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neither TI’* nor a* would be computed more than once. In addition, 
the complexity of O(1<2h+’r2) MAD for the overall backward 
recursion algorithm can be obtained. Please note that in the course of 
performing the time backward update recursions from 80 to 79 for 
all possible subset autoregressions, only the parameter matrices and 
the necessary IC’* and (I* at 80 are required to acquire all parameter 
matrices and both U-* and (I* at 79. No parameters at 80+i. i > I 
are required, and neither U-* nor a* at 80 Si is needed. 

In addition, note that the initialization of both forward and back- 
ward time update recursions can be carried out by the direct method 
for a middle block of the sample set; then, one processor may perform 
forward time update recursions, and the other processor may perform 
backward time update recursions concurrently. This method has been 
used in estimating a gradually changing spectrum for the Canadian 
lynx 1131 and is useful in signal smoothing. In addition, this structure 
provides great benefit in working with recursive algorithms suitable 
for carrying out within a multi-c.p.u. computing environment. 

Further, an order selection criterion, such as the BIC, can be used 
at each time instant with the proposed method to select the optimum 
subset AR. For further details, the interested reader is referred to 
[13]. which is available upon request. In addition, it is unnecessary to 
neglect possible zero constraints in the nonzero coefficient matrices of 
the optimum subset AR model selected. Our previous experience 181 
shows that the proposed search algorithm in conjunction with model 
selection criteria can, with slight modification, select the optimum 
subset AR with zero constraints using the prewindowed case. 

IV. CONCLUSION 

To this point, we have developed forward and backward time 
update recursions for the prewindowed case that recursively estimate 
the parameter matrices for a multichannel subset autoregression. The 
algorithm is computationally efficient, avoids cumbersome matrix 
inversion, and provides the obvious relations to link multichannel 
subset autoregressions at consecutive time instants. 
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A Fast Newton Multichannel Algorithm 
for Decision Feedback Equalization 

Sergios Theodoridis, George V. Moustakides, and Kostas Berberidis 

Abstract-Fast Newton transversal filters (FNTF) are a new class of 
adaptive algorithms unifying NLMS and fast RLS. This is achieved by 
allowing the algorithm to exploit a priori information about the associated 
predictors order. This note extends FNTF to the multichannel case and 
demonstrates the applicability of the resulting algorithm to decision 
feedback equalization. 

I .  INTRODUCTION 
The major computational contribution in fast transversal adaptive 

algorithms comes from updating the associated forward and backward 
predictors of the input time series, which are implicitely assumed to 
be of the same order as that of the unknown system [ I ] ,  [2]. However, 
it is quite common in practice to extract all the predictable information 
of‘ the input time series with predictors of much lower order. This 
idea was successfully exploited in the recently suggested class of fast 
Newton transversal filters (FNTF) [7] where the prediction part was 
assumed to be of lower order than that of the filtering part. 

In this note FNTF is extended to the multichannel case so as to 
be directly applicable to decision feedback equalization. The more 
general case of different number of taps per channel is treated. 
Simulation results verify that performance is traded off against 
complexity, by varying the predictor’s order. 

11. PROBLEM FORMULATION AND 
CORRELATION MATRIX EXTRAPOLATION 

Let us assume two input signals .r’ ( n  ), .r2( n ) which are combined 
by the linear system 

I , )  1 
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A recursive solution to the problem of estimating the unknown 
system's parameters, based on input-desired output samples is given 
by the well-known stochastic Newton method [ 11 

C , , , l ( ? t )  = C, ,> lOt  - 1 )  + W , , ! i O I ) [ 4 l t )  + c:,,,(It - l )X,!Lf(It) l  (2) 

where c , , , ~  = [c11. c12. . . . c ~ ~ ~ , .  cP1.  ( '22.  . . . c2,]' is the parameter 
vector and 

X , ~ , ( ( I ~ )  = [ . z " ( t i J . . i ~ ' ( ~ t  - 1 )  . . . . .  r ' ( t t  - [ t i  + 1 ) . . r 2 ( ? t ) .  

