m = M, and t — 1. After multiplying with
Xy+1(2) and using (15a) we have

0 } ()

M | A -1
Cyt = D] Nl =1 ult = 1)

Cnvii(®) = [

On-m

C b —
_ [ N(t):| ~ f,,,(t N+ M) (19)
0 Nl —N+M=1)

ON—M
~By(t — N + M)
1

(19b)

where e’;,,(t), e5(?) are the forward and backward LS pre-
dictions errors of order M and a{,(t), aﬁ,(t) their corre-
sponding powers. From (17b) and using (19a), (19b) we
have

[eh )
Nt — 1)
__lene = N+ M)

Nl —N+M~-1)

Y = you — 1) +

20)
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Version 2: For this version we use (11) and thus we
compute the gain using only forward predictors

On-u
Cyt — N+ M)

where Gy (t) corresponds to the sum of the forward pre-
dictors in (11) and satisfies

G = [ ] - Gv(@® @n

0)

Ayt — 1) ~Au@ =)

Gy () = [G « 1)]
(t —

N-M

(22a)

eht — N + M)
Nt - N+M-1)

[GN(t)}
= +
0

On-m
1
—Ayt — N + M) (22b)
For yy p(f) we have
Yvu®) = yut — N + M) + gy@®) (23)
where gy(r) = X5(2) Gy(¢) and satisfies
[eh )
= -1 —
en(d = gn(t ) + )\a{”(t N
f _ 2
[eht — N + M)] 24

| T -N+M- 1)
Version 3: Here we use (12) and thus only backward
predictors:

Cy(®
&m=[;

N-M

} = Fy(® @25

where Fy (f) corresponds to the sum of the backward pre-
dictors and satisfies

0 en(®
Fyo ) = — M
wni® [FN(t - 1)] Aoyt — 1)
—By(t— 1)
1 (26a)
ON—M
_ I:FN(t)ji L€M= N+ M)
0 Nt -—N+M-1
On_m
~Byt -N+M-1) (26b)
1

" For yy, 4 (?) we have

.m0 = Y@ + v 27
where fy(f) = X§(2) Fy() and satisfies
PPN (5 110)
@ =fe -1+ Nyt — 1)
by 2
€5 — N + M)] a8)

TNt -N+M-1)

These are the three versions of our class. The complete
estimation algorithms for the three versions are summa-
rized in Table II.

Comments: Even though it seems that all versions need
2M multiplications for the computation of the gain, this
is not the case when the predictors are computed via the
FAEST algorithm. Notice that the quantities which are
necessary for the adaptation of Cy(r) are also computed
in FAEST for the adaptation of Cy(t). Thus the only ad-
ditional operations are 2M additions for version 1 and 3M
additions for versions 2 and 3. Of course, this will be the
case if we keep in memory the vectors that will be used
after N — M time instants. The memory requirements are
M X (N — M) for versions 1 and 3 and twice as much for
version 2 (in the latter we must keep in memory Cy,(?) as
well). Clearly, if we want to save memory we can always
have two FAEST or RLS in parallel to compute the pre-
dictors, one applied to samples of the time instant 7 and
another to samples of the time instant z — N + M. Such
a combination though will double the complexity of the
prediction part. If the RLS is used for the prediction part,
then versions 2 and 3 are preferable because RLS com-
putes directly Cj,(¢) and adapts only one filter. Note that
the use of RLS may not be prohibitive since in many cases
M << N and it may be desirable due to its good numerical
properties.

We can, without any difficulty, derive similar algo-
rithms for the class defined in (1). The only difference
with our class will be the fact that, if the prediction part
is implemented with a fast algorithm, this algorithm will
have complexity 6M instead of 5M [4]. In any case, this
increase is not important since most fast versions have
stability problems. Thus a stabilized version [2], [10],
[13] having complexity 6M to 8M, will be preferable.