. r2(  t i  - 1 ) .  . . . .r2( t i  - I + l)] ' .  (3) 

The gain vector is given by w,,,i(?t) = - ~ , ( t i ) ~ ~ ~ ( / t ) x ~ ~ , , ( f i )  

where R,z,,( J I )  is an estimate at time I t  of the input data correlation 
matrix and 7 ( I t  ) is a properly chosen positive gain sequence. In this 
correspondence, extending the idea introduced in [7] for the single 
channel case, this estimate of t i  ) is produced by extrapolating 
the sample correlation matrix of a lower order R , * ( f i ) ,  where I , .  s 
denote the prediction orders of the two input sequences, respectively 
(with r 5 J U  and s 5 I). Note that the multichannel order evolution 
required by the algorithm is achieved in steps involving each channel 
separately and leads to an algorithm involving scalar operations only. 
Let us assume that the matrix R, ( u )  is known and we seek to make 
an estimate of R,+1.%+1(//). If the latter matrix is partitioned as 

( 4) 

then the unknown elements in the above matrix are, the upper right 
element of IC (denoted as ( I i  )), the upper right element of \I 
(denoted as pq'( i f  ) ), the upper right element of L (denoted as ib ( 11 )), 
and the lower left element of L (denoted as c-? ( 9 1 ) ) .  

The above elements are computed from respective prediction 
problems following a saddle point approach. The involved prediction 
problems are defined as follows, 

a) Given the input samples . r ' ( o  - 1). . . . . r 1 ( t t  - r ) ,  . c2 (u  -1). 
. . . x2  ( I t  - s + 1 ) predict .r2 ( 11 ). The corresponding predictor, 
prediction error, and error power are denoted as L 4 : 3 - l ( ~ ~ ) ,  
P , ~ - ~ ( I ~ ) ,  and o ! : - ~ ( / / ) ,  respectively. 

b) Given . r l ( t i  - 1). . . . .  r l ( n  - v ) .  . ? ( I ) ) .  . _ . .  ? ( ~ t  - s +l) ,  
predict .I.' (Ti  1. The respective prediction quantities are denoted 
as ( i t  ). 

c) Given .rI ( I I  ). . . . .r' ( I t  - v + l ) .  .J ' (  U). . . . .? ( 1 1  -s+ l ) ,  predict 
. r l  ( I )  - I . ) .  The respective prediction quantities are denoted as 
B ! b ( ~ i ) ,  e p t ( ? i )  and ( I ~ : ( I I ) .  

d) Given X I ( / ! ) .  . . . . r l ( t t  - r ) .  . v 2 ( t i ) ,  . . . . r 2 ( / t  - s +  1 ) .  predict 
. r 2 ( t t  - . s ) .  The respective prediction quantities are denoted as 

The rninmax part of the saddle point approach is equivalent with 
making the minimum error power to be maximum with respect to 
the corresponding unknown element of the matrix R,-+ls+l ( r t  ). For 
example, consider the unknown element &, ( I I  ) and the respective 
optimum predictor A4: ,- I ( I )  ). Then both the predictor and the result- 
ing minimum error power are functions of ( i t  j. Our goal will be 
to select the unknown element so as to maximize this minimum error 
power. Using the partitionings of Table I (where the definitions of 
the involved permutations and partitionings are given) and the well 
known matrix inversion lemma for partitioned matrices [ I ] ,  it can 
be shown that 

rr 

( I I  ). t!'.: ( I I  ) and ii 

B2 , + I d  ( ? t  ). vp", ( 11 ) and nt:,,, ( I I  ). 

TABLE I 
THE INVOLVED PARTITIONINGS A N D  PERMUTATIONS 

I 

with 

where 6{.} is an estimate of the expectation E{ . } .  Substituting the 
above two equations into the definition of the error power a{,:- I ( i t  ) 
results in 

From (6) it is apparent that n { t - , ( n )  achieves its maximum value 
if the reflection coefficient k:':'?, = 0, which is equivalent to the 
following order update: 

Note that each unknown element can be estimated by more 
than one minmax problem. However, the resulting element is 
always the same [8]. It can be easily shown that the rest of 
the predictors are order-updated in a similar way as above, that 
is, A i : . s + l ( ~ i )  = ( A ! ; ( I I )  0) ' .  ~ ? + ~ * ( ; t )  = (0  @ : i n )  ) ' ?  