IV. SIMULATIONS

In this section we will present a simulation example for
our class and discuss problems encountered in practice.
Since our class is a combination of LMS and fast LS al-
gorithms, it has the tendency to diverge for the same rea-
sons that these algorithms diverge. The basic sources of
divergence for the fast LS are the initialization method
and the accumulation of roundoff errors. For the initial-
ization it was observed that the fast LS algorithms behave
much better if a soft constraint initialization is used in-
stead of an exact initialization [4]. It is exactly this ini-
tialization that we are going to use in our example for the
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TABLE 11
THREE VERSIONS OF THE FNTF ALGORITHMS

The Fast Newton Transversal Filter (FNTF) Algorithms

Define: e{w(l) 1
Sun®) = ———
Ayt — 1) | —Ay, e — 1)
0] “Byt -1
UM+I(’)*—)\aﬁl(2_l){ . ,=t-N+M

Version 1. Using Forward and Backward Predictors

Available at time 1: Cy(r — 1), yy pu(t — 1)
From any LS algorithm: S,,, (1), €%(1), Ups1(t), €54 (t°)

0 Su+
i) =[ ] —[ N '(t)]
Cye = 1) On_m
Cyn() On-
[N]=CN+|(’)+I:NM ]
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Version 2. Using Only Forward Predictors

Available at time 11 Gy(r — 1), gy(z — 1)
From any LS algorithm: Sy, (1), e’ (2), Sya1(t%), €5 (t), Coult),
Tu(t®)
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Version 3. Using only Backward Predictors

Available at time 11 Fy(t — 1), fy(t — 1)
From any LS algorithm: Uy, (1), €34(1), Ups(£°), €3 (), Cor (@), 1as (1)
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Filtering Part (Common to all Versions)

Available at time 1: Hy(t — 1), Xy(t — 1)
New information: y(#), x(r)

en(®) = y(y — Hi(t — 1) Xp(0)
ex(t) = en(t) /yw.u(0)
Hy() = Hy(t — 1) — en(® Cy(®)

prediction part of the FNTF class. The second source,
i.e., the accumulation of the roundoff errors can be over-
come by using some stabilized version [2], [10], [13] of
the fast LS algorithms. Here we are going to use the
SFAEST [10]. The LMS, on the other hand, is known
from practice to diverge when the step size is larger than
necessary, especially during the start up period of the al-
gorithm [6]. A large step size basically means that the
gain vector takes large values. A similar problem arises
also for our algorithmic class when M takes small values
close to zero. In other words, it is possible for the predic-
tion part to work perfectly well but the filtering part to
diverge. Because this type of divergence appears mainly
during the start up period, it is possible, with proper ini-
tial conditions, to force the gain to be small in the begin-
ning; then letting the algorithm itself modify the gain
adaptively. This method worked in all simulations we
performed. The algorithm was able to successfully follow
changes of the statistics, as we shall see, that were quite
abrupt (change of the real model from Hy to —Hy). To
define initial conditions we use the soft constraint method
as in [4] assuming that at time + = —N we had an input
equal to \/;_L and at all other time instants until t = 0 the
input was zero. We can easily compute all initial values
of the necessary quantities because the matrix Ry 4 (¢) is
diagonal. Specifically, for the prediction part, the filters
Ay (D), By (1), Cy(2) are zero for t < 0 and the respective
powers satisfy oy (1) = pA"*, aby(t) = pA¥*' "M and
yu(® = 1 for t < 0. Finally, fy(0) = gy(0) = 0, and
vn.1(0) = 1. Now, in order to have a small gain, we must
give u a large value. The value p = 0,2(/(1 — \), where
o2 is an estimate of the input power, is usually adequate.

The simulation we present here is for a model N = 100
(100 random numbers in the interval [—1 1]). As input
we used a speech signal, a part of the phrase ‘“Our method
works fine.”” In Fig. 1 we can see the input and the out-
put. At some point we change the model from Hy to — Hy.
Finally, to the output we add a 20-dB white Gaussian
noise. Since all algorithms are very sensitive to initial
conditions and have a very different behavior, in order to
make a fair comparison independent of the initial condi-
tions, we decided to let the algorithms under comparison
converge first and then check their tracking capability with
respect to the same change in the model. In Fig. 2 we plot
the estimation error computed by our algorithm for M =
0, 8, 15, 100. We have used for all cases A = 0.96 and
the predictors were computed with SFAEST (complexity
6M). Since we are interested in the part after the change,
we plot only 100 points before the change. Thus the time
of change in Fig. 2 is at + = 100. Notice that as M in-
creases, the algorithm has an increased tracking capabil-
ity. For M = 15, its behavior is almost identical to the
LS optimum M = 100. This was expected since speech
signals can be adequately modeled by AR(15) to AR(20).

Comments: Even though the input model used to de-
rive the algorithms is AR(M ), this does not mean that the
algorithms converge only for this type of inputs. This is
the same property as LMS which converges for nonwhite
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Fig. 1. (a) Input and (b) output of the filter (N = 100) used for the simu-
lation.
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Fig. 2. Performance of the FNTF algorithms for N = 100 and M = 0, 8,

15, 100.

input sequences as well. One can show using the ODE
convergence analysis [9], that the algorithms converge
provided that the input is persistently excited of order N.
In other words, if the covariance matrix of order N of the
input is nonsingular then it can be shown that the algo-
rithms converge regardless of the type of the input. Of
course, we expect that their convergence performance will
be reduced if the AR(M) does not adequately model the
input.

We believe that versions 2 and 3 are more appropriate
for deriving simplified algorithms. This is so since the
quantities Fy(?) and Gy(#) defined in (22) and (26) will
always be a finite sum of terms, because a vector added
at some time instant is always subtracted after N — M
instants regardless of the way it is computed. This is not
the case for version 1 since we add forward, while we
subtract backward predictors. Consequently, if the com-
putation is approximate, this might lead to accumulation
of terms and eventually to divergence.

V. CONCLUSION

A new class of algorithms has been derived based on
an Mth order AR modeling of the input sequence. The
user can select the order M from M = 0 up to N, where
N is the order of the filter. Depending on the value of M,
the complexity and performance of the algorithm varies
from that of LMS (M = 0) to that of the fast LS schemes
(M = N). The performance of the algorithm was tested
using a speech signal. The simulations showed that the
performance was improving with increasing M obtaining
almost identical results with LS for M = 15 while N was
equal to 100. This suggests that in cases where the input
signal can be adequately modeled as an AR process of
order much less than the order of the filter (such as speech
in echo cancellation) this algorithm may offer significant
computational savings without sacrificing performance.

APPENDIX

Proof of Theorem 1: We will prove the theorem only
for the forward predictor case since following similar steps
it can be shown for the backward. Before proving the
theorem let us introduce one more relation which is known
as ‘‘saddle point™ relation in game theory. We will say
that a pair (7%, A{) satisfies a saddle point relation if for
every predictor 4, and matrix element 7 we have

ol (AE, F) = oSAF, 7% < oI(4, 7% (AD)
We will first show that if a pair satisfies (A.1) then it also
solves the max-min and min-max problems defined by (42)
and (5a). To show (4a) from (A.1), consider the left-hand
side (LHS) inequality of (A.1), this yields

min o’(4;, #) = of(4F, ) < SAF, 7H) (A2)
Ak

and thus

max min o/ (4, 7) < o/(4F, 7*). (A.3)

P Ak

Since the right-hand side (RHS) inequality of (A.1) holds
for every 4, we have

o (A¥, #%) < min o/ (A, #) < max min o/(4;, 7).
Ak 4 Ak
(A4)

Combining (A3) and ('A4) we conclude that (4a) is true.
To show now (5a), consider the RHS inequality of
(A.1). We conclude that

of(4¥, #*%) <= af(4,, #*) < max o/(4;, F) (A.5)
4

and thus

of(AF, #*) < min max of(4;, 7). (A.6)
Ak 2
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The LHS inequality of (A.1) holds for every 7, thus

af(AF, %) = max o/(AF, #) = min max o’(4,, 7).
i Ak P

(A7)

Combination of (A6) and (A7) proves (5a).