L ? : s ( ~ ? )  = ( 0  fi!lIy(,~))', where B ! - , s ( n )  and B;#( t i )  
are intermediate auxiliary vectors computed via the relations 
b~-l,v(u) = T , - I , ( ~  B ~ ~ l y - l ( ~ ~  - 1 ) ) '  and & l s ( ~ ~ )  = 
T, , ( O  B ; : - l ( / i  - 1 )  ) '. 

Continuing the above procedure, the matrix I??,,,( I I  ) is recursively 
estimated from R, ( i t  ). Note that, with our method, this is possible 
only if n t  - r = 1 - s ,  imposing a restriction on the order of the matrix 
R7.*(  n ). It can also be shown that the matrix extrapolated in the above 
way remains positive definite [8]. Furthermore, its inverse, if viewed 
as a 2 x 2 block matrix. results in banded blocks. Specifically, in 
the places of the unknown elements of the extrapolated matrix, we 
have zeros in its inverse. 

111. DERIVATION OF THE ALGORITHM 
Our starting point is the recursion (2) written in the least squares 

(8) 

posterior error formulation using the dual Kalman gain [6] that is 

C r r t l 0 I )  = C,,,f(It - 1 )  + w,,tl(?')5,,,,(7t) 

where 

It is already well established that the essence in deriving a fast 
algorithm is the fast computation of the Kalman gain vector. In 
this section we assume that R, , , I (  I I  - 1 )  is a scaled estimate of the 
correlation matrix extrapolated from a lower order covariance matrix 
R, +1 ( 1 1  - 11, which i5 computed as a least squares estimate. That 
is 

R , + h + l O I )  = XRr+l3+l0t  - ~ ) + x , + l ~ + , ( ~ ~ ) x ~ + l ~ + l ( ~ ~ ) .  (11) 
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TABLE I1 
THE MULTICHANNEL FAST NEWTON TRANSVERSAL FILTERING (MmTF) ALGORITHM 

k = n - m + T ,  b]k denotes the k-th element of the vector p 

. Available from the previous recursion of the MFNTF: w,I(n - l), ami(n - 1) 

A constant weighting sequence X has been adopted to allow 
for slow time variation tracking. As has already been pointed out 
in the previous section, these matrices will not be explicitely in- 
volved. It is their related prediction (state space) parameters and 
their interrelation which will be accounted for. as is always the case 
with fast algorithms. Let us now define the partitioning -4:, ( 11 ) E 
(a:' ' ( t i  ) a:*' ( i t  ) ) '  for the predictor --IfJ ( 1 1  ) and similarly for 
the remaining predictors .<iJ ( i t  ), B:J ( 1 ) )  and Bf,  ( 1 1  ) .  Applying 
successively the updating procedure as in (7) and using the definitions 
of Table I, we finally obtain 

Td+l  (1  .C!A 1 
= (af"(t2) o : ~ , - ,  1 a?"(ir) o ; - ~  )'. (12) 

In a similar way i t  can be shown that 

( 1  . L l ( t ) )  ) t  

= ( 1  a ; 1 ' ( 1 , )  0; ,,--) afy,(tl) o;-,, ) '  (13) 
s , , l+i l (~! : l (J) j  1 j 1  

= (Of , , - ,  b:"(tl - 111  + 1 . )  1 O : - q  bk2'(ii - 1 + s )  ) ' 

(14) 

& , + i f  ( 12 1 
= (0;  ,,-, , + l ( ? t  - ni + r )  Ol-, hz2'(n - I + 5 )  1 )'. b 2 1 /  

(15) 

Using the above and the respective definitions, the following rela- 
tionships can be obtained for the involved errors and error power 
v anables. 

e 7 , , f ( n )  f l  = r , ' l ( 7 l )  n:;,(rl - 1) = r l ( , 2 ( 1 l  - 1) 
" , 1 1 + 1 ( 1 1 )  = e f l  t ?+I  (11  ) , d + l ( ? l  - 1 )  

= n 3 + 1 ( ? 1  - 1) 
e::+ll(tl) = e:$15(1z - t i /  + 1.) o::+lfol - 1) 

- n1,2 

n:!,(ii - 1) 

611 611 
~ I1 

- , + l y ( l ~  - III  + r - 1) 
e b 1 , , , [ (n j  = f P t ( i i  - i ) i  + 1.1 

= C l ! t ( t l  - t J l  + r - 1). 
(16) 

Introducing (12)-( 16) in the two-channel staircase algorithm of [6] ,  
the corresponding two-channel FNTF algorithm of Table I1 resultb. It 
is readily observed that the computations associated with the filtenng 
part contribute to the complexity In proportion to the systems order 
r 1 t . l .  The contribution to the complexity of the prediction part IS  
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linearly dependent on the predictors orders I'. s. Specifically, the 
overall complexity of the algorithm of Table 11 is I O  ( r  + s )  + 2 
( I I )  + I )  MADS per time recursion, while the respective complexity 
of the algorithm of [6] is l2(111 + I )  MADS. 

[v. APPLlCATlOh TO DECISION FEEDBACK EQUALIZATION 

To verify the above theoretical developments, a channel equaliza- 
tion experiment was carried out. A binary pseudorandom sequence 
was used as the bit information sequence sent to a channel which 
introduces intersymbol interference. An FIR linear phase channel 
was used with an impulse response spreading over 15 successive 
bits. A 20 dB (SNR) white Gaussian noise was added at the output 
of the channel. Fig. 1 shows the frequency response of the channel. 
The distortion which is introduced is rather severe, due to the large 
dynamic range and the deep nulls which are present in the frequency 
response. Equalization of channels with deep nulls suggest the use of 
decision feedback equalizers (DFE). Fig. 2 shows the typical structure 
of a DFE. It consists of the feedforward anticausal part and the 
feedback causal part, and i t  is described as 

where { y ( t ) )  is the received sequence. In the training mode . i ( t )  are 
the correct symbols and in the decision-directed mode the detected 

Fig. 3. MSE versus time for the DFE experiment: (a) Bottom solid 
line-two-channel RLS with predictor orders 20,20: (b) dashed line-MFNTF 
with predictor orders 15, 15; (c) Dotted line-MFNTF with predictor orders 
IO,  IO;  (d) Dash-dotted line-MFNTF with predictor orders 5.  5 ;  (e) top solid 
line-normalized LMS with I( = 0.25. 

symbols. A symbol rate decision feedback equalizer is a typical two- 
channel system identification task. The inputs in the two channels 
are the sequences { y (  f ) }  and {.?( t )  }, respectively. The equalizer 
parameters c' and 6; are estimated so that the error i ( t )  - i ( t )  
is minimized. The equalizer used by this experiment consisted of 
20 feedforward and 20 feedback taps. Five curves are shown in 
Fig. 3. Curve I (the lower one) corresponds to the two-channel 
R I S  algorithm. Curve 2 (dashed line) corresponds to the MFNTF 
algorithm with two-channel predictors of orders 15, 15. As we can 
sec, an almost negligible degradation in performance results at a 
computational saving of the order of 25'A. Curve 3 (dotted line) 
corresponds to the MFNTF algorithm with predictors of orders 10, 
1U. Curve 4 (dashdotted line) corresponds to the MFNTF algorithm 
with predictors of orders 5, 5 .  The latter has converged at about 2000 
samples. In all the above cases the forgetting factor X was taken equal 
to 0.99. The top curve corresponds to the normalized LMS which 
at about 4000 samples (not shown in the figure) converges to the 
same misadjustment level as that of Curves 3 and 4. Thus, we have 
demonstrated that the use of the multichannel fast Newton algorithm 
provides the means of trading off performance with computational 
complexity having RLS at one end and NLMS at the other. 