Until now we have shown that if a pair (#*, A}) satis-
fies the saddle point condition defined in (A.1) this is suf-
ficient for solving the min-max and the max-min problems
defined with (4a), (5a). Notice also that the two problems
have the same value equal to of (A, 7*). In order to prove
the theorem we conclude that it is sufficient to show that
the pair defined by (6a, b) satisfies the saddle point rela-
tion (A.1). Consider first the RHS inequality of (A.1),
namely, a/(4¥, #*) < a/(A,, #*). This inequality means
that A is the optimum predictor for # = #*. Indeed, by
differentiating (3a) with respect to A; we can show that
the optimum predictor is given by the LHS equality of
(6b). If we apply Shur’s inversion formula on the existing
partitions we can easily show that the second equality of
(6b) is also true. To show now that the RHS inequality in
(A.1) is true, that is, o/ (4}, ) < o/(Af, #*) we will
compute o/ (4, 7). Substituting (6b) in the definition (3a)
yields

ol (AE, ) = ro0 — VIo R Vi (A.8)

which is independent of 7. In other words, the LHS rela-
tion in (A.1) is satisfied as equality. We have thus shown
that the quantities defined in (6a, b, ¢) solve the min-max
and the max-min problems. What is left for our proof to
be complete is to show inequality (7). Let us compute det
{R; . s-1()} for an arbitrary 7. Using the property of
the determinant for block matrices we obtain

det {R . ,—1(M)}
R, _ W,_
:det{[ le k I]}
Wit Tex
1
R,_ W, _ V._
X {"0,0 ~ [Vl_lfl[ e ‘} [f ‘B

Wio1 Tk 7

(A.9)

Applying Shur’s inversion formula on the last term of
(A9), gives

det {Ry ., (P}
R, _ W,
=det{[ IcTI k l:|}
Wit ek
X {ro,o - ViR Vi
- lr ~ 7y (A.10)
e — Wio iR W ) '

Since by assumption, the two principal minors of order k
are positive definite we conclude from (A10) that #* has

the additional property to maximize the determinant of the
matrix R, ;- (#). This last property is actually used for
the ME extension of a covariance matrix in the Toeplitz
(stationary) case and we see that it carries over to the non-
stationary case as well. From (A.10) and the positivity of
the minors we conclude that inequality (7) is valid. This
concludes the proof of Theorem 1.

Proof of Theorem 2: To prove (10a) we use Shur’s
inversion formula after forming a lower partition of the
matrix Ry, ,(?), thus

or }
O« R{Lt—1D

1

ak(t) —Ak(t)

where A, (1), ai(t) are the optimum forward predictor of
order k and its corresponding error power, respectively.
Repeated use of (6b) gives

A1 () A, (D)
A = == A.12
@ [ 0 } [O } ( )

k—m

= 0
Rii (D=

][1 —ATM1 (A.1D)

now using (A12) we have
k() = ro0 = AL®) Remlt = 1) 4()

Too — AL Ryt = 1) A1) = ol ().
(A.13)

Substituting (A12), (A13) in (Al1) proves (10a). Using
an upper partitioning in Ry, , (¢) and (6¢) proves in the
same way (10b). To show now (11) and (12) we repeat-
edly apply (10a) and (10b) fork + 1, k, - -+ , m + 1.
Equations (11) and (12) are not the only relations we can
have for the inverse. Equation (11), for example, was the
result of repeated application of (10a) only, by mixing
(10a) and (10b) we can have several different relations for
the inverse that involve in the sum both types of predic-
tors.
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