V. CONCLUSION 

This correspondence has proposed a new structure for adaptive 
multichannel filtering. The resulting algorithm trades off complexity 
with performance covering the whole range between multichannel 
RLS and multichannel LMS. The applicability of the algorithm to 
decision feedback equalization has successfully been demonstrated 
by simulations. 
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An Efficient CORDIC Array Structure for the 
Implementation of Discrete Cosine Transform 

Yu Hen Hu and Zhenyang Wu 

Abstract-We propose a novel implementation of the discrete cosine 
transform (DCT) and the inverse DCT (IDCT) algorithms using a 
CORDIC (Coordinate Rotation DIgital Computer)-based systolic proces- 
sor array structure. First, we reformulate an :\--point DCT or IDCT ai- 
gorithm into a rotation formulation which makes it suitable for CORDIC 
processor implementation. We then propose to use a pipelined CORDIC 
processor as the basic building block to construct 1-D and 2-D systolic- 
type processor arrays to speed up the DCT and IDCT computation. Due 
to the proposed novel rotation formulation, we achieve 100% processor 
utilization in both 1-D and 2-D configurations. Furthermore, we show 
that for the 2-D configurations, the same data processing throughput 
rate can be maintained as long as the processor array dimensions are 
increased linearly with S. Neither the algorithm formulation or the 
array configuration need to be modified. Hence, the proposed parallel 
architecture is scalable to the problem size. These desirable features make 
this novel implementation compare favorably to previously proposed DCT 
implementations. 

I. INTRODUCTION . 

In this correspondence, we present an efficient implementation of 
the discrete cosine transform (DCT) algorithm [ I ]  and its inverse 
(IDCT) using a CORDIC processor array structure. DCT has been 
incorporated into image compression standards such as JPEG, MPEG, 
and CCITT H261. It has also found many applications in speech 
coding and realization of filter banks for frequency-division and 
time-division multiplexer (FDM-TDM) systems. Due to its increasing 
importance, numerous attempts have been made to accelerate the 
DCT computation in order to facilitate real time, high-throughput 
implementation [2]. One family of approaches is to derive fast DCT 
algorithms [7]-[ 121 by reducing the number of multiplications needed 
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in the formulation. Yet another family of approaches [3]-[6] has 
focused on using hardware implementation of DCT with parallel or 
pipelined VLSI array structures [13]. While most of these proposed 
implementations are based on the multiply-and-add-type arithmetic 
units, some [5] have reported implementations using a special arith- 
metic unit called CORDIC. 

CORDIC (Coordinate Rotation DIgital Computer) is a rotation- 
based arithmetic algorithm which is particularly efficient for the 
evaluation of fast transformation algorithms such as DFT (discrete 
Fourier transform), FIT (fast Fourier transform) [15], and DHT 
(discrete Hartly transform) [16]. In this correspondence, we will 
propose new formulations of both the DCT and the IDCT algorithms 
to facilitate very efficient implementation using CORDIC processor 
array structures. Compared to the previous result [ 5 ] ,  our implenien- 
t,itions require only local data communication, have simple, regular 
array structures, and are linearly scalable. 

11. VECTOR ROTATION FORMULATION OF DCT AND IDCT ALGORITHM 

Given a real-valued sequence {.r(n): 0 5 5 AV - l}, the DCT 
of { . ~ ( J I ) }  is defined by 

and the IDCT of an S-point  real-valued sequence {S(X.);0 5 k 5 
-Y - l} is defined by 

where r ( 0 )  = i, and ~ ( k )  = 1 for 1 5 k 5 S - 1. Since is 
a scaling factor which can easily be computed if S is a power of 2. 
we need only to compute .i-( k )  = SS( k)/2.  Let us define 

JI 

Clearly, . t ( X * )  = Re{I- (k)}  for k 2 1, and - c (0 )  = L I T ( ( ) ) .  
Assuming that S is an even number, our strategy is to decompose 
1 7 ( k )  such that 

v5 

where 

and 

The following relations can be verified easily: Re{I: (s - k ) }  = 
Iln{T;(k)} and R P { T ~ ( T  - k ) }  = -Im{Ii,(k)}. Substitute r t t  = 
